Всемирная геодезическая система координат wgs 84. Вопросы пересчёта между различными системами координат

20.09.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Конвертер систем координат

Конвертер координат МСК, СК-42/63, ПЗ-90, WGS-84

-- Выбор системы координат --
0.00 X ↔ Y 0.00 X ↔ Y

Хотите пересчитать координаты из одной системы координат в другую?

Здесь Вы сможете преобразовать координаты точек из используемых в России местных систем координат (СК) в мировые или наоборот, а также из одной местной СК в другую местную. Пересчитать за один раз можно как одну точку, так и целыми контурами.

Необходимость пересчета возникает, например, при определении положения точки на публичной кадастровой карте, которая работает в мировой системе координат WGS-84 (проекция Меркатора), другие картографические сервисы также используют WGS-84 (долготу и широту): Google.Maps, Яндекс.Карты, OpenStreet и др.

Инструкция:

Выберите из выпадающих список слева исходную систему координат, справа - целевую систему координат. Введите координаты в левое текстовое поле. Вводите в одной строке по одной точке (пункту), координаты отделяйте друг от друга в строке: Tab, точкой с запятой, пробелом, либо запятой. Целую часть от дробной - точкой, либо запятой (если она не использована в качестве разделителя). При вводе долготы и широты вводите значения в градусах и десятичных долях градусов, отделяя целую часть от дробной точкой. Нажмите на кнопку Конвертировать . Вы можете менять направление конвертации с помощью кнопки . Для очистки текстовых полей нажмите кнопку Очистить .

Совет: Вы можете открыть программу серии и выделить всю таблицу с координатами, нажать на кнопку Копировать в программе, а затем вставить эту информацию в левое поле конвертера, нажать кнопку Конвертировать .

Внимание: конвертер "внутри" работает в математической системе координат, поэтому если Вы конвертируете из геодезической системы координат (местные СК), то поставьте галочку X ↔ Y в левой части. Если Вы конвертируете из мировой СК, например, WGS 84, то такую галочку ставить не нужно, так как эта система математическая. Для получения на выходе координат в нужной последовательности, используйте галочку X ↔ Y в правой части. Вы можете округлить координаты до сотых: как до конвертации - левая галочка 0.00, так и после - правая галочка 0.00.

Внимание: при большом количестве точек пересчет может занять некоторое время. Если операция выполняется слишком длительно, то обновите страницу клавишей F5. Конвертируйте меньшее количество информации за один раз.

Сервис работает бесплатно. Количество конвертируемых точек не ограничено.


Сервис работает бесплатно, но Вы можете нас отблагодарить:
  • Поделитесь ссылкой в социальных сетях
  • Напишите на форумах об этом сервисе
  • Расскажите коллегам о существовании этого сервиса
  • Напишите отзыв на

Системы координат.

Представления людей о форме Земли менялись со временем. В те времена, когда Земля была плоской и покоилась на трёх слонах, особых трудностей с отображением её поверхности не возникало (рис. 1).


Но уже во времена античности пришло понимание шарообразной форме Земли (рис. 2а). А в 17 веке из знания о том, что планета вращается вокруг своей оси логично вытекало следствие о сплюснутости её с полюсов (рис. 2б). Дальнейшие измерения показали, что форма Земли грушевидная, сплюснутая у полюсов и выпяченная на экваторе (рис. 2в).

