Нервные импульсы по телу. Нервный импульс

23.06.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Нервная система выполняет контролирующие, координирующие и регуляторные функции, обеспечивая согласованную работу всех систем органов, связь организма с внешней средой, поддержание постоянства состава его внутренней среды. Функциональное состояние организма оказывает влияние на состояние нервной системы.

Нервная система условно делится на центральную и периферическую. Центральная нервная система образована головным и спинным мозгом. Периферическая нервная система состоит из черепно-мозговых и спинно-мозговых нервов с их корешками, ветвями и нервными окончаниями, а также нервными узлами, или ганглиями.

Часть периферической нервной системы, иннервирующую скелетную мускулатуру и обеспечивающую связь организма с внешней средой, называют соматической нервной системой. Другую часть периферической нервной системы, отвечающую за иннервацию внутренних органов, гладкой мускулатуры, сосудов, регуляцию обменных процессов, называют вегетативной, или автономной, нервной системой. Вегетативная нервная система, в свою очередь, делится на парасимпатическую и симпатическую.

Структурно-функциональной единицей нервной системы является нервная клетка - нейрон. Нейроны состоят из тела и отростков. Длинный единичный отросток, по которому нервный импульс передается от тела нейрона, называют аксоном. Короткие отростки, по которым импульс проводится к телу нейрона, называют дендритами. Их может быть один или несколько.

Нейроны связаны между собой синапсами, осуществляющими передачу нервного импульса с одного нейрона на другой. Синапсы могут возникать между аксоном одного нейрона и телом другого, между аксонами и дендритами соседних нейронов, между одноименными отростками нейронов.

Импульсы в синапсах передаются с помощью нейромедиаторов - биологически активных веществ - норадреналина, ацетилхолина, серотонина и др. Реагируя со специфическими молекулами рецепторных белков, молекулы медиаторов меняют проницаемость клеточной мембраны для ионов Са 2+ , К + и Сl – . Это приводит к деполяризации клеточной мембраны и возникновению потенциала действия.

Клетка возбуждается. Распространение возбуждения связано с таким свойством нервной ткани, как проводимость.

Кроме химических синапсов существуют электротонические синапсы, в которых передача импульсов происходит биоэлектрическим путем.

Помимо синапсов, передающих сигналы, существуют тормозные синапсы, срабатывание которых блокирует проведение сигнала по нервной клетке, к которой подходит такой синапс.

Кроме нейронов в нервной ткани имеются клетки нейроглии (глиоциты), выполняющие защитную, трофическую и секреторную функции.

В зависимости от функции выделяют следующие типы нейронов:

  • чувствительные, или рецепторные, тела которых лежат вне ЦНС. Они передают импульс от рецепторов в ЦНС;
  • вставочные, осуществляющие передачу возбуждения с чувствительного на исполнительный нейрон. Эти нейроны лежат в пределах ЦНС;
  • исполнительные, или двигательные, тела которых находятся в ЦНС или в симпатических и парасимпатических узлах

Они обеспечивают передачу импульсов от ЦНС к рабочим органам.

Нервная регуляция осуществляется рефлекторно. Рефлекс - это ответная реакция организма на раздражение, происходящая при участии нервной системы. Нервный импульс, возникший при раздражении, проходит определенный путь, называемый рефлекторной дугой. Простейшую рефлекторную дугу образуют два нейрона - чувствительный и двигательный. Большинство рефлекторных дуг состоит из нескольких нейронов.

Рефлекторная дуга чаще всего состоит из следующих звеньев:

  • рецептор;
  • чувствительный нейрон, передающий импульс в ЦНС;
  • вставочный нейрон, лежащий в ЦНС (головном или спинном мозге);
  • исполнительный (двигательный) нейрон, передающий импульс к исполнительному органу;
  • рабочий орган.

Соматические рефлекторные дуги осуществляют двигательные рефлексы. Вегетативные рефлекторные дуги координируют работу внутренних органов.

НЕРВНЫЙ ИМПУЛЬС (лат. nervus нерв; лат. impulsus удар, толчок) - волна возбуждения, распространяющаяся по нервному волокну; единица распространяющегося возбуждения.

Н. и. обеспечивает передачу информации от рецепторов к нервным центрам и от них к исполнительным органам - скелетной мускулатуре, гладким мышцам внутренних органов и сосудов, железам внутренней и внешней секреции и т. д.

Сложная информация о действующих на организм раздражениях кодируется в виде отдельных групп Н. и.- рядов. Согласно закону «Все или ничего » (см.) амплитуда и длительность отдельных Н. и., проходящих по одному и тому же волокну, постоянны, а частота и количество Н. и. в ряду зависят от интенсивности раздражения. Такой способ передачи информации является наиболее помехоустойчивым, т. е. в широких пределах не зависит от состояния проводящих волокон.

Распространение Н. и. отождествляется с проведением потенциалов действия (см. Биоэлектрические потенциалы). Возникновение возбуждения может быть результатом раздражения (см.), напр, воздействие света на зрительный рецептор, звука на слуховой рецептор, или процессов, протекающих в тканях (спонтанное возникновение Н. и.). В этих случаях Н. и. обеспечивают согласованную работу органов при протекании какого-либо физиол, процесса (напр., в процессе дыхания Н. и. вызывают сокращение скелетных мышц и диафрагмы, результатом чего являются вдох и выдох, и т. д.).

В живых организмах передача информации может осуществляться и гуморальным путем, посредством выброса в русло крови гормонов, медиаторов и т. п. Однако преимущество информации, передаваемой при помощи Н. и., состоит в том, что она более целенаправленна, передается быстро и может быть точнее закодирована, чем сигналы, посылаемые гуморальной системой.

Факт, что нервные стволы являются путем, по к-рому передаются влияния от мозга к мышцам и в обратном направлении, был известен еще в эпоху античности. В средние века и вплоть до середины 17 в. считалось, что по нервам распространяется некая субстанция, подобная жидкости или пламени. Идея о электрической природе Н. и. возникла в 18 в. Первые исследования электрических явлений в живых тканях, связанных с возникновением и распространением возбуждения, были осуществлены Л. Галь-вани. Г. Гельмгольц показал, что скорость распространения Н. и., к-рую ранее считали близкой к скорости света, имеет конечное значение и может быть точно измерена. Германн (L. Hermann) ввел в физиологию понятие потенциала действия. Объяснение механизма возникновения и проведения возбуждения стало возможным после создания С. Аррениусом теории электролитической диссоциации. В соответствии с этой теорией Бернштейн (J. Bernstein) предположил, что возникновение и проведение Н. и. обусловлено перемещением ионов между нервным волокном и окружающей средой. Англ. исследователи А. Ходжкин, Б. Катц и Э. Хаксли детально исследовали трансмембранные ионные токи, лежащие в основе развития потенциала действия. Позже стали интенсивно изучаться механизмы работы ионных каналов, по к-рым происходит обмен ионами между аксоном и окружающей средой, и механизмы, обеспечивающие способность нервных волокон проводить ряды Н. и. разного ритма и продолжительности.

Н. и. распространяется за счет местных токов, возникающих между возбужденным и невозбужденным участками нервного волокна. Ток, выходящий из волокна наружу в покоящемся участке, служит раздражителем. Наступающая после возбуждения в данном участке нервного волокна рефрактерность обусловливает поступательное движение Н. и.

Количественно соотношения разных фаз развития потенциала действия можно охарактеризовать, сопоставляя их по амплитуде и длительности во времени. Так, напр., для миелиновых нервных волокон группы А млекопитающих диаметр волокна находится в пределах 1-22 мк, скорость проведения - 5-120 м/сек, длительность и амплитуда высоковольтной части (пика, или спайка) - 0,4-0,5 мсек и 100-120 мв соответственно, следовой негативный потенциал - 12-20 мсек (3-5% от амплитуды спайка), следовой позитивный потенциал - 40-60 мсек (0,2% от амплитуды спайка).

Возможности передачи разнообразной информации расширяются за счет повышения скорости развития потенциала действия, скорости распространения, а также за счет повышения лабильности (см.) - т. е. способности возбудимого образования воспроизводить в единицу времени высокие ритмы возбуждения.

Конкретные особенности распространения Н. и. связаны со строением нервных волокон (см.). Сердцевина волокна (аксоплазма) обладает низким сопротивлением и, соответственно, хорошей проводимостью, а окружающая аксоплазму плазматическая мембрана - большим сопротивлением. Особенно велико электрическое сопротивление наружного слоя у миелинизированных волокон, у к-рых свободны от толстой миелиновой оболочки только перехваты Ранвье. В безмиелиновых волокнах Н. и. движется непрерывно, а в миелиновых - скачкообразно (сальтаторное проведение).

Различают декрементное и бездекрементное распространение волны возбуждения. Декрементное проведение, т. е. проведение возбуждения с угасанием, наблюдается в безмиелиновых волокнах. В таких волокнах скорость проведения Н. и. невелика и по мере отдаления от места раздражения раздражающее действие местных токов постепенно уменьшается вплоть до полного угасания. Декрементное проведение свойственно волокнам, иннервирующим внутренние органы, обладающие низкой функц, подвижностью. Без декрементное проведение характерно для миелиновых и тех безмиелиновых волокон, к-рые передают сигналы к органам, обладающим высокой реактивностью (напр., сердечной мышце). При бездекрементном проведении Н. и. проходит весь путь от места раздражения до места реализации информации без затухания.

Максимальная скорость проведения Н. и., зарегистрированная в быстропроводящих нервных волокнах млекопитающих, составляет 120 м/сек. Высокие скорости проведения импульса могут быть достигнуты за счет увеличения диаметра нервного волокна (у безмиелиновых волокон) или за счет повышения степени миелинизации. Распространение одиночного Н. и. само по себе не требует непосредственных энергетических затрат, т. к. при определенном уровне поляризации мембраны каждый участок нервного волокна находится в состоянии готовности к проведению и раздражающий стимул играет роль «спускового курка». Однако восстановление исходного состояния нервного волокна и поддержание его в готовности к проведению нового Н. и. связано с затратой энергии биохим, реакций, протекающих в нервном волокне. Процессы восстановления приобретают большое значение в случае проведения рядов Н. и. При проведении ритмического возбуждения (рядов импульсов) в нервных волокнах приблизительно вдвое возрастает теплопродукция и потребление кислорода, расходуются макроэргические фосфаты и повышается активность Na,K-АТФ-азы к-рую отождествляют с натриевым насосом. Изменение интенсивности протекания различных физ.-хим. и биохим, процессов зависит от характера ритмического возбуждения (продолжительность рядов импульсов и частота их следования) и физиол, состояния нерва. При проведении большого числа Н. и. в высоком ритме в нервных волокнах может накапливаться «метаболический долг» (это находит отражение в увеличении суммарных следовых потенциалов), и тогда процессы восстановления затягиваются. Но и в этих условиях способность нервных волокон проводить Н. и. долгое время остается неизменной.

Передача Н. и. с нервного волокна на мышечное или какой-либо другой эффектор осуществляется через синапсы (см.). У позвоночных животных в подавляющем большинстве случаев передача возбуждения на эффектор происходит при помощи выделения ацетилхолина (нервно-мышечные синапсы скелетной мускулатуры, синаптические соединения в сердце и др.). Для таких синапсов характерно строго одностороннее проведение импульса и наличие временной задержки передачи возбуждения.

В синапсах, в синаптической щели которых сопротивление электрическому току благодаря большой площади контактирующих поверхностей мало, происходит электрическая передача возбуждения. В них нет синаптической задержки проведения и возможно двустороннее проведение. Такие синапсы свойственны беспозвоночным животным.

Регистрация Н. и. нашла широкое применение в биол, исследованиях и клин, практике. Для регистрации используют шлейфные и чаще катодные осциллографы (см. Осциллография). При помощи микроэлектродной техники (см. Микроэлектродный метод исследования) регистрируют Н. и. в одиночных возбудимых образованиях - нейронах и аксонах. Возможности исследования механизма возникновения и распространения Н. и. значительно расширились после разработки метода фиксации потенциала. Этим методом были получены основные данные о ионных токах (см. Биоэлектрические потенциалы).

Нарушение проведения Н. и. происходит при повреждении нервных стволов, напр, при механических травмах, сдавливании в результате разрастания опухоли или при воспалительных процессах. Такие нарушения проведения Н. и. зачастую бывают необратимы. Следствием прекращения иннервации могут быть тяжелые функциональные и трофические расстройства (напр., атрофия скелетных мышц конечностей после прекращения поступления Н. и. вследствие необратимой травмы нервного ствола). Обратимое прекращение проведения Н. и. может быть вызвано специально, в терапевтических целях. Напр., с помощью анестезирующих средств блокируют импульсацию, идущую от болевых рецепторов в ц. н. с. Обратимое прекращение проведения Н. и. вызывает и новокаиновая блокада. Временное прекращение передачи Н. и. по нервным проводникам наблюдается и во время общего наркоза.

Библиография: Бpеже М. А. Электрическая активность нервной системы, пер. с англ., М., 1979; Жуков Е. К. Очерки по нервно-мышечной физиологии, JI., 1969; К о н н e л и К. Восстановительные процессы и обмен веществ в нерве, в кн.: Совр, пробл. биофизики, пер. с англ., под ред. Г. М. Франка и А. Г. Па-сынского, т. 2, с. 211, М., 1961;

Костюк П. Г. Физиология центральной нервной системы, Киев, 1977; Л а т м а-низова JI. В. Очерк физиологии возбуждения, М., 1972; Общая физиология нервной системы, под ред. П. Г. Костюка, JI., 1979; T а с а к и И. Нервное возбуждение, пер. с англ., М., 1971; Ходжкин А. Нервный импульс, пер. с англ., М., 1965; Ходоров Б. И. Общая физиология возбудимых мембран, М., 1975.

Нервный импульс - электрический импульс, распространяющийся по нервному волокну. При помощи передачи нервных импульсов происходит обмен информацией между нейронами и передача информации от нейронов к клеткам других тканей организма. Нервный импульс проходит по центральной нервной системе и от неё к исполнительным аппаратам - скелетной мускулатуре, гладким мышцам внутренних органов и сосудов, железам внешней и внутренней секреции, от периферических рецепторных (чувствительных) окончаний к нервным центрам. Возникновение и распространение нервного импульса обеспечивается электрическими свойствами мембраны и цитоплазмы нервных клеток.«Нервный импульс» - не однозначный синоним понятия «потенциал действия». Например, при передаче информации в сетчатке глаза настоящий потенциал действия возникает только в третьей клетке цепочки, считая от клетки-рецептора, а до этого импульс является градуальным потенциалом. Каждую секунду в нашем мозгу проносятся миллиарды нервных сигналов. Они несут информацию от органов чувств, передают команды мышцам и определяют мысли, эмоции и воспоминания. Некоторые из этих сигналов можно зарегистрировать с помощью электроэнцефалографа, разместив на голове человеканесколько электродов. Нерв – это путь, по которому передаётся возбуждение.Нервные волокна подразделяются: Безмякотные (немиелинизированные) и Мякотные (миелинизированные) Безмякотные чаще всего работают на периферии, они передают возбуждение по вегетативным путям (сердце…почки). Возбуждение передаётся по принципу бигфордового шнура. Медленно, от точки к точке – скорость 1-2 м/с.По мякотным волокнам возбуждение передаётся скачками, при этом возбуждение возникает в тех местах нервного волокна, где не закрыты швановскими клетками – в перехватах Ранвье. Скорость значительно выше и достигает 120 м/c. Причём чем толще нервное волокно, тем больше длина межперехватного промежутка, а значит выше скорость проведения возбуждения.Один нерв может содержать несколько тысяч нервных волокон. (седалищный нерв -16000 нервных волокон). Мякотные нервные волокна работают в соматической нервной системе.Свойства нерва: 1.Возбудимость2.Проводимость 3.Рефрактерность – это свойство нерва понижать свою возбудимость до 0 в момент прохождения по нему возбуждения.4.Лабильность нервного волокна – это свойство нерва реагировать на постепенно увеличивающуюся частоту раздражения до определённого предела Законы проведения возбуждения по нерву: 1.Закон анатомической и физиологической непрерывности нервного волокна, т.е. функции нервного волокна должны быть сохранены.2.Закон двухстороннего проведения возбуждения.3. Закон изолированного проведения возбуждения. Возбуждение не распространяется на соседние нервные волокна.Скорость проведения возбуждения – зависит от типа нервного волокна (А,В,С)Волокна типа А – толстые, диаметр =20мкмСкорость проведения = 20-120 м/c Волокна типа В – диаметр от 2-12 мкм(-3-20 м/c)Волокна типа С – диаметр от 0.5-2 мкм (до 3 м/c)



14.Значение рефлексов для жизнедеятельности организма. Основные отличия условных от безусловных.Приспособление животных и человека к изменяющимся условиям существования во внешней среде обеспечивается деятельностью нервной системы и реализуется через рефлекторную деятельность. В процессе эволюции возникли наследственно закрепленные реакции (безусловные рефлексы), которые объединяют и согласовывают функции различных органов, осуществляют адаптацию организма. У человека и высших животных в процессе индивидуальной жизни возникают качественно новые рефлекторные реакции, которые И. П. Павлов назвал условными рефлексами, считая их самой совершенной формой приспособления. В то время как относительно простые формы нервной деятельности определяют рефлекторную регуляцию гомеостаза и вегетативных функций организма, ВНД обеспечивает сложные индивидуальные формы поведения в изменяющихся условиях жизни. Основной формой ВНД является рефлекторный акт. ВНД реализуется за счет доминирующего влияния коры на все нижележащие структуры центральной нервной системы. Основными процессами, динамично сменяющими друг друга в ЦНС, являются процессы возбуждения и торможения. В зависимости от их соотношения, силы и локализации строятся управляющие влияния коры. функциональной единицей ВНД является условный рефлекс. ВНД - это совокупность безусловных и условных рефлексов, а также высших психических функций, которые обеспечивают адекватное поведение в изменяющихся природных и социальных условиях. Впервые предположение о рефлекторном характере деятельности высших отделов мозга было высказано И.М.Сеченовым, что позволило распространить рефлекторный принцип и на психическую деятельность человека. Идеи И.М.Сеченова получили экспериментальное подтверждение в трудах Павлова, который разработал метод объективной оценки функций высших отделов мозга - метод условных рефлексов.Павлов показал, что все рефлекторные реакции можно разделить на две группы: безусловные и условные.Отличия. Безусловные рефлексы 1. Врожденные, наследственно передающиеся реакции, большинство из них начинают функционировать сразу же после рождения2. Являются видовыми, т.е. свойственны всем представителям данного вида. 3. Постоянны и сохраняются в течение всей жизни. 4. Осуществляются за счет низших отделов ЦНС (подкорковые ядра, ствол мозга, спинной мозг). 5. Возникают в ответ на адекватные раздражения, действующие на определенное рецептивное поле.Условные рефлексы 1. Реакции, приобретенные в процессе индивидуальной жизни. 2. Индивидуальные. 3. Непостоянны - могут возникать и исчезать. 4. Являются преимущественно функцией коры больших полушарий. 5. Возникают на любые раздражители, действущие на разные рецептивные поля.Безусловные рефлексы могут быть простыми и сложными. Сложные врожденные безусловно-рефлекторные реакции называются инстинктами, имеют цепной характер реакции.

15.Безусловные рефлексы – их классификация, значение для жизнедеятельности. Возрастные особенности.БР - это наследуемые, неизменные реакции организма на определённые воздействия внешней или внутренней среды, независимо от условий возникновения и протекания реакций. БР обеспечивают приспособление организма к неизменным условиям среды, т.е. выполняют защитную функцию и функцию поддержания гомеостаза. Основные типы БР: пищевые, защитные, ориентировочные, половые. Примером защитного рефлекса является рефлекторное отдергивание руки от горячего объекта. Гомеостаз поддерживается, например, рефлекторным учащением дыхания при избытке углекислого газа в крови. Практически каждая часть тела и каждый орган участвует в рефлекторных реакциях.БР замыкаются на уровне спинного мозга и стволовой части головного мозга. БРосуществляются через филогенетически закрепленную, анатомически выраженную рефлекторную дугу.Дуги безусловных рефлексов формируются к моменту рождения и сохраняются в течение всей жизни. Однако они могут изменяться под влиянием болезни. Многие безусловные рефлексы проявляются лишь в определенном возрасте; так, свойственный новорожденным хватательный рефлекс угасает в возрасте 3-4 месяцев. Многие безусловные рефлексы, например, связанные с локомоцией, половым актом, возникают у человека и животного через длительный срок после рождения, но они обязательно появляются при условии нормального развития нервной системы. БР являются физиологической основой :1. Видовой памяти человека, т.е. врожденной, передающейся по наследству, постоянной, общей для всего человеческого вида;2. Низшей нервной деятельности (ННД)КлассификацияПавлова :1)простые2)сложные3)сложнейшие (это инстинкты – врожденная форма приспособительного поведения):а)идивидуальные (пищевой активности, пассивно-оборонительный, агрессивный, рефлекс свободы, исследовательский, рефлекс игры). Эти рефлексы обеспечивают индивидуальное самосохранение особи.б)видовые (половой инстинкт и родительский инстинкт). Эти рефлексы обеспечивают сохранение вида. В соответствии с характером действующего раздражителя. Павлов различал такие виды безусловных рефлексов, как:1)пищевые (глотание, сосание и т.п.);2)половые («турнирные бои», эрекция, эякуляция и т.п.);3)защитные (кашель, чихание, мигание и т.п.);4)ориентировочные (настораживание, прислушивание, поворот головы к источнику звука и т.п.) и др.Осуществление всех этих рефлексов обусловлено наличием соответствующих потребностей, которые возникают в результате временного нарушения внутреннего постоянства (гомеостаза) организма или в результате сложных взаимодействий с внешним миром.Так, например, повышение количества гормонов в крови (изменение внутреннего постоянства организма) - приводит к проявлению половых рефлексов, а неожиданный шорох (воздействие внешнего мира) - к настораживанию и проявлению ориентировочного рефлекса.Поэтому можно полагать, что возникновение внутренней потребности фактически является условием реализации безусловного рефлекса и в определенном смысле его началом.