В результате длительного развития представлений о форме Земли как планеты сложилось понятие о геоиде . Термин предложил в 1873 году немецкий физик Листинг. Поверхность геоида совпадает с поверхностью морей и океанов в их спокойном состоянии и мысленно продолжается под материки. Эта поверхность принимается за математическую поверхность Земли, или "уровень моря", от которого отсчитывают высоты точек земной поверхности (так называемые ортометрические высоты). Но форма геоида весьма сложна и зависит от распределения масс и плотностей в теле Земли. Точно установить положение геоида под материками очень сложно, поскольку измерения силы тяжести выполняются на физической поверхности Земли, а затем довольно сложными приемами редуцируются на поверхность геоида с известной долей неопределенности. Чтобы упростить решение проблемы, М.С.Молоденский вместо геоида предложил использовать поверхность квазигеоида , для описания которого достаточно теоретически расчитанных значений так называемой нормальной силы тяжести на земной поверхности без привлечения данных по распределению масс и плотностей в теле Земли. Фигура квазигеоида совпадает с геоидом на территории Мирового океана и очень близко подходит к нему на суше, отклоняясь не более чем на 2 метра в высоких горах и на несколько сантиметров на равнинной местности (рис. 3). Поверхность квазигеоида не является уровенной . Тем не менее, она принимается отсчетной для определения так называемых нормальных высот, то есть, расстояния от данной точки на физической поверхности до квазигеоида. Однако система нормальных высот не нашла повсеместного применения. Не смотря на сложность математического выражения уровенной поверхности, в большинстве стран принята ортометрическая система высот, в основе готорой лежит тот или иной геоид. Модель такой поверхности можно описать путем вычисления значений потенциала земного притяжения в точках с известными координатами с помощью разложения по сферическим функциям - гармоникам , с последующим выделением поверхности с равными значениями потенциала . Это требует использования в уравнении десятков тысяч коэффициентов. Их количество зависит от желаемого разрешения описываемой модели, то есть, чем их больше, тем точнее модель. Например, в модели используются формула полинома 360 порядка с 65338 коэффициентами. Коэффициенты сферических гармоник для различных моделей геоидов можно скачать с сайта Очевидно, что использовать формулу с таким большим количеством коэффициентов для расчета поверхности достаточно сложно.

Но если в рядах сферических функций оставить гораздо меньшее количество членов, то можно получить более простую модель геоида. Наиболее удобной из таких моделей (математической поверхностью) является двухосный эллипсоид вращения (рис. 4) вследствие того, что он имеет намного более простую математическую форму, доступен для математических расчетов и сильно не отличается от фактической грушевидной формы Земли. Поверхность геоида отличается от поверхности эллипсоида в пределах 100 метров в ту или иную сторону, что гораздо меньше, чем отличия эллипсоида и сферы.

Чтобы с такой поверхностью можно было работать, необходимо знать его основные параметры: большая полуось a , малая полуось b , полярное сжатие (a-b)/a (рис. 4).

В последние пятнадцать лет спутниковые данные позволили, используя новые методы измерений, определить оптимально соответствующий поверхности Земли эллипсоид, который связывает координаты с центром масс Земли. Являясь геоцентрическим (глобальным), этот эллипсоид использует центр масс Земли в качестве начала отсчета. Наиболее широкое использование в настоящее время получил геоцентрический (глобальный) эллипсоид (World Goodetic System 1984). Он служит основой для измерения местоположений во всем мире. Общеземной эллипсоид ориентируется в теле Земли согласно следующим условиям (определяемыми международными геодезическими организациями, которые организуются и направляются Международной ассоциацией геодезии, действующей по инициативе и в рамках Международного геодезического и геофизического союза):

  1. Малая полуось должна совпадать с осью вращения Земли.
  2. Центр эллипсоида должен совпадать с центром масс Земли.
  3. Сумма квадратов отступлений геоида от общеземного эллипсоида должна быть по всей Земле наименьшей из всех возможных

Но требования к общеземным эллипсоидам на практике удовлетворяются с некоторыми допусками из-за отличных друг от друга методов и средств наблюдений и измерений. Поэтому в геодезии и смежных науках могут использоваться различные реализации эллипсоида, параметры которых очень близки, но не совпадают.
Система спутниковой навигации GPS сообщает координаты в системе эллипсоида WGS84 (World Goodetic System 1984). Эллипсоид IERS96 (International Earth Rotation Service 1996), предлагаемый в стандартах Международной службы вращения Земли , рекомендуется использовать при обработке РСДБ-наблюдений . Для геодезических работ рекомендуется использовать средний эллипсоид GRS80 (Geodetic Reference System 1980), принятый Генеральной Ассамблеей Международной ассоциацией геодезии в 1979 г.

Название

Страна/организация

a, км (большая полуось)

b, км (малая полуось)

1/f (сжатие)

6356,75231424518

И, если глобальный эллипсоид наилучшим образом согласуется с поверхностью геоида в целом, то для того, чтобы описать поверхность Земли для данной конкретной территории, используют так называемые локальные эллипсоиды, которые наилучшим образом согласуются с геоидом на ограниченной части его поверхности (рис. 5).

Ориентирование локального эллипсоида в теле Земли подчиняется следующим требованиям:

  1. Сумма квадратов отступлений геоида от эллипсоида должна быть наименьшей из всех возможных для данной территории
  2. Сумма квадратов уклонений отвесных линий отвесных линий от перпендикуляра (нормали) к поверхности эллипсоида должна быть наименьшей из всех возможных для данной территории

Для точных работ необходимо учитывать положение конкретного эллипсоида по отношению к геоиду. Эта базовая информация, необходимая для преобразования координатных систем и картографических проекций, в основе которых лежат различные эллипсоиды. Существует несколько методов преобразований координатных систем. Самый простой (и наиболее грубый) осуществляется пересчетом географических координат (широты, долготы и высоты) из исходной координатной системы в требуемую путем перевода исходных географических координат в прямоугольные геоцентрические, вычислением величины сдвига центров координат и последующем переводом опять в географические координаты. Такой метод предполагает, что направления осей двух эллипсоидов параллельны, что во многих случаях не соответствует действительности. Для работ на небольшой территории погрешности, вносимые этим предположением, были меньше, чем точность самих данных. Однако, по мере накопления и уточнения данных и повышения точности измерений, стало очевидно, что преобразование по трем параметрам не подходит для больших территорий и глобального использования, если требуется максимальная точность и единый набор параметров преобразования. Молоденский разработал формулы для применения параметров сдвига географических координат (без перевода их в прямоугольные геоцентрические) по трем параметрам (сдвиг по трем осям) и разности между большими полуосями и сжатием исходного эллипсоида и целевого эллипсоида - еще два параметра. Повышенная точность достигается преобразованием Хелмерта с 7-ю параметрами - смещение центра одного эллипсоида относительно другого по трем координатам и поворотом его по трем углам с учетом масштабного коэффициента, показывающего изменение линейного масштаба. Есть две его разновидности, различающиеся присвоением знака для параметров поворота.

Методы преобразования систем координат.

  1. По трем параметрам - ΔX, ΔY, ΔZ, где ΔX ΔY ΔZ - это линейные смещения центров двух систем координат по трем осям в метрах.
  2. По пяти параметрам (метод Молоденского) - ΔX, ΔY, ΔZ, Δа, Δf, где ΔX ΔY ΔZ - это линейные смещения центров двух эллипсоидов по трем осям в метрах, Δа - разности между большими полуосями эллипсоидов, Δf - разности между величиной сжатия двух эллипсоидов)
  3. По семи параметрам - ΔX, ΔY, ΔZ, ΩX, ΩY, ΩZ, Δs, где ΔX ΔY ΔZ - это линейные смещения центров двух эллипсоидов по трем осям в метрах, ΩX ΩY ΩZ - это углы поворота омега, фи и каппа осей исходного эллипсоида, Δs - это масштабный коэффициент, показывающий изменение линейного масштаба

Такие линейные и угловые смещения референц-эллипсоидов относительно центра масс Земли в англоязычной литературе принято называть словом Datum. В отечественной геодезии применяют термин "геодезические даты". Это так называемые исходные данные, необходимые для задания начала отсчета в географической системе координат. Они определяются для некой реальной точки на поверхности Земли, для которой фиксируются значения широты и долготы, производится совмещение нормали к поверхности референц-эллипсоида и отвесной линии в данной точке, а плоскость меридиана устанавливается параллельно оси вращения Земли. Таким образом, резюмируя, можно сказать, что географическая координатная система - это совокупность параметров, определяющих форму эллипсоида и его положение в теле Земли (рис. 6).