16.Условные рефлексы – их классификация значение дляжизнедеятельности.Возрастныеособенности.Организм рождается с определенным фондом безусловных рефлексов. Они обеспечивают ему поддержание жизнедеятельности в относительно постоянных условиях существования. К ним относятся безусловные рефлексы: пищевые (жевание, сосание, глотание, отделение слюны, желудочного сока и др.), оборонительные (отдергивание руки от горячего предмета, кашель, чихание, мигание при попадании струи воздуха в глаз и др.), половые рефлексы (рефлексы, связанные с осуществлением полового акта, выкармливанием и уходом за потомством), рефлексы терморегуляционные, дыхательные, сердечные, сосудистые, поддерживающие постоянство внутренней среды организма (гомеостаз) и др.УР обеспечивают более совершенное приспособление организма к меняющимся условиям жизни. Они способствуют нахождению пищи по запаху, своевременному уходу от опасности, ориентировке во времени и пространстве. Условнорефлекторное отделение слюны, желудочного, поджелудочного соков на вид, запах, время приема пищи создает лучшие условия для переваривания пищи еще до того, как она поступила в организм. Усиление газообмена и увеличение легочной вентиляции до начала работы, только при виде обстановки, в которой совершается работа, способствует большей выносливости и лучшей работоспособности организма во время мышечной деятельности. При действии условного сигнала кора больших полушарий обеспечивает организму предварительную подготовку реагирования на те раздражители внешней среды, которые в последующее время окажут свое воздействие. Поэтому деятельность коры больших полушарий является сигнальной. УР подразделяют по нескольким критериямПо характеру образования условные рефлексы делятся на:Натуральные УР образуются на основе естественных безусловных раздражителей (вид, запах пищи и т.д.); они не требуют для своего образования большого количества сочетаний, прочны, сохраняются в течение всей жизни и этим приближаются к безусловным рефлексам. Натуральные УР образовываются с первого мгновения после рождения.Искусственные УР вырабатываются на раздражители, не имеющие биологического значения, например, можно выработать пищевой рефлекс на мигающий свет. вырабатываются медленнее, чем натуральные, и быстро угасают при неподкреплении.По типу безусловного подкрепления (по их биологическойзначимости):Пищевые;Оборонительные;Половые. По характеру вызываемой деятельности:положительные , вызывающие определённую условнорефлекторную реакцию;отрицательные или тормозные , условнорефлекторным эффектом которых является активное прекращение условнорефлекторной деятельности.По способам выработки и типу подкрепления:Рефлексы первого порядка – в которых в качестве подкрепления используется безусловный рефлекс;Рефлексы второго порядка – это рефлексы, в которых в качестве подкрепления используется ранее выработанный прочный УР На основе этих рефлексов можно выработать УР третьего порядка, четвёртого порядка и т.д.Рефлексы высшего порядка –в которых в качестве подкрепления используется ранее выработанный прочный условный рефлекс второго (третьего, четвёртого и т.д.) порядка. Именно такого типа УР формируются у детей и составляют основу развития у них мыслительной деятельности. Образование рефлексов высших порядков зависит от совершенства организации нервной системы. УР высших порядков нестойки, легко угасают.По характеру и сложности условного раздражителя:Простые УР - вырабатываются при изолированном действии одиночных раздражителей – света, звука и т.д.Комплексные условные рефлексы – при действии комплекса раздражителей, состоящих из нескольких компонентов, действующих либо одновременно, либо последовательно, непосредственно один за другим или с небольшими интервалами. Цепные условные рефлексы вырабатываются на цепь раздражителей, каждый компонент которой действует изолированно после предыдущего, не совпадая с ним, и вызывает собственную условно-рефлекторную реакциюПо соотношению времени действия условного и безусловного раздражителей:Наличные условные рефлексы, когда условный сигнал и подкрепление совпадают во времени. При совпадающем УР подкрепление сразу присоединяется к сигнальному раздражителю (не позднее 1-3 с), при отставленном УР – в период до 30 с, а в случае запаздывающего рефлекса изолированное действие условного стимула продолжается 1-3мин.Следовые УР , когда подкрепление предъявляют лишь после окончания условного раздражителяСледовые УР образуются тогда, когда подкрепление следует уже после окончания действия условного раздражителя и, следовательно, сочетаются лишь со следовыми процессами возбуждения, возникшего при действии условного раздражителя. УР на время – особая разновидность следовых условных рефлексов. Они образуются при регулярном повторении безусловного раздражителя и могут быть выработаны на различные временные интервалы – от нескольких секунд до нескольких часов и даже суток. Видимо ориентиром в отсчёте времени могут служить различные периодические процессы, происходящие в организме. Явление отсчёта времени организмом частоназывают«биологическимичасами».Похарактерурецепции выделяют:Экстероцептивные УР вырабатываются на раздражители внешней среды, адресующиеся к экстерорецепторам (зрительные, слуховые). Эти рефлексы играют роль во взаимоотношенияхорганизмасокружающейсредой,поэтомуобразуютсяотносительнобыстро.Интероцептивные образуются при сочетании раздражения внутренних органов с каким-либо безусловным рефлексом. Они вырабатываются значительно медленнееиотличаютсябольшойинертностью.Проприоцептивныерефлексы возникают при сочетании раздражений проприорецепторов с безусловным рефлексом (например, сгибание лапы собаки, подкрепляемое пищей).Похарактеруэфферентногоответа :Соматодвигательные . Условнорефлекторная двигательная реакция может проявляться в форме таких движений, как мигание, жевание и др.Вегетативные. Условные реакции вегетативных УР проявляются в изменениях деятельности различных внутренних органов – частоты сердцебиения, дыхания, изменении просвета сосудов, уровня обмена веществ и др. Например, алкоголикам в клинике незаметно вводят вещество, вызывающее рвоту, а когда оно начинает действовать дают понюхать водки. У них начинается рвота, и они думают что это от водки. После многочисленных повторов у них наступает рвота уже от одного вида водки без этого вещества.К особой группе относят подражательные У Р особенностью которых является то, что они вырабатываются у животного или человека без его активного участия в процессе выработки, образуются при наблюдении за выработкой этих рефлексов у другого животного или человека. На основе подражательного рефлекса у детей образуются речедвигательные акты и многие социальные навыки.Л.В. Крушинский выделил группу условных рефлексов, которые назвал экстраполяционными . Их особенность заключается в том, что двигательные реакции возникают не только на конкретный условный раздражитель, но и на направление его передвижения. Предвидение направления движения происходит с первого предъявления раздражителя без предварительного обучения. В настоящее время экстраполяционный рефлекс используют для изучения сложных форм поведения не только животных, но и человека. Этот методический приём нашёл широкое применение для изучения мозговой деятельности в онтогенезе человека. Использование его на близнецах даёт возможность говорить о роли генетических факторов в осуществлении поведенческих реакций. Особое место в системе условных рефлексов занимают временные связи, замыкающиеся между индифферентными раздражителями (при сочетании, например, света и звука), называемые ассоциациями. Безусловным подкреплением в этом случае служит ориентировочная реакция. Образование этих временных связей проходит в три стадии: стадия возникновения ориентировочной реакции на оба раздражителя, стадия выработки условного ориентировочного рефлекса и стадия угасания ориентировочной реакции на оба раздражителя. После угасания связь между этими раздражителями сохраняется. Особое значение этот вид реакций имеет для человека, так как у человека множество связей образуется именно с помощьюассоциаций.

17.Факторы формирования условных рефлексов. Механизм из возникновения.УР образуются при возникновении в коре полушарий головного мозга двух очагов возбуждения: один – в ответ на действие условного, а другой – на действие безусловного раздражителя. При сочетании действия этих раздражителей между возникшими очагами возбуждения устанавливается временная связь, которая от опыта к опыту становится все более прочной. Такую связь в коре полушарий мозга Павлов называл замыканием и им объяснилмеханизм образования УР. Процесс формирования классического УР проходит три основные стадии:1)Стадия прегенерализации - кратковременная фаза, которая характеризуется выраженной концентрацией возбуждения в проекционных зонах коры коры условного и безусловного раздражителей и отсутствием условных поведенческих реакций.2)Стадия генерализации, в основе которой лежит процесс «диффузного» распространения (иррадиации) возбуждения. Это феномен, который возникает на начальных этапах выработки условного рефлекса. Требуемая реакция в этом случае вызывается не только подкрепляемым стимулом, но и другими, более или менее близкими к нему. Во время стадии генерализации условные реакции возникают на сигнальные и другие раздражители (явление афферентной генерализации), а также в интервалах между предъявлениями условного стимула. Начальная стадия образования УР состоит в формировании временной связи не только на данный конкретный условный раздражитель, но и на все родственные ему по характеру стимулы. Нейрофизиологический механизм заключается в иррадиации возбуждения из центра проекции условного раздражителя на нервные клетки окружающих проекционных зон, близких в функциональном отношении клеткам центрального представительства условного раздражителя, на который образуется условный рефлекс. Чем дальше от начального исходного очага, вызванного основным стимулом, подкрепляемым безусловным стимулом, находится зона, охваченная иррадиацией возбуждения, тем меньше вероятность активации этой зоны. Следовательно, на начальной стадии генерализации условного возбуждения, характеризуемой обобщенной генерализованной реакцией, условно-рефлекторный ответ наблюдается на сходные, близкие по смыслу стимулы как результат распространения возбуждения из проекционной зоны основного условного стимула.3)Стадия специализации . По мере подкрепления условного стимула межсигнальные реакции угасают и условный ответ возникает только на сигнальный раздражитель. Объем распространения биопотенциалов уменьшается.По мере укрепления УР процессы иррадиации возбуждения сменяются процессами концентрации, ограничивающими очаг возбуждения только зоной представительства основного стимула. В результате наступает уточнение, специализация УР. На конечной стадии упроченного УР происходит концентрация условного возбуждения: условно-рефлекторная реакция наблюдается лишь на заданный стимул, на побочные близкие по смыслу раздражители - прекращается. На стадии концентрации условного возбуждения происходит локализация возбудительного процесса только в зоне центрального представительства условного стимула (реализуется реакция лишь на основной стимул), сопровождаемая торможением реакции на побочные стимулы. Внешним проявлением этой стадии является дифференцирование параметров действующего условного стимула - специализация УР.Скорость образования УР зависит от индивидуальных особенностей животного, от частоты раздражения, от функционального состояния самой коры и ее участков, от соотношения силы безусловных и условных раздражителей, от окружающей обстановки и происходящих в ней изменений. Первоначально Павлов предполагал, что УР образуется на уровне «кора -подкорковые образования». В более поздних работах он объяснял образование условно-рефлекторной связи образованием временной связи между корковым центром БР и корковым центром анализатора. В качестве главных клеточных элементов механизма образования УР в этом случае выступают вставочные и ассоциативные нейроны коры больших полушарий, а в основе замыкания временной связи лежит процесс доминантного взаимодействия между возбужденными центрами..Для выработки УР необходимо: 1) наличие двух раздражителей, один из которых безусловный (пища, болевой раздражитель и др.), вызывающий безусловно-рефлекторную реакцию, а другой - условный (сигнальный), сигнализирующий о предстоящем безусловном раздражении (свет, звук, вид пищи и т.д.);2) многократное сочетание условного и безусловного раздражителей (хотя возможно образование условного рефлекса при их однократном сочетании);3) условный раздражитель должен предшествовать действию безусловного;4) в качестве условного раздражителя может быть использован любой раздражитель внешней или внутренней среды, который должен быть по возможности индифферентным, не вызывать обронительной реакции,не обладать чрезмерной силой и способен привлекать внимание;5) безусловный раздражитель должен быть достаточно сильным, в противном случае временная связь не сформируется;6) возбуждение от безусловного раздражителя должно быть более сильным, чем от условного;7) необходимо устранить посторонние раздражители, так как они могут вызывать торможение условного рефлекса;8) организм, у которого вырабатывается условный рефлекс, должно быть здоровым;9) при выработке условного рефлекса должна быть выражена мотивация, например, при выработке пищевого слюноотделительного рефлекса животное должно быть голодным, у сытого - этот рефлекс не вырабатывается.

18.Координация рефлекторной деятельности (иррадиация, концентрация, индукция). Значение для педагогической деятельности. Возрастные особенности.В начале образования положительного условного рефлекса происходит распространение возбуждения из непосредственного пункта раздражения в коре мозга на другие отделы. Такое распространение Павлов назвал иррадиацией возбудительного процесса. При иррадиации в процесс возбуждения вовлекаются соседние нервные клетки по отношению к группе клеток, непосредственно возбужденных пришедшими сигналами. Распространение происходит по ассоциативным нервным волокнам коры, которые соединяют рядом расположенные клетки. В иррадиации возбуждения могут участвовать также подкорковые образования и ретикулярная формация. По мере замедления условного рефлекса возбуждение сосредоточивается все в более ограниченной зоне коры, к которой адресовано раздражение. Это явление носит название концентрации возбудительного процесса. В случае выработки дифференцировоч-ного торможения, оно и ограничивает иррадиацию возбуждения. Павлов считал, что торможение также способно к иррадиации и концентрации. Торможение, возникшее в анализаторе при использовании отрицательного условного раздражителя, иррадиирует по коре головного мозга, но в 4-5 раз медленнее (от 20 сек до 5 мин), чем возбуждение. Еще медленнее происходит концентрация торможения. По мере повторения и закрепления отрицательного условного рефлексавремя концентрации торможения укорачивается и торможение сосредоточивается в ограниченной зоне коры.При исследовании взаимоотношений возбуждения и торможения в коре мозга было установлено, что в течение нескольких секунд после воздействия тормозного раздражителя эффект положительных условных раздражителей усиливается. И наоборот, после применения положительных условных раздражителей усиливается действие тормозящих раздражении. Первое явление названо Павловым отрицательной индукцией, второе - положительной индукцией.При положительной индукции в клетках, смежных с теми, где только что вызывалось торможение, после прекращения действия тормозного сигнала возникает состояние повышенной возбудимости. Вследствие этого импульсы, поступающие к нейронам при действии положительного раздражителя, вызывают повышенный эффект. При отрицательной индукции в клетках коры, окружающих возбужденные нейроны, возникает процесс торможения. Отрицательная индукция ограничивает иррадиацию процесса возбуждения в коре мозга. Отрицательной индукцией можно объяснить торможение условных рефлексов более сильными посторонними раздражениями (внешнее безусловное торможение). Такое сильное раздражение вызывает в коре мозга интенсивное возбуждение нейронов, вокруг которых появляется широкая зона торможения нейронов, захватывающая клетки, возбужденные условным раздражителем. Явления отрицательной и положительной индукции в коре головного мозга подвижны, постоянно сменяют друг друга. В разных пунктах коры мозга одновременно могут возникать очаги возбуждения и торможения, положительной и отрицательной индукции.

19.Динамический стереотип. Определение и значение для жизнедеятельности организма, возрастные особенности, механизм формирования. Критические периоды ее ломки.Динамический стереотип – это система условных и безусловных рефлексов, представляющая собою единый функциональный комплекс. Иначе говоря, динамический стереотип – это относительно устойчивая и продолжительная система временных связей, образующаяся в коре мозга в ответ на осуществление одних и тех же видов деятельности в одно и то же время, в одной и той же последовательности изо дня в день, т.е. это серия автоматических действий или серия условных рефлексов, доведенных до автоматического состояния. ДС может существовать долгое время без какого-либо подкрепления.Физиологическую основу формирования начального этапа динамического стереотипа составляют условные рефлексы на время. А вот механизмы динамического стереотипа глубоко еще не изучены.ДС играет важную роль в обучении и воспитании детей . Если ребенок ежедневно в одно и то же время ложится спать и просыпается, завтракает и обедает, выполняет утреннюю гимнастику, проводит закаливающие процедуры и т.д., то у ребенка вырабатывается рефлекс на время. Последовательная повторяемость этих действий формирует у ребенка динамический стереотип нервных процессовв коре головного мозга.Можно считать, что причина того, что называется перегрузкой учащихся, имеет функциональную природу и вызвана не только дозированием и трудностью учебных заданий, но и негативным отношением учителей к динамическому стереотипу, как важнейшей физиологической основе обучения. Учителям не всегда удается построить урок так, чтобы он представлял систему динамического стереотипа. Если бы содержание каждого нового урока органически связывалось с предыдущим и последующим в единую подвижную систему, позволявшую, при необходимости, вносить в нее изменения, как в динамический стереотип, а не как простое дополнение, то труд учащихся был бы настолько облегчен, что он уже не вызывал бы перегрузки.Упрочение динамического стереотипа является физиологической основой склонностей человека, получивших в психологии обозначение привычек. Привычки приобретаются человеком различно, но, как правило, без достаточных побуждений и часто совершенно стихийно. Однако по механизму динамического стереотипа формируются не только такие, но и целенаправленные привычки. К их числу можно отнести вырабатываемый школьником режим дня.Каждая привычка вырабатывается и укрепляется путем тренировки по принципу условного рефлекса. При этом пусковыми сигналами для них служат внешние и внутренние раздражения. Например, мы делаем утреннюю зарядку не только потому, что привыкли к этому, но и потому, что видим спортивные снаряды, которые в нашем сознании связаны с утренней зарядкой. Подкреплением этой привычки служит как сама утренняя зарядка, так и чувство удовлетворения, наступающее после нее.С физиологической точки зрения навыки представляют собой динамические стереотипы, иными словами, цепи условных рефлексов. Хорошо выработанный навык утрачивает связь со второй сигнальной системой, которая является физиологической основой сознания лишь в том случае,если совершена ошибка, т.е. осуществлено движение, не достигающее нужного результата, появляется ориентировочный рефлекс. Возникающие при этом возбуждения растормаживают заторможенные связи автоматического навыка, и он снова осуществляется под контролем второй сигнальной системы, или, говоря психологическим языком, сознания. Теперь ошибка исправляется и осуществляется нужное условно-рефлекторное движение.ДС человека включает не только большое количество разнообразных двигательных навыков и привычек, но и привычный образ мыслей, убеждений, представлений об окружающих событиях.Современность требует переделки привычных взглядов, а случается, – и прочных убеждений, т.е. создается ситуация, когда от одного динамического стереотипа надо переходить к другому. А это сопряжено с появлением соответствующих неприятных чувств. В этом случае наша нервная система не всегда легко справляется с жизненной задачей. Трудность заключается в том, что прежде чем выработать новое отношение к действительности (новый жизненный стереотип), требуется разрушить старое отношение к ней. Поэтому некоторым людям довольно трудно дается перестройка любого элемента жизненного стереотипа, не говоря уже о перестройке представлений и убеждений. Трудна переделка стереотипов и в детском возрасте.Павлов пришел к выводу, что эмоциональные состояния могут зависеть от того, поддерживается ли динамический стереотип или нет. При поддержании динамического стереотипа обычно проявляются положительные эмоции, а при изменении стереотипа – отрицательные.Следует отметить, что в осуществлении сложных стереотипов важное значение принадлежит настройке, т.е. такому состоянию готовности к деятельности, которое образовано по механизму временной связи. Возникновение условнорефлекторной настройки можно заметить у учеников, делящих учебные предметы на любимые и нелюбимые. На урок к преподавателю, преподающему любимый предмет, школьник идет с желанием, и это можно видеть по его хорошему настроению. На урок к преподавателю нелюбимого предмета, а может быть, и к нелюбимому преподавателю, ученик идет часто с плохим, иногда даже с подавленным настроением. Причина такого поведения школьника лежит в условно-рефлекторной настройке от комплекса обстановки классов, сущности учебного предмета, поведения учителя. Несходная обстановка вызывает и разную настройку.

20.Доминанта. Определение, свойства и виды доминант. Значение в педагогическом процессе. Возрастные особенности.Доминанта - господствующий очаг возбуждения в ЦНС, подчиняющий себе функции других нервных центров. Явление доминанты открыл А.А.Ухтомский (1923) в опытах с раздражением двигательных зон большого мозга и наблюдением за возникающим сгибанием конечности животного. Как выяснилось, если раздражать корковую двигательную зону на фоне избыточного повышения возбудимости другого нервного центра, то обычного сгибания конечности не происходит. Вместо сгибания конечности раздражение двигательной зоны вызывает реакцию тех эффекторов, деятельность которых контролируется господствующим, т.е. доминирующим в данный момент в ЦНС, нервным центром.В эксперименте доминанту можно получить многократной посылкой афферентных импульсов к определенному центру, гуморальными на него влияниями. Роль гормонов в образовании доминантного очага возбуждения демонстрирует опыт на лягушке:весной у самца раздражение любого участка кожи вызывает не защитный рефлекс, а усиление обнимательного рефлекса. В условиях натурального поведения доминантное состояние нервных центров может быть вызвано метаболическими причинами.Доминантный очаг возбужденияобладает рядом особых свойств, главными из которых являются следующие: инерционность, стойкость, повышенная возбудимость, способность «притягивать» к себе иррадиирующие по ЦНС возбуждения, способность оказывать угнетающие влияния на центры-конкуренты и другие нервные центры.Значение доминантного очага возбуждения в ЦНС заключается в том, что на его базе формируется конкретная приспособительная деятельность, ориентированная на достижение полезных результатов. Например, на базе доминантного состояния центра голода реализуется пищедобывательное поведение; на базе доминантного состояния центра жажды запускается поведение, направленное на поиск воды. Успешное завершение данных поведенческих актов в итоге устраняет физиологические причины доминантного состояния центров голода и жажды. Доминанта играет важную роль в координационной деятельности ЦНС (см. раздел 4.9), в запоминании и переработке информации.

Нервные импульсы распространяются при перемещении ионов через мембрану нервной клетки и передаются из одной нервной клетки в другую с помощью нейромедиаторов

1729, ^ СУТОЧНЫЕ РИТМЫ сер. XX

ХІХ-ХХ ^ РАСПРОСТРАНЕНИЕ НЕРВНЫХ ИМПУЛЬСОВ

1937 ГЛИКОЛИЗ И ДЫХАНИЕ

сер. ИММУННАЯ СИСТЕМА

В результате эволюции нервной системы человека и других животных возникли сложные информационные сети, процессы в которых основаны на химических реакциях. Важнейшим элементом нервной системы являются специализированные клетки нейроны. Нейроны состоят из компактного тела клетки, содержащего ядро и другие органеллы. От этого тела отходит несколько разветвленных отростков. Большинство таких отростков, называемых дендритами, служат точками контакта для приема сигналов от других нейронов. Один отросток, как правило самый длинный, называется аксоном и передает сигналы на другие нейроны. Конец аксона может многократно ветвиться, и каждая из этих более мелких ветвей способна соединиться со следующим нейроном. Во внешнем слое аксона находится сложная структура, образованная множеством молекул, выступающих в роли каналов, по которым могут поступать ионы - как внутрь, так и наружу клетки. Один конец этих молекул, отклоняясь, присоединяется к атому-мишени. После этого энергия других частей клетки используется на то, чтобы вытолкнуть этот атом за пределы клетки, тогда как процесс, действующий в обратном направлении, вводит внутрь клетки другую молекулу. Наибольшее значение имеет молекулярный насос, который выводит из клетки ионы натрия и вводит в нее ионы калия (натрий-калиевый насос).

Когда клетка находится в покое и не проводит нервных импульсов, натрий-калиевый насос перемещает ионы калия внутрь клетки и выводит ионы натрия наружу (представьте себе клетку, содержащую пресную воду и окруженную соленой водой). Из-за такого дисбаланса разность потенциалов на мембране аксона достигает 70 милливольт (приблизительно 5% от напряжения обычной батарейки АА).

Однако при изменении состояния клетки и стимуляции аксона электрическим импульсом равновесие на мембране нарушается, и натрий-калиевый насос на короткое время начинает работать в обратном направлении. Положительно заряженные ионы натрия проникают внутрь аксона, а ионы калия откачиваются наружу. На мгновение внутренняя среда аксона приобретает положительный заряд. При этом каналы натрий-калиевого насоса деформируются, блокируя дальнейший приток натрия, а ионы калия продолжают выходить наружу и исходная разность потенциалов восстанавливается. Тем временем ионы натрия распространяются внутри аксона, изменяя мембрану в нижней части аксона. При этом состояние расположенных ниже насосов меняется, способствуя дальнейшему распространению импульса. Резкое изменение напряжения, вызванное стремительными перемещения ионов натрия и калия, называют потенциалом действия. При прохождении потенциала действия через определенную точку аксона насосы включаются и восстанавливают состояние покоя.


Потенциал действия распространяется довольно медленно - не более доли дюйма за секунду. Для того чтобы увеличить скорость передачи импульса (поскольку, в конце концов, не годится, чтобы сигнал, посланный мозгом, достигал руки лишь через минуту), аксоны окружены оболочкой из миелина, препятствующей притоку и оттоку калия и натрия. Миелиновая оболочка не

Соединения с другими нейронами

Структура нейрона. Нейроны - важнейшие элементы нервной системы. Эти удлиненные клетки передают нервные импульсы

непрерывна - через определенные интервалы в ней есть разрывы, и нервный импульс перескакивает из одного «окна» в другое, за счет этого скорость передачи импульса возрастает.