ГОСТ

Projection Utility в ArcView, ERDAS Imagine (преобразование Молоденского)

ERDAS Imagine (преобразование по 7 параметрам)

Image Processor (преобразование по 7-ми параметрам)

Проекции.

Положение объекта на какой-либо поверхности или в пространстве определяется с помощью угловых или линейных величин, называющихся координатами. В системе географических координат положение любой точки земной поверхности относительно начала координат определяется указанием угловых величин широты и долготы. Географическую систему координат можно изобразить на плоскости в виде сетки с ячейками одинакового размера, где по оси ординат откладывается широта, а по оси абсцисс - долгота (рис. 7).

Однако помимо сферической системы координат, использующей угловые кординаты, существуют и другие, позволяющие описывать не только абсолютные положения объектов, но и метрические характеристики (длина, площадь) и отношения с другими объектами в географическом пространстве. Угловые величины не удобны для этих целей, поскольку не имеют стандартной длины - величина градуса в метрах меняется в зависимости от широты местности ( можно воспользоваться калькулятором для пересчета угловых единиц в линейные). Для преодоления этих трудностей, данные переводят из угловых географических координат в прямоугольные спроектированные координаты.

Спроектированная система координат - прямоугольная система, с началом координат в определенной точке, чаще всего имеющей координаты 0,0. Спроектированная система координат связана с географической набором специальных формул - проекцией (рис. 8).

Рисунок 8. Связь между спроектированной и географической системами координат

То есть, другими словами, проекция - это математически выраженный способ отображения (пример) поверхности Земли или других небесных тел, принимаемых за эллипсоид, сферу или другие регулярные поверхности, на плоскости (рис. 9).


Рисунок 9. Спроектированная система координат (11 Кб).

Но даже аппроксимированную до эллипсоида, поверхность Земли нельзя отобразить на плоскости с сохранением всех пространственных отношений одновременно: углов между направлениями, расстояний и площадей. Любой карте присущи искажения длин, площадей, углов и форм. Искажения длин на карте выражается в том, что масштаб длин на ней изменяется при переходе от одной точки к другой, а также при изменении направления в данной точке. Искажения площадей выражаются в том, что масштаб площадей в разных местах карты различен и нарушается соотношения площадей различных географических объектов. Искажения углов заключаются в том, что углы между направлениями на карте не равны соответствующим углам на поверхности. Искажения форм заключаются в том, что фигуры объектов на карте не подобны фигурам соответствующих географических объектов на местности. Все виды искажений на карте связаны друг с другом и изменение одного из них влечет за собой изменение других. Особый характер имеет связь между искажением углов и площадей. Они на карте находятся как бы в противоречии друг с другом и уменьшение одного из них влечет увеличение другого.

Наиболее полно все виды искажений в данной точке карты можно представить в виде эллипса искажений (пакет для построения эллипсов искажений можно скачать ). Форма эллипса характеризует искажение углов и форм - они искажены тем больше, чем больше эллипс отличается от окружности. Площадь эллипса пропорциональна искажению площадей, и чем она сильнее отличается от площади эллипса на линии (в точке) нулевых искажений, тем больше искажены площади. По характеру искажений различают следующие картографические проекции:

  1. Равновеликие. На карте отсутствуют искажения площадей. Значительны искажения углов и форм. Карты, составленные в таких проекциях, удобны для определения площадей (рис. 10).
  2. Равноугольные. Отсутствуют искажения углов и формы небольших объектов. Весьма удобны для решения навигационных задач. Угол на местности всегда равен углу на карте, линия прямая на местности, прямая на карте. Главным примером данной проекции является поперечно-цилиндрическая Проекция Меркатора (1569г) и до сих пор она используется для морских навигационных карт (рис. 11)
  3. Равнопромежуточные. Маштаб длин по одному из главных направлений (взаимно перпендикулярные направления, по одному из которых масштаб длин имеет наибольшее, а по другому - наименьшее значение) сохраняется постоянным. Искажения углов и площадей как бы уравновешиваются. Различают равнопромежуточные проекции по меридианам или параллелям. В них искажения длин отсутствуют по одному из направлений: либо вдоль меридиана, либо вдоль параллели (рис. 12)
  4. Произвольные. На карте в любых соотношениях имеются искажения и углов, и площадей. Но эти искажения распределяются по карте наиболее выигрышным образом, при этом достигается некий компромисс. Например, минимальные искажения приходятся на центральную часть карты, а все сжатия и растяжения "сбрасываются" к её краям.