Когда импульс достигает конца основной части тела аксона, его необходимо передать либо следующему нижележащему нейрону, либо, если речь идет о нейронах головного мозга, по многочисленным ответвлениям многим другим нейронам. Для такой передачи используется абсолютно иной процесс, нежели для передачи импульса вдоль аксона. Каждый нейрон отделен от своего соседа небольшой щелью, называемой синапсом. Потенциал действия не может перескочить через эту щель, поэтому нужно найти какой-то другой способ для передачи импульса следующему нейрону. В конце каждого отростка имеются крошечные мешочки, называющиеся (пресинаптическими) пузырьками, в каждом из которых находятся особые соединения - нейромедиаторы. При поступлении потенциала действия из этих пузырьков высвобождаются молекулы нейромедиаторов, пересекающие синапс и присоединяющиеся к специфичным молекулярным рецепторам на мембране нижележащих нейронов. При присоединении нейромедиатора равновесие на мембране нейрона нарушается. Сейчас мы рассмотрим, возникает ли при таком нарушении равновесия новый потенциал действия (нейрофизиологи продолжают искать ответ на этот важный вопрос до сих пор).

После того как нейромедиаторы передадут нервный импульс от одного нейрона на следующий, они могут просто диффундировать, или подвергнуться химическому расщеплению, или вернуться обратно в свои пузырьки (этот процесс нескладно называется обратным захватом). В конце XX века было сделано поразительное научное открытие - оказывается, лекарства, влияющие на выброс и обратный захват нейромедиаторов, могут коренным образом изменять психическое состояние человека. Прозак (Prozac®) и сходные с ним антидепрессанты блокируют обратный захват нейромедиатора серотонина. Складывается впечатление, что болезнь Паркинсона взаимосвязана с дефицитом нейромедиатора допамина в головном мозге. Исследователи, изучающие пограничные состояния в психиатрии, пытаются понять, как эти соединения влияют на человеческий рассудок.

По-прежнему нет ответа на фундаментальный вопрос о том, что же заставляет нейрон инициировать потенциал действия - выражаясь профессиональным языком нейрофизиологов, неясен механизм «запуска» нейрона. В этом отношении особенно интересны нейроны головного мозга, которые могут принимать нейромеди-аторы, посланные тысячей соседей. Об обработке и интеграции этих импульсов почти ничего не известно, хотя над этой проблемой работают многие исследовательские группы. Нам известно лишь, что в нейроне осуществляется процесс интеграции поступающих импульсов и выносится решение, следует или нет инициировать потенциал действия и передавать импульс дальше. Этот фундаментальный процесс управляет функционированием всего головного мозга. Неудивительно, что эта величайшая загадка природы остается, по крайней мере сегодня, загадкой и для науки!

Нервная система человека (рис. 293) подразделяется на центральную (головной и спинной мозг) ипериферическую (нервные корешки, узлы, сплетения, черепные и спинномозговые нервы).

Рисунок 293. Схема нервной системы человека

На рисунке схематично показана нервная система человека. Она играет главную роль в согласованной деятельности организма. Особый комплекс периферических нервов и нервных узлов, иннервирующих сердце, легкие, пищеварительный тракт и другие внутренние органы, сосуды и ткани, и есть вегетативная нервная система. Ее работа, как правило, не зависит от волевых усилий человека, и в норме мы не ощущаем раздражения вегетативных узлов и нервов. Нервные узлы симпатического отдела вегетативной нервной системы образуют симпатические нервные стволы, расположенные около спинного мозга, а нервные узлы другого отдела - парасимпатического – лежат во внутренних органах или около них.

Для слаженной деятельности различных частей такой сложной системы, как организм человека, необходимо координирующее устройство соответственной сложности. И в самом деле, нервная система, интегрирующая деятельность всех частей тела, является, несомненно, самой сложной из всех систем органов. Мышцы и железы животного или человека носят общее название эффекторов; глаза, уши и другие органы чувств называются рецепторами. Нервная система, состоящая из головного мозга, спинного мозга и проводящих путей, соединяет рецепторы с эффекторами и передает импульсы, или «сообщения», от первых ко вторым. Она способна делать это таким образом, что при раздражении того или иного рецептора должным образом реагирует надлежащий эффектор. Основными функциями нервной системы являются проведение импульсов и интеграция деятельности различных систем организма. Координирующие функции нервной системы, эндокринная регуляция и собственные регуляторные механизмы внутриклеточных ферментных систем (торможение и стимуляция активности ферментов, индукция и репрессия их синтеза) - все это факторы, способствующие гомеостазу, т.е. поддержанию постоянства внутренней среды организма.

Центральная нервная система (ЦНС) - это совокупность нервных образований спинного и головного мозга, обеспечивающих восприятие, обработку, передачу, хранение и воспроизведе-ние информации с целью адекватного взаимодействия организма и изменений окружающей среды, координации оптимальной работы органов, их систем и организма в целом.

Каждая из этих структур имеет морфологическую и функциональную специфику. Но, наряду с этим, у всех структур нервной системы есть ряд общих свойств и функций, к которым относятся: нейронное строение, электрическая и химическая синаптическая связь между нейронами, образование локальных сетей из нейронов, реализующих специфическую функцию, множественность прямых и обратных связей между структурами, способность нейронов всех структур к восприятию, обработке, передаче и хранению информации, преобладание числа входов для ввода информации над числом выходов, способность к параллельной обработке информации, способность к саморегуляции, функционирование на основе рефлекторного доминантного принципа.


Головной мозг является важнейшим отделом ЦНС, в нем различают стволовую часть и конечный мозг, включающего подкорковые или базальные ганглии и большие полушария.

Основные части головного мозга выделяются уже к 3-му месяцу эмбрионального развития, а к 5-му месяцу эмбриогенеза уже хорошо заметны основные борозды больших полушарий.

К моменту рождения общая масса головного мозга составляет около 400 г., причем у девочек он несколько меньше (388 и 391 у девочек и мальчиков соответственно). По отношению к массе тела мозг у новорожденного значительно больше, чем у взрослого. Так, если у новорожденного он составляет 1/8 массы тела, то у взрослого - 1/40. Наиболее интенсивно головной мозг человека развивается в первые два года постнатального развития. Затем темпы его роста снижаются, но продолжают оставаться высокими до 6-7 лет, к этому моменту масса мозга достигает уже 4/5 массы взрослого мозга. Окончательное созревание головного мозга заканчивается только к 17-20 годам. К этому возрасту масса мозга увеличивается по сравнению с новорожденными в 4-5 раз и составляет в среднем у мужчин 1400 г, а у женщин - 1260 г. Следует отметить, что абсолютная масса мозга не определяет непосредственно умственные способности человека.

Изменения размеров, формы и массы мозга сопровождается изменением его внутренней структуры. Усложняется строение нейронов, форма межнейронных связей, становится четко разграниченным белое и серое вещество, формируются различные проводящие пути головного мозга.

Развития мозга, как и других систем, идет гетерохронно. Раньше других созревают те структуры, от которых зависит нормальная жизнедеятельность организма на данном возраст-ном этапе. Функциональной полноценности достигают вначале стволовые, подкорковые и корковые структуры, регулирующие вегетативные функции организма. Эти отделы по своему развитию приближаются к мозгу взрослого человека уже к 2-4 годам постнатального периода.

Продолговатый мозг, мост, средний мозг, промежуточный мозг и мозжечок относятся к стволу мозга. В филогенетическом отношении это наиболее древние нервные структуры и поэтому их функции тесно связаны с регуляцией примитивных функциональных процессов.

В процессе онтогенеза созревание структур стволовой части головного мозга наиболее интенсивно происходит в первые два года жизни. Окончательное формирование этих структур, особенно промежуточного мозга, завершается только в 13-16 лет, когда заканчивается половое развитие подростков. Многие особенности низшей и высшей нервной деятельности у детей подросткового возраста объясняются функциональными свойствами промежуточного мозга и некоторых других подкорковых структур.

Наиболее молодым в филогенетическом отношении является конечный мозг. В его состав входят большие полушария и расположенные под ними скопления серого вещества в виде подкорковых или базальных ганглиев.

Большие полушария осуществляют регуляцию высших нервных функций, лежащих в основе всех психических процессов человека. Правое и левое полушарие тесно связаны между собой с помощью огромного количества нервных волокон, образующих мозолистое тело. Многие нервные процессы, выходящие из какой-либо точки одного полушария, проецируются в сим-метричную точку другого полушария. Таким образом, в нервной деятельности полушарий конечного мозга проявляется свойство билатеральной симметрии.

Существует предположение, что в процессе онтогенеза развитие парной деятельности полушарий идет от неустойчивой симметрии к неустойчивой асимметрии, и наконец, к устойчивой функциональной асимметрии. Это подтверждается развитием бимануальных действий человека, то есть особенностей двигательной деятельности левой и правой рук. Пока-зано, что к праворукости дети переходят с 2-4 лет. В этом возрасте правши составляют 38%, а к 4-6 годам - 75%. Иначе говоря, в значительной степени моторная асимметрия зависит от условий воспитания ребенка, но вместе с тем существует и наследственная предраспо-ложенность.

Темпы созревания левого и правого полушарий имеют половые особенности. Левое полу-шарие у девочек развивается быстрее, что свидетельствует о более раннем созревании доминантного полушария. Данный факт косвенно подтверждается также более быстрым развитием у девочек речи и некоторых показателей психомоторики.

Высшим центром регуляции и управления всей деятельностью организма, начиная от самых примитивных физиологических отправлений и кончая сложнейшими психическими процес-сами у человека, является кора головного мозга. Активное формирование полушарий мозга начинается с 12-й недели эмбриогенеза и интенсивно продолжается в первые годы постнаталь-ного развития, особенно до 2 лет. Клеточное строение, форма и расположение борозд и извилин приближается к взрослому мозгу в 7 лет. А в лобных долях это различие сглаживается только к 12 годам. Существует прямая зависимость между морфофункциональным созреванием лобных долей больших полушарий и формированием психических функций у детей. Окончательное созревание больших полушарий и коры мозга завершается к 20-22 годам.

Морфологический анализ процессов созревания КГМ ребенка на клеточном уровне свидетельствует о постоянном увеличении размеров высших первичных, вторичных и третич-ных зон КГМ в процессе постэмбрионального развития: чем больше возраст ребенка, тем большие размеры занимают эти корковые зоны, и тем сложнее становится психическая деятельность.

Таким образом, в процессе постнатального развития происходит совершенствование морфо-логического строения КГМ, а параллельно этому и совершенствование высшей нервной деятельности ребенка и его психических процессов. Например, поля двигательного центра речи достигают функциональной полноценности только к 7 годам, к этому возрасту они увеличи-ваются на 64-73% в сравнении с мозгом новорожденного. То же можно сказать и о корковых зонах, ответственных за интеграцию слуховых и зрительных раздражителей, что имеет большое значение в формировании речи.

Важные данные о функциональной зрелости коры и подкорковых образований мозга и участия их в восприятии афферентных сигналов в разные возрастные периоды получены при использовании электрофизиологических методов. Анализ имеющихся в литературе данных о характере фоновой и вызванной электрической активности мозга человека на разных этапах онтогенеза рассматривается в связи с проблемой созревания высших отделов центральной нервной системы.