По виду вспомогательной поверхности (поверхности, на которую проецируется земной эллипсоид или шар при его отображении на плоскость) различают проекции:

  • Азимутальные (рис. 13), в которых поверхность эллипсоида или шара переносится на касательную к ней или секущую её плоскость.
  • Цилиндрические (рис. 14), в которых поверхность эллипсоида или шара переносится на боковую поверхность касательного к ней или секущего её цилиндра, после чего последний разрезается по образующей и развертывается в плоскость.
  • Конические (рис. 15), в которых поверхность эллипсоида или шара переносится на боковую поверхность касательного к ней или секущего её конуса, после чего последний разрезается по образующей и развертывается в плоскость.

    По ориентировки вспомогательной поверхности относительно полярной оси или экватора эллипсоида или шара различают проекции (рис. 13-15)

  • Нормальные, в которых ось вспомогательной поверхности совпадает с осью земного эллипсоида или шара; в азимутальных проекциях плоскость перпендикулярна полярной оси.
  • Поперечные, в которых ось вспомогательной поверхности лежит в плоскости экватора земного эллипсоида или шара и перпендикулярна полярной оси; в азимутальных проекциях плоскость перпендикулярна нормали, лежащей в экваториальной плоскости поверхности.
  • Косые, в которых ось вспомогательной поверхности совпадает с нормалью, находящейся между полярной осью и плоскостью экватора земного эллипсоида или шара; в азимутальных проекциях плоскость к этой нормали перпендикулярна

    По виду нормальной картографической сетки проекции разделяются на:

  • Азимутальные, в которых параллели изображаются концентрическими окружностями, а меридианы - прямыми, исходящими из общего центра параллелей под углами, равными разницы их долгот (рис. 16).
  • Конические, в которых параллели изображаются дугами концентрических окружностей, а меридианы - прямыми, расходящимися из общего центра параллелей под углами, пропорциональными разности их долгот. В этих проекциях искажения не зависят от долготы. Особо пригодны для территорий, вытянутых вдоль параллелей. Карты всей территории СССР часто составляются в равноугольных и равнопромежуточных конических проекциях (рис. 16).
  • Цилиндрические (рис. 16), в которых меридианы изображаются равноотстоящими параллельными прямыми, а параллели - перпендикулярными к ним прямыми, в общем случае не равностоящими; известны обобщенные цилиндрические проекции, в которых расстояния между меридианами есть более сложная функция долготы. В навигации используется проекция Меркатора - равноугольная цилиндрическая проекция. Проекция Гаусса - Крюгера - равноугольная поперечно-цилиндрическая - применяется при составлении топографических карт и обработке триангуляций.
  • Псевдоазимутальные (рис. 16), в которых параллели изображаются концентрическими окружностями, меридианы - кривыми, сходящимися в точке полюса; средний меридиан - прямой.
  • Псевдоконические (рис. 16), в которых параллели изображаются дугами концентрических окружностей, средний меридиан - прямой, проходящий через их общий центр, а остальные меридианы - кривыми. Часто применяется равновеликая псевдоконическая проекция Бонна; в ней с 1847 составлялась трёхвёрстная (1: 126 000) карта Европейской части России.
  • Псевдоцилиндрические (рис. 16), в которых параллели изображаются параллельными прямыми, средний меридиан - прямая, перпендикулярная к параллелям, а остальные меридианы - кривые или прямые, наклоненные к параллелям.
  • Поликонические (рис. 16), в которых параллели изображаются дугами эксцентрических окружностей с радиусами тем большим, чем меньше их широта, средний меридиан - прямой, на которой расположены центры всех параллелей, остальные меридиаными - кривые. Одна из поликонических проекций рекомендована для международной (1: 1 000 000) карты.