В раннем постнатальном периоде наиболее функционально зрелыми являются мезодиэнце-фалические структуры мозга, определяющие ЭЭГ-картину глубокого сна и реакцию возбуждения у новорожденного ребенка. Ряд факторов свидетельствует, что кора больших полушарий начинает функционировать уже с момента рождения ребенка. Нервные элементы коры больших полушарий новорожденного способны продуцировать кратковременную ритмическую электрическую активность. Это выражается в виде: 1) наличия групп синхронизи-рованных ЭЭГ-колебаний в затылочных областях мозга в переходном от бодрствования ко сну состоянии; 2) реакции усвоения ритма световых мельканий, наблюдаемой с первых часов жизни ребенка; 3) наличия ритмического сенсорного разряда, регистрируемого в затылочной области коры при значительной стимуляции. Отмечается, что кора больших полушарий новорожденных вовлекается в реакцию при афферентных воздействиях. В этом случае наблюдаются как генерализованные изменения электрической активности, обусловленные возбуждением подкорковых неспецифических структур мозга, так и локальные вызванные ответы, свидетельствующие о поступлении сигнала в кору больших полушарий по специфическому афферентному пути. Наличие ответных специфических и неспецифических реакций на афферентное раздражение означает функционирование восходящих ретикулярных и таламокортикальных связей, посылающих сенсорную информацию в кору больших полушарий. Для оценки способности коры воспринимать приходящую информацию наибольший интерес представляет наличие с момента рождения ребенка начальной позитивности вызванного специфического ответа, свидетельствующее о непосредственном участии нейронов 3-го и 4-го слоев коры в приеме афферентного сигнала.

Подчеркивая функционирование коры больших полушарий в период новорожденности, следует иметь в виду и отличия в деятельности ее нервных элементов по сравнению со взрослыми. Одним из таких проявлений служит отсутствие синхронизированной ритмической активности во время бодрствования новорожденных. Устойчивая ритмика в ЭЭГ бодрствую-щих детей регистрируется только с 2-3 месяцев постнатальной жизни. Появление организован-ной ритмики в состоянии спокойного бодрствования отражает важный этап в созревании коры мозга ребенка. В этом возрасте исчезают архаические рефлексы, развивается оптомоторная пространственная координация.

В течение первого года жизни формируется строго ритмическая электрическая активность частотой 5 Гц с фокусом в затылочной области коры, которая может рассматриваться как аналог альфа-ритма взрослого человека. С возрастом отмечается прогрессивное учащение альфа-ритма, появление и стабилизация его в центральных областях коры. Формирование основного ритма электрической активности, отражающее морфофункциональное созревание нейронного аппарата коры больших полушарий, заканчивается к 16-18-летнему возрасту. Созревание нервных элементов коры больших полушарий проявляется также в эволюции специфически вызванных потенциалов. В процессе индивидуального развития ребенка отмечается укорочение временных параметров ответа, усложнение его компонентного состава и появление вызванных потенциалов в ассоциативных областях коры. Включения ассоциа-тивных зон в прием и переработку качественно специфической информации, вероятно, опре-деляет возможность синтеза интегрального образа раздражителей разного информационного значения.

Параллельно с изменениями ЭЭГ, обусловленными функциональным созреванием коры больших полушарий, отмечается уменьшение выраженности подкорковых знаков в ЭЭГ (тета - волн, билатеральных пароксизмальных разрядов, усиленных неспецифических ответов). Ослаб-ление подкорковых знаков в ЭЭГ с возрастом можно объяснить усилением тормозных влияний созревающей коры на подкорковые структуры.

Таким образом, выявляются определенные этапы функционального созревания коры и подкорковых структур мозга, специфика их взаимных влияний в различные возрастные периоды.

Нервная ткань состоит из двух разновидностей клеток: нервных (нейронов) и глиальных. Глиальные клетки вплотную прилегают к нейрону, выполняя опорную, питательную, секретор-ную и защитную функции.

Вся нервная система построена на нервной ткани. Нервная ткань состоит из нервных клеток (нейронов ) и связанных с ними анатомически и функционально вспомогательных клеток нейроглии . Нейроны выполняют специфические функции, являясь структурно-функциональной единицей нервной системы. Нейроглия обеспечивает существование и специфические функции нейронов, выполняет опорную, трофическую (питательную), разграничительную и защитную функции.

Нейрон (нейроцит ) получает, перерабатывает, проводит и передает информацию, закоди-рованную в виде электрических или химических сигналов (нервных импульсов ).

Рисунок 294. Нервные клетки. А - чувствительный нейрон. Б - двигательный нейрон. Стрелки показывают направление следования нервных импульсов. А: 1 - чувствительные нервные окончания; 2 - дендриты; 3 - тело нервной клетки; 4 - аксон. Б: 1 - дендриты; 1 - тело нервной клетки; 3 - аксон; 4 - двигательное нервное окончание (нервно-мышечная бляшка).

Каждый нейрон имеет тело, отростки и их окончания (рис. 294). Снаружи нервная клетка окружена оболочкой (цитолеммой ), способной проводить возбуждение, а также обеспечивать обмен веществ между клеткой и окружающей их средой. Тело нервной клетки содержит ядро и окружающую его цитоплазму (перикарион). Цитоплазма нейронов богата органеллами (субклеточными образованиями, выполняющими ту или иную функцию). Диаметр тел нейро-нов варьирует от 4-5 до 135 мкм. Форма тел нервных клеток тоже различная - от округлой, овоидной до пирамидальной. От тела нервной клетки отходят различной длины тонкие отростки двух типов. Один или несколько древовидно ветвящихся отростков, по которым нервный импульс приносится к телу нейрона, называют дендритом . У большинства клеток их длина составляет около 0,2 мкм. Единственный, обычно длинный отросток, по которому нервный импульс направляется от тела нервной клетки - это аксон , или нейрит.

По количеству отростков нейроны подразделяются на униполярные, би- и мульти-полярные клетки. Униполярные (одноотростчатые) нейроны имеют лишь один отросток. У человека такие нейроны встречаются лишь на ранних стадиях внутриутробного развития. Биполярные (двухотростчатые) нейроны имеют один аксон и один дендрит. Их разно-видностью являются псевдоуниполярные (ложноуниполярные) нейроны . Аксон и дендрит этих клеток начинаются от общего выроста тела и в последущем Т-образно делятся. Мультиполяр-ные (многоотросчатые) нейроны имеют один аксон и много дендритов, они составляют большинство в нервной системе человека. Нервные клетки динамически поляризованы, т.е. способны проводить нервный импульс только в одном направлении - от дендритов к аксону.

В зависимости от функции нервные клетки подразделяют на чувствительные, вставочные и эффекторные.

Чувствительные (рецепторные, афферентные) нейроны. Эти нейроны своими окончаниями воспринимают различные виды раздражений. Возникшие в нервных окончаниях (рецепторах) импульсы по дендритам проводятся к телу нейрона, которое находится всегда вне головного и спинного мозга, располагаясь в узлах (ганглиях) периферической нервной системы. Затем по аксону нервный импульс направляется в центральную нервную систему, в спинной или в головной мозг. Поэтому чувствительные нейроны называют также приносящими (аффе-рентными) нервными клетками. Нервные окончания (рецепторы) различаются по своему строению, расположению и функциям. Выделяют экстеро-, интеро- и проприо-рецепторы. Экстерорецепторы воспринимают раздражение из внешней среды. Эти рецепторы находятся в наружных покровах тела (коже, слизистых оболочках), в органах чувств. Интерорецепторы получают раздражение в основном при изменении химического состава внутренней среды организма (хеморецепторы ), давления в тканях и органах (барорецепторы ). Проприо-рецепторы воспринимают раздражение (натяжение, напряжение) в мышцах, сухожилиях, связках, фасциях и суставных капсулах. В соответствии с функцией выделяют терморецеп-торы , которые воспринимают изменения температуры, и механорецепторы , улавливающие различные виды механических воздействий (прикосновение к коже, ее сдавление). Ноци-рецепторы воспринимают болевые раздражения.

Вставочные (ассоциативные, кондукторные) нейроны составляют до 97% нервных клеток нервной системы. Эти нейроны находятся, как правило, в пределах центральной нервной системы (головного и спинного мозга). Они передают полученный от чувствительного нейрона импульс эффекторному нейрону.

Эффекторные (выносящие или эфферентные) нейроны проводят нервные импульсы от мозга к рабочему органу - мышцам, железам и другим органам. Тела этих нейронов располагаются в головном и спинном мозге, в симпатических или парасимпатических узлах на периферии.

Нервные волокна представляют собой отростки нервных клеток (дендриты, аксоны), покрытые оболочками (рис. 295). При этом отросток в каждом нервном волокне является осевым цилиндром , а окружающие его нейролеммоциты (шванновские клетки), относящиеся к нейроглии, образуют оболочку волокна - нейролемму . С учетом строения оболочек нервные волокна подразделяют на безмякотные (безмиелиновые) и мякотные (миелиновые).

Безмиелиновые нервные волокна имеются, главным образом, у вегетативных нейронов. Осевой цилиндр как бы прогибает плазматическую мембрану (оболочку) нейролеммоцита, которая смыкается над ним. Сдвоенная над осевым цилиндром мембрана нейролеммоцита получила название мезаксон . Под шванновской клеткой остается узкое пространство (10-15 нм), содержащее тканевую жидкость, участвующую в проведении нервных импульсов. Один нейролеммоцит окутывает несколько (до 5-20) аксонов нервных клеток. Оболочку отростка нервной клетки образуют многие шванновские клетки, располагающиеся последовательно одна за другой.

Миелиновые нервные волокна толстые, они имеют толщину до 20 мкм. Эти волокна образованы довольно толстым аксоном клетки - осевым цилиндром. Вокруг аксона имеется оболочка, состоящая из двух слоев. Внутренний слой, миелиновый , образуется в результате спирального накручивания нейролеммоцита (шванновской клетки) на осевой цилиндр (аксон) нервной клетки. Цитоплазма нейролеммоцита выдавливается из него подобно тому, как это происходит при закручивании периферического конца тюбика с зубной пастой. Таким образом, миелин представляет собой многократно закрученный двойной слой плазматической мембраны (оболочки) нейролеммоцита. Толстая и плотная миелиновая оболочка, богатая жирами, изолирует нервное волокно и предотвращает утечку нервного импульса из аксолеммы (оболочки аксона).

Рисунок 295. Нервные волокна. А - миелиновое волокно. Б - безмиелиновое волокно.
1 - осевой цилиндр; 2 - миелиновый слой; 3 - мезаксон; 4 - ядро нейролеммоцита (шванновской клетки); 5 - узловой перехват (перехват Ранвье).

Снаружи от миелинового находится тонкий слой, образованный самой цитоплазмой нейролеммоцитов. Дендриты миелиновой оболочки не имеют. Каждый нейролеммоцит (шванновская клетка) окутывает по длине только небольшой участок осевого цилиндра. Поэтому миелиновый слой не сплошной, прерывистый. Через каждые 0,3-1,5 мм имеются так называемые узловые перехваты нервного волокна (перехваты Ранвье), где миелиновый слой отсутствует. В этих местах соседние нейролеммоциты (шванновские клетки) своими концами подходят непосредственно к осевому цилиндру. Перехваты Ранвье способствует быстрому прохождению нервных импульсов по миелиновым нервным волокнам. Нервные импульсы по миелиновым волокнам проводятся как бы прыжками - от перехвата Ранвье к следующему перехвату.

Скорость проведения нервных импульсов по безмиелиновым волокнам составляет 1-2 м/с, а по мякотным (миелиновым) - 5-120 м/с. По мере удаления от тела нейрона скорость проведения импульса уменьшается.

Синапсы. Нейроны нервной системы вступают в контакт друг с другом и образуют цепочки (рис. 296), по которым передается нервный импульс.


Рисунок 296. Схема передачи нервного импульса.