    По способу получения различают проекции

  • Перспективные, которые получают перспективным проецированием точек поверхности на плоскость, поверхность цилиндра или конуса. В зависимости от того, где расположен центр проецирования, получают проекции гномонические - проецирование из центра шара, стереографические - проецирование с поверхности шара, внешние - центр проецирования находится за пределами шара на конечном расстоянии от него, ортографические - проецирование из бесконечности параллельными прямыми лучами (рис. 17).
  • Производные, которые получают преобразованием одной или нескольких ранее известных проекций путем комбинирования и обобщения их уравнений, деформацией проекций в одном или нескольких направлениях и т.п.
  • Составные, в которых отдельные части картографической сетки построены в разных проекциях или в одной проекции, но с разными параметрами.

    Выбор проекции.

    На выбор проекций влияет много факторов, которые можно группировать следующим образом:

  • − географические особенности картографируемой территории, её положение на земном шаре, размеры и конфигурация;
  • − назначение, масштаб и тематика карты;
  • − условия и способы использования карты, задачи, которые будут решаться по ней, требования к точности результатов измерений.

    Для карт мира преимущественно используют цилиндрические и псевдоцилиндрические проекции (рис. 18-19), имеющие сетки с прямолинейными и параллельными друг другу параллелями, что ценно при изучении явлений широтной зональности. Чтобы уменьшить искажения в высоких широтах, можно строить проекцию на секущем цилиндре. Псевдоцилиндрические проекции по сравнению с цилиндрическими дают в высоких широтах меньшие искажения площадей, но увеличивают искажения углов.

    Карты полушарий естественно строить в азимутальных проекциях (рис. 20). Ранее широко применялись равноугольная стереографическая проекция и равновеликая Ламберта. Первой из них на краях полушария свойственны большие искажения площадей. Поэтому в настоящее время для учебных карт предлагают произвольные азимутальные проекции, промежуточные по величине искажений.
    Для карт отдельных материков (Европы, Азии, Северной Америки, Южной Америки, Австралии с Океанией) применяют преимущественно равновеликую косую азимутальную проекцию Ламберта с точкой нулевых искажений в центре изображаемого материка (рис. 21). Для Африки косая проекция заменяется экваториальной. В азимутальной проекции искажения нарастают по мере удаления от центра проекции и потому достигают наибольшей величины в углах прямоугольной рамки карты. Так, на карте Азии в пределах материка угловые искажения достигают 15°.

    Карты России составляются главным образом в нормальных конических проекциях (рис. 22). Все нормальные конические проекции в их применения для карт России не позволяют показать точку полюса и вследствие значительной части кривизны параллелей как бы поднимают восточные и западные части СССР, что нарушает зрительное представление о широтных зонах.

    Карты крупных и средних масштабов, предназначенные для решения метрических задач, обычно составляют в равноугольных проекциях, а карты мелких масштабов, используемые для общих обозрений и определения соотношения площадей каких-либо территорий - в равновеликих.

    В выборе проекций большую роль играет математический момент - величина искажений. Но этот признак не всегда решающий. Ярким примером этому служит использование для морских навигационных карт проекции Меркатора, которая при сохранении главного масштаба на экваторе преувеличивает площади на параллели 60° в 4 раза, а на параллели 80° более чем в 30 раз. Но в этой проекции курсы корабля изображаются прямыми линиями, а учет искажений длин, необходимый при определении пройденных расстояний, не вызывает затруднений. Угол, измеренный на ней между направлением меридиана и направлением на конечный пункт, точно соответствует курсу корабля. Хотя это и не будет кратчайшим путём. Одна из наиболее удобных проекций - гномоническая - уникальна в том отношении, что любой большой круг сферы (и дуга большого круга) изображается в ней прямой линией. Так как дуги больших кругов являются линиями кратчайших расстояний на карте, то по карте мелкого масштаба, составленной в такой проекции, можно легко находить (по линейке) кратчайшие пути между двумя пунктами; однако необходимо иметь в виду, что дуга большого круга не соответствует постоянному направлению, измеренному по компасу (рис. 23).

  • Рисунок 24. Проекции Гаусса-Крюгера (на касательный цилиндр) и UTM (секущий цилиндр) и 6-ти градусные зоны в упомянутых проекциях (10 Кб). Зона - это участок земной поверхности, ограниченный двумя меридианами Проекция делит земной эллипсоид на 60 зон шириной 6° (рис. 25). Зоны нумеруются с запада на восток, начиная с 0°: зона 1 простирается с меридиана 0° до меридиана 6°, её центральный меридиан 3°. Зона 2 - с 6° до 12°, и т.д. (рис. 25). Нумерация номенклатурных листов начинается с 180°, например, лист N-39 находится в 9-й зоне. Связь номера зоны (N) и долготы осевого меридиана (L) осуществляется по формуле:

    Цилиндр разворачивают в плоскость и накладывают прямоугольную километровую сетку. За ось OX принимают изображение осевого меридиана зоны (положительное направление оси OX - на север), за ось OY принимают изображение экватора (положительное направление оси OY - на восток).

    В каждой из шестиградусных зон своя система прямоугольных координат (рис. 26). Вертикальные линии сетки параллельны центральному меридиану. Для того, чтобы все прямоугольные координаты были положительны, вводится восточное смещение (false easting), равное 500 000 м, т. е. координата Y на центральном меридиане равна 500 000 м. Для определенности, чтобы только по численному значению координаты Y можно было определить, к какой зоне относятся эти значения, к ним слева приписывается номер зоны.

    Рисунок 27. 6-ти градусная зона и один из листов карты (N-37) масштаба 1:1000000 (7,5 Кб). Набор листов карты, отвечающий по долготе одной зоне, имеет одну цифру в номенклатуре, но отличается буквой, обозначающей пояс по широте. В одной трапеции карты масштаба 1:1000000 содержатся 4 трапеции масштаба 1:500000, 36 трапеций масштаба 1:200000 и 144 трапеции масштаба 1:100000 (рис. 28). Карты масштаба 1:500000 обозначаются прописными буквами русского алфавита А, Б, В, Г, которые записываются после номенклатуры листа карты масштаба 1:1000000, например N37-В. Листы карты масштаба 1:200000 обзначаются римскими цифрами I - XXXVI, которые ставятся после номенклатуры листа карты масштаба 1:1000000, например, N37-XXVII. Трапеции карты масштаба 1:100000 обозначаются арабскими цифрами от 1 до 144, которые ставятся после номенклатуры листа карты масштаба 1:1000000, например N37-120.

    Лист карты масштаба 1:100000 положен в основу разграфки и номенклатуры карт более крупного масштаба (рис. 29). В одном листе карты масштаба 1:100000 содержатся 4 листа масштаба 1:50000, которые обозначаются прописными буквами русского алфавита А, Б, В, Г, например, N37-120-Б. Лист карты масштаба 1:50000 содержит 4 листа карты масштаба 1:25000, которые обозначаются строчными буквами русского алфавита а, б, в, г, например, N37-120-Б-г. Лист карты масштаба 1:25000 содержит 4 листа карты масштаба 1:10000, которые обозначаются арабскими цифрами 1,2,3,4, например, N37-120-Б-г-4. Кроме того, лист карты масштаба 1:100000 содержит 256 листов карты мастаба 1:5000, которые обозначаются порядковыми арабскими цифрами от 1 до 256, взятыми в скобки, например, N37-120-(72). Лист карты масштаба 1:5000 содержит 9 листов мастшаба 1:2000, которые обозначаются русскими строчными буквами от а до и, например, N37-120-(72-е).
    http://www.astronet.ru/db/msg/1169819/node2.html (Пантелеев В.Л., курс лекций "Теория фигуры Земли")

  • http://ssga.ru/metodich/geodesy_ep/contents.html (Дьяков Б.Н, электронная версия книги "Геодезия")
  • http://ne-grusti.narod.ru/Glossary/projections.html#zone
  • Аббревиатура, означающая World Geodetic System, что в переводе соответствует понятию глобальная опорная система, принятая на момент 1984 года с целью геодезического обеспечения ориентирования в мировом пространстве: космической, воздушной, морской и наземной навигации.