Периферическая нервная система представлена аксонами нервных клеток (осевыми цилиндрами), которые либо покрыты неврилеммой шванновских клеток (безмякотные волокна), либо между неврилеммой и осевым цилиндром имеется многослойная миэлиновая оболочка (мякотные волокна). Мякотные и безмякотные волокна объединяются в пучки, ограниченные трубчатой соединительно-тканной оболочкой - периневрием. Внутри периневральной трубки каждое нервное волокно окружает рыхлая соединительная ткань (эндоневрий). Пучки волокон, покрытые оболочкой, называют нервами. Часто пучки переходят в более толстые образования - нервные стволы, в которых несколько пучков окружены рыхлой соединительной тканью - эпиневрием.

Нейроны соединяются между собой несколькими способами. Наиболее примитивным и древним является протоплазматический способ, когда отросток одной нервной клетки переходит в отросток другой клетки. Если нервные клетки контактируют между собой немиэлинизированными участками сомы или отростков и появляется возможность электро-тонического взаимодействия, соединение называют эфаптическим. Третий способ соединения между нейронами, а также нейрона с клетками, не принадлежащими к нервной системе (мышечными, желудочными), - синаптический - наиболее сложный. Он предполагает наличие специального структурного образования - синапса.

Синапсами называют специализированные контакты между клетками, используемые для передачи сигналов. Синапс состоит из окончания пресинаптического нейрона, постсинап-тической структуры и синаптической щели между ними. Пресинаптические терминали аксона расширяются, образуя концевую «пуговку» («бляшку»), окруженную аксолеммой. Ее участок, почти вплотную прилегающий к постсинаптической мембране другой клетки, называется пресинаптической мембраной. В цитоплазме синаптической бляшки много митохондрий и синаптических пузырьков (везикул) диаметром 40-50 нм.

Ширина синаптической щели в химических синапсах - 20-30 нм, а в электрических - 2-4 нм. Синапсы классифицируют по их расположению на поверхности постсинаптического нейрона. Если аксон оканчивается на дендрите другого нейрона, это аксо-дендритный синапс (рис. 297.1.) (часто синаптическая бляшка как бы «надевается» на специальные выступы - дендритные шипики), если же на соме другого нейрона, это аксо-соматический синапс (около половины поверхности сомы и почти вся поверхность дендритов может быть усеяна контактами от других нейронов). Аксон образует иногда синапсы в своей проксимальной части, лишенной миэлина, либо на синаптической бляшке другого нейрона. Такие синапсы являются аксо-аксонными (В, Д). Реже встречаются синапсы между дендритами (дендро-дендритные) (Б) и между дендритными шипиками и телом другого нейрона (дендро-сома-тические). В окончаниях периферических нервов на мышцах имеются нервно-мышечные (мионевральные) синапсы, на железах - нейросекреторные, а на внутренних органах - органные синапсы. Аксо-васкулярные синапсы наблюдают между нейросекреторными клетками гипоталамуса и стенками капилляров.

Синапсы можно классифицировать, во-первых, по их местоположению и принадлежности соответствующим клеткам (нервно-мышечные, нейро-нейрональные, аксо-соматические, аксо-дендритические и т.д.). Во-вторых, синапсы можно разделить по знаку их действия на возбуждающие и тормозящие. И, наконец, по способу передачи сигналов они разделяются на электрические, в которых сигналы передаются электрическим током, и химические, в которых передатчиком сигнала (трансмиттер) или иначе посредником (медиатор) является то или иное физиологически активное вещество. Существуют и смешанные - электрохимические синапсы. Заметим, что и в том, и в другом синапсе имеются такие компоненты, как пресинаптическая мембрана, постсинаптическая мембрана и разделяющая их синаптическая щель.

В мозге редко встречаются изолированные одиночные синапсы. Обычно несколько синапсов вместе складываются в тот или иной тип групповой синаптической связи. Простейший из таких типов - когда два или несколько синапсов расположены рядом друг с другом и ориенти-рованы в одном направлении; все они бывают аксо-дендритными. Более сложен тип, в котором отросток а образует синапс на отростке б , а отросток б на отростке в . Такая ситуация схематически показана на рис. 297.1.Д. Такие синапсы называют последовательными ; их примерами могут служить аксо-аксодендритные и аксо-дендродендритные последовательности.

Еще в одном типе отросток а соединяется с отростком б , а последний - снова с отростком а. Эта ситуация схематически показана на рис. 297.1.Г. Такой синапс принято называть реципрокным . Если два таких синапса расположены рядом, то их называют реципрокной парой . Если же два синапса удалены один от другого, то возникает реципрокное устройство . Наконец, есть такие типы синаптических соединений, когда тесно сближена целая группа терминалей. Этот тип называют синаптической гломерулой (рис. 297.1.Е).


Рисунок 297. Виды синапсов.

Передача информации в синапсе осуществляется специальными химическими веществами-посредниками (медиаторами ), выделяемыми из нервных окончаний в синаптическую щель . В нервной системе эти вещества называют нейромедиаторами . Основными нейромедиаторами в вегетативной нервной системе являются ацетилхолин и норадреналин . В состоянии покоя эти медиаторы, вырабатываемые в нервных окончаниях, находятся в особых пузырьках.

Работа этих медиаторов показана на рисунке 298. Условно (так как он занимает считанные доли секунды) весь процесс передачи информации можно разбить на четыре этапа. Как только по пресинаптическому окончанию поступает импульс, на внутренней стороне клеточной мембраны за счет входа ионов натрия происходит образование положительного заряда, и пузырьки с медиатором начинают приближаться к пресинаптической мембране (этап I). На втором этапе осуществляется выход медиатора в синаптическую щель из пузырьков в месте их контакта с пресинаптической мембраной. После выделения из нервных окончаний нейромедиатор проходит синаптическую щель путем диффузии и связывается со своими рецепторами постсинаптической мембраны клетки исполнительного органа или другой нервной клетки (этап III). Активация рецепторов запускает в клетке биохимические процессы, приводящие к изменению ее функционального состояния в соответствии с тем, какой сигнал был получен от афферентных звеньев. На уровне органов это проявляется сокращением или расслаблением гладких мышц (сужением или расширением сосудов, учащением или замедлением и усилением или ослаблением сокращений сердца), выделением секрета и так далее. И, наконец, на четвертом этапе происходит возвращение синапса в состояние покоя либо за счет разрушения медиатора ферментами в синаптической щели, либо благодаря транспорту его обратно в пресинаптическое окончание. Сигналом к прекращению выделения медиатора служит возбуждение им рецепторов пресинаптической мембраны.

Рисунок 298. Функционирование синапса: I – поступление нервного импульса; II – выделение медиатора в синаптическую щель; III – взаимодействие с рецептором постсинаптической мембраны; IV – «судьба» медиатора в синаптической щели – возвращение синапса в состояние покоя. 1 – обратный захват медиатора; 2 – разрушение медиатора ферментом; 3 – возбуждение пресинаптических рецепторов.

Выше уже сказано, что в вегетативной нервной системе передача информации осущест-вляется, главным образом, с помощью медиаторов - ацетилхолина и норадреналина. Поэтому пути передачи и синапсы называют холинергическими (медиатор - ацетилхолин) или адренергическими (медиатор - норадреналин). Аналогично этому рецепторы, с кото-рыми связывается ацетилхолин, называют холинорецепторами, а рецепторы норадреналина - адренорецепторами. На адренорецепторы влияет также гормон, выделяемый надпочеч-никами, - адреналин.

Холино- и адренорецепторы неоднородны и различаются чувствительностью к некоторым химическим веществам. Так, среди холинорецепторов выделяют мускаринчувствительные (м-холинорецепторы) и никотинчувствительные (н-холинорецепторы) - по названиям естественных алкалоидов, которые оказывают избирательное действие на соответствующие холинорецепторы. Мускариновые холинорецепторы, в свою очередь, могут быть м 1 -, м 2 - и м 3 -типа в зависимости от того, в каких органах или тканях они преобладают. Адренорецепторы, исходя из различной чувствительности их к химическим соединениям, подразделяют на альфа- и бета-адренорецепторы, которые тоже в зависимости от локализации имеют несколько разновидностей.

Сеть нервных волокон пронизывает все человеческое тело, таким образом, холино- и адренорецепторы расположены по всему телу. Нервный импульс, распространяющийся по всей нервной сети или ее пучку, воспринимается как сигнал к действию теми клетками, которые имеют соответствующие рецепторы. И, хотя холинорецепторы локализуются в большей степени в мышцах внутренних органов (желудочно-кишечного тракта, мочеполовой системы, глаз, сердца, бронхиол и других органов), а адренорецепторы - в сердце, сосудах, бронхах, печени, почках и в жировых клетках, обнаружить их можно практически в каждом органе. Воздействия, при реализации которых они служат посредниками, очень разно-образны.

Зная механизм передачи информации в вегетативной нервной системе, можно предположить, как и в каких местах этой передачи нам необходимо действовать, чтобы выз-вать определенные эффекты. Для этого мы можем использовать вещества, которые имити-руют (миметики) или блокируют (литики) работу нейромедиаторов, угнетают действие ферментов, разрушающих эти медиаторы, или препятствуют высвобождению посредников из пресинаптических пузырьков. Используя такие лекарства, можно оказывать влияние на многие органы: регулировать деятельность сердечной мышцы, желудка, бронхов, стенок сосудов и так далее.

В ответ на раздражение нервная ткань приходит в состояние возбуждения, которое представляет собой нервный процесс, вызывающий или усиливающий деятельность органа. Свойство нервной ткани передавать возбуждение называется проводимостью. Скорость проведения возбуждения значительна: от 0,5 до 100 м/с, поэтому между органами и системами быстро устанавливается взаимодействие, отвечающее потребностям организма. Возбуждение проводится по нервным волокнам изолированно и не переходит с одного волокна на другое, чему препятствуют оболочки, покрывающие нервные волокна.

Клетки нейроглии в нервной системе подразделяются на два вида. Это глиоциты (или макроглия ) и микроглия .

Среди глиоцитов различают эпендимоциты, астроциты и олигодендроциты.

Эпендимоциты образуют плотный слой, выстилающий центральный канал спинного мозга и все желудочки головного мозга. Они участвуют в образовании спинномозговой жидкости, транспортных процессах, в метаболизме мозга, выполняют опорную и разграничительную функции. Эти клетки имеют кубическую или призматическую форму, располагаются они в один слой. Их поверхность покрыта микроворсинками.

Астроциты образуют опорный аппарат центральной нервной системы. Они представляют собой мелкие клетки с многочисленными, расходящимися во все стороны отростками. Различают волокнистые и протоплазматические астроциты. Волокнистые астроциты имеют 20-40 длинных, слабо ветвящихся отростков, преобладают в белом веществе центральной нервной системы. Отростки располагаются между нервными волокнами. Некоторые отростки достигают кровеносных капилляров. Протоплазматические астроциты располагаются преимущественно в сером веществе центральной нервной системы, имеют звездчатую форму, от их тел во все стороны отходят короткие сильно разветвленные, многочисленные отростки. Отростки астроцитов служат опорой для отростков нейронов, образуют сеть, в ячейках которой залегают нейроны. Отростки астроцитов, достигающие поверхности мозга, соединяются между собой и образуют на ней сплошную поверхностную пограничную мембрану.

Олигодендриты - наиболее многочисленная группа клеток нейроглии. Они окружают тела нейронов в центральной и периферической нервной системе, находятся в составе оболочек нервных волокон и нервных окончаний. Олигрдендроциты представляют собой мелкие овоидные клетки диаметром 6-8 мкм с крупным ядром. Клетки имеют небольшое количество отростков конусовидной и трапециевидной формы. Отростки образуют миелиновый слой нервных волокон. Миелинообразующие отростки спирально накручиваются на аксоны. По ходу аксона миелиновая оболочка сформирована отростками многих олигодендроцитов, каждый из которых образует один сегмент. Между сегментами находится лишенный миелина узловой перехват нервного волокна (перехват Ранвье). Олигодендроциты, образующие оболочки нервных волокон периферической нервной системы, называются нейролеммоцитами (шванновскими клетками) .

Микроглия составляет около 5% клеток нейроглии в белом веществе мозга и 18% в сером веществе. Микроглия представлена мелкими удлиненными клетками угловатой или неправильной формы, рассеянными в белом и сером веществе (клетки Ортега). От тела каждой клетки отходят многочисленные отростки разной формы, напоминающие кустики, которые заканчиваются на кровеносных капиллярах. Ядра клеток имеют вытянутую или треугольную форму. Микроглиоциты обладают подвижностью и фагоцитарной способностью. Они выполняют функцию своеобразных «чистильщиков», поглощая частицы погибших клеток.

На срезах ЦНС видны участки серого и белого цветов. Это серое и белое вещества мозга. Серое вещество образовано телами нейронов, безмякотными и тонкими мякотными волокнами, клетками глии и капиллярами: оно или в центре (в спинном мозге), или на поверхности в виде тонкой коры (cortex) больших полушарий и мозжечка, или в виде скоплений серого вещества - ядер (nucleus) в стволе мозга и его подкорковом отделе. Тела нейронов в сером веществе переплетены клеточными телами и отростками астроцитов и нейронов (дендритов и слабомиелинизированных аксонов), идущими к нейрону и от него. Такую густую сеть отростков называют нейропилем (от лат. pilos «войлок»).

Различают три типа организации нейронов в сером веществе: сетевидный, ядерный и корковый. Сетевидный тип характерен для строения ретикулярной формации (РФ) ЦНС. РФ - это центрально расположенный диффузный столб нейронов, тянущийся от верхних отделов спинного мозга до конца мозгового ствола. Нейроны РФ имеют длинные, прямые, слабоветвящиеся дендриты, а их аксоны рассеяны и не объединяются в пучки. Ядерному типу присущи густые скопления нейронов с густоветвящимися дендритами, аксоны же этих клеток объединяются в пучки. Корковый тип отличается послойным распределением нейронов, слоистостью (так организована кора больших полушарий и мозжечка).

Рефлекторная функция спинного мозга.

Серое вещество спинного мозга, задние и передние корешки спинномозговых нервов, собственные пучки белого вещества образует сегментарный аппарат спинного мозга . Он обеспечивает рефлекторную (сегментарную) функцию спинного мозга.

Нервная система функционирует по рефлекторным принципам. Рефлекс представляет собой ответную реакцию организма на внешнее или внутреннее воздействие и распрост-раняется по рефлекторной дуге. Рефлекторные дуги - это цепи, состоящие из нервных клеток.

Простейшая рефлекторная дуга включает чувствительный и эффекторный нейроны, по которым нервный импульс движется от места возникновения (от рецептора) к рабочему органу (эффектору) (рис. 299).

Тело первого чувствительного (псевдоуниполярного) нейрона находится в спинно-мозговом узле. Дендрит начинается рецептором, воспринимающим внешнее или внутреннее раздражение (механическое, химическое и др) и преобразующим его в нервный импульс, который достигает тела нервной клетки. От тела нейрона по аксону нервный импульс через чувствительные корешки спинномозговых нервов направляется в спинной мозг, где образует синапсы с телами эффекторных нейронов. В каждом межнейронном синапсе с помощью биологически активных веществ (медиаторов) происходит передача импульса. Аксон эффек-торного нейрона выходит из спинного мозга в составе передних корешков спинно-мозговых нервов (двигательных или секреторных нервных волокон) и направляется к рабочему органу, вызывая сокращение мышцы, усиление (торможение) секреции железы.

Рисунок 299. Простейшая двухнейронная рефлекторная дуга. 1 - чувствительный нейрон; 2 - спинномозговой узел; 3 - миелиновое нервное волокно; 4 - чувствительное нервное окончание; 5 - нервное окончание (бляшка) на мышечном волокне; 6 - спинномозговой нерв; 7 - корешки спинномозговых нервов; 8 - эфферентный (двигательный) нейрон в переднем роге спинного мозга.

Более сложные рефлекторные дуги имеют один или несколько вставочных нейронов. Тело вставочного нейрона в трехнейронных рефлекторных дугах находится в сером веществе задних столбов (рогов) спинного мозга и контактирует с приходящим в составе задних (чувствительных) корешков спинномозговых нервов аксоном чувствительного нейрона. Аксоны вставочных нейронов направляются к передним столбам (рогам), где располагаются тела эффекторных клеток. Аксоны эффекторных клеток направляются к мышцам, железам, влияя на их функцию. В нервной системе много сложных многонейронных рефлекторных дуг, у которых имеется несколько вставочных нейронов, располагающихся в сером веществе спинного и головного мозга.

Примером простейшего рефлекса может служить коленный рефлекс , возникающий в ответ на кратковременное растяжение четырехглавой мышцы бедра легким ударом по ее сухожи-лию ниже коленной чашечки. После короткого латентного (скрытого) периода происходит сокращение четырехглавой мышцы, в результате которого приподнимается свободно висящая нижняя часть ноги. Коленный рефлекс относится к числу так называемых рефлексов растя-жения мышцы , физиологическое значение которых состоит в регуляции длины мышцы, что особенно важно для поддержания позы. Например, когда человек стоит, каждое сгибание в коленном суставе, даже такое слабое, что его невозможно ни увидеть, ни почувствовать, сопровождается растяжением четырехглавой мышцы и соответствующим усилением активности расположенных в ней чувствительных окончаний (мышечных веретен). В результате происходит дополнительная активация мотонейронов четырехглавой мышцы («коленный рефлекс»), и повышение ее тонуса, противодействующее сгибанию. И, наоборот, слишком сильное сокращение мышцы ослабляет стимуляцию ее рецепторов растяжения. Частота их импульсации, возбуждающей мотонейроны, уменьшается, и мышечный тонус ослабевает.

Как правило, в движении участвуют несколько мышц, которые по отношению друг к другу могут выступать как агонисты (действуют в одном направлении) либо антагонисты (действуют разнонаправленно). Рефлекторный акт возможен только при сопряженном, так называемом реципрокном торможении двигательных центров мышц-антагонистов. При ходьбе сгибание ноги сопровождается расслаблением разгибателей и, наоборот, при разгиба-нии тормозятся мышцы-сгибатели. Если бы этого не происходило, то возникла бы механи-ческая борьба мышц, судороги, а не приспособительные двигательные акты. При раздраже-нии чувствительного нерва, вызывающего сгибательный рефлекс, импульсы направляются к центрам мышц-сгибателей и через специальные вставочные нейроны (тормозные клетки Реншоу ) - к центрам мышц-разгибателей. В первых вызывают процесс возбуждения, а во вторых - торможения. В ответ возникает координированный, согласованный рефлекторный акт - сгибательный рефлекс.

Взаимодействие процессов возбуждения и торможения - универсальный принцип, лежащий в основе деятельности нервной системы. Конечно, он реализуется не только на уровне сегментов спинного мозга. Вышестоящие отделы нервной системы осуществляют свое регуляторное влияние, вызывая процессы возбуждения и торможения нейронов нижестоящих отделов. Важно отметить: чем выше уровень животного, тем сильнее власть самых высших отделов центральной нервной системы, «тем в большей степени высший отдел является распорядителем и распределителем деятельности организма» (И.П.Павлов). У человека таким «распорядителем и распределителем» является кора больших полушарий головного мозга.
Каждый спинальный рефлекс имеет свое рецептивное поле и свою локализацию (место нахождения), свой уровень. Так, например, центр коленного рефлекса находится во II-IV поясничном сегменте; ахиллова - в V поясничном и I-II крестцовых сегментах; подош-венного - в I-II крестцовом, центр брюшных мышц - в VIII-XII грудных сегментах. Важнейшим жизненно важным центром спинного мозга является двигательный центр диафрагмы, расположенный в III-IV шейных сегментах. Повреждение его ведет к смерти вследствие остановки дыхания.

Кроме двигательных рефлекторных дуг, на уровне спинного мозга замыкаются вегета-тивные рефлекторные дуги, осуществляющие контроль за деятельностью внутренних орга-нов.

Межсегментарные рефлекторные связи. В спинном мозге помимо описанных выше рефлекторных дуг, ограниченных пределами одного или нескольких сегментов, действуют восходящие и нисходящие межсегментарные рефлекторные пути. Вставочными нейронами в них служат так называемые проприоспинальные нейроны , тела которых находятся в сером веществе спинного мозга, а аксоны поднимаются или спускаются на различные расстояния в составе проприоспинальных трактов белого вещества, никогда не покидая спинной мозг. Опыты с дегенерацией нервных структур (в которых полностью изолируются отдельные части спинного мозга) показали, что к проприоспинальным нейронам относится большинство его нервных клеток. Некоторые из них образуют независимые функциональные группы, ответственные за выполнение автоматических движений (автоматических программ спинного мозга ). Межсегментарные рефлексы и эти программы способствуют координации движений, запускаемых на разных уровнях спинного мозга, в частности, передних и задних конечностей, конечностей и шеи.

Благодаря этим рефлексам и автоматическим программам спинной мозг способен обеспе-чивать сложные согласованные движения в ответ на соответствующий сигнал с периферии или от вышележащих отделов центральной нервной системы. Здесь можно говорить об интегративной (объединяющей) функции спинного мозга , хотя следует иметь в виду, что у высших позвоночных (в частности, у млекопитающих) возрастает регуляция спинальных функций высшими отделами центральной нервной системы (процесс энцефализации ).

Спинальная локомоция. Обнаружено, что основные характеристики локомоции, т.е. пере-мещения человека или животного в окружающей среде при помощи координированных движений конечностей, запрограммированы на уровне спинного мозга . Болевое раздражение какой-либо конечности спинального животного вызывает рефлекторные движения всех четырех; если же такая стимуляция продолжается достаточно долго, могут возникнуть ритмичные сгибательные и разгибательные движения не подвергающихся раздражению конечностей. Если такое животное поставить на тредмилл (бегущую дорожку), то при некоторых условиях оно будет совершать координированные шагательные движения, весьма сходные с естественными.

У спинального животного, анестезированного и парализованного кураре, в определенных условиях можно зарегистрировать ритмично чередующиеся залпы импульсов мотонейронов разгибателей и сгибателей, примерно соответствующие наблюдаемым при естественной ходьбе. Поскольку такая импульсация не сопровождается движениями, ее называют ложной локомоцией . Она обеспечивается пока еще не идентифицированными локомоторными центра-ми спинного мозга. По-видимому, для каждой конечности существует один такой центр. Активность центров координируется проприоспинальными системами и трактами, пере-секающими спинной мозг в пределах отдельных сегментов.

Предполагают, что у человека тоже есть спинальные локомоторные центры. По-видимому, их активация при раздражении кожи проявляется в виде шагательного рефлекса новорожденного . Однако по мере созревания центральной нервной системы вышестоящие отделы, очевидно, настолько подчиняют себе такие центры. что у взрослого человека они утрачивают способность к самостоятельной активности. Тем не менее, активизация локомоторных центров путем интенсивной тренировки лежит в основе различных методик восстановления ходьбы у больных с повреждением спинного мозга.

Таким образом, даже на уровне спинного мозга обеспечиваются запрограммированные (автоматические) двигательные акты. Подобные независимые от внешней стимуляции двигательные программы шире представлены в высших двигательных центрах. Некоторые из них (например, дыхание) врожденные, другие же (например, езда на велосипеде) приобретаются в процессе научения

Центральная нервная система. Белое вещество ЦНС состоит из длинных, покрытых белым миэлином, аксонов клеток и нейроглии. Тела этих клеток лежат в сером веществе или в ганглиях вне ЦНС. Будучи проводящей системой мозга, белое вещество осуществляет двусторонние связи между различными участками мозга, создавая таким образом ЦНС. В проводящих путях мозга волокна нервных клеток объединяются в пучки.

Таблица 11. Центральная нервная система

Последние материалы сайта