    Такая единая мировая система отсчета появилась не в один год. С конца пятидесятых годов прошлого столетия, когда практически происходило становление космической эры и в СССР, и в США возникла потребность в точном проведении, сопровождении космических запусков и полетов. Для обеспечения этой деятельности необходимо было создать единую планетарную геодезическую сеть, с помощью которой возможно было вести геодезические, гравиметрические и астрономические наблюдения.

    С периодическим постоянством через каждые шесть лет, начиная с 1960 года, в США были созданы всеземные геодезические системы wgs60, wgs66, wgs72. Последняя из перечисленных систем wgs, считалась геодезической основой первой навигационной спутниковой системой Transit.

    В 1980 году Международным союзом по геодезии была принята новая геодезическая референцная система GRS80. В ней было представлено сочетание моделей: геоида, земного эллипсоида и гравитационной модели Земли. В США в 1983 году приняли свою геодезическую систему NAD83.

    И все же в 1984 году в рамках Министерства обороны Соединенные Штаты Америки принимают решение о построении для своих целей, как военного ведомства и навигационных спутниковых задач новой WGS с годовой нумерацией 84. Для этого к тому времени стала использоваться навигационная спутниковая система GPS Navstar, которая получила в последствие глобальное распространение и применяется во всем мире до настоящего времени. Введена WGS84 была в 1987 году и по своим параметрам близка к NAD83.

    Основные параметры WGS 84

    Мировая система WGS-84 представляет собой астрономо-геодезическую-гравиметрическую систему отсчета, вписанную в фигуру Земли. Для любой такой системы характерными являются установление определенных параметров. К таким параметрам в системе отсчета wgs 84 относятся:

    • геоцентрическая прямоугольная система координат с началом в точке геометрического центра масс Земли (показана на рис.1);
    • математическая основа, за которую принята форма эллипсоида вращения с конкретными геометрическими и физическими величинами;
    • гравитационная модель Земли, с определенными на конкретную дату величинами и их значениями.

    Ориентирование оси 0Z прямоугольной системы координат представлено в сторону условного направления на полюс, установленного в соответствии с данными международного бюро времени (BIH) на дату 1984 года. В пересечении плоскости нулевого меридиана (Гринвичского) с отклонением в 5,31 секунды к востоку и экваториальной плоскости ориентирована ось 0X. Правосторонне направленная и перпендикулярная к оси 0X в плоскости экватора, если можно так выразиться вторая плановая ось 0Y, завершает формирование геометрии отсчетной системы. Для исключения плавающего эффекта из-за движения земной коры, тектонических плит ориентация осей X, Y, Z остается неизменной.

    Рис.1. Геоцентрическая World Geodetic System 84.

    Физическая ориентация осей X, Y, Z в WGS84 определялась координатами на пяти контрольных станциях навигационной спутниковой системы GPS Transit в дату 1984 года (смотрите рис.2).


    Рис.2. Физическая ориентация на пунктах WGS84.

    В дальнейшем количество опорных точек увеличилось до семнадцати и переопределялось два раза уже с применением действующей навигационной спутниковой системой GPS Navstar. В 2002 году была принята последняя версия WGS84, в которой была достигнута высокая точность определения прямоугольных координат (X, Y, Z), геодезических координат (B, L) и геодезических высот над уровнем сфероида (H). Таким образом, эллипсоид был привязан физически к земной поверхности.

    Международная геодезическая система координат

    Одновременно с началом действия WGS84 в 1987 году были заложены основы новой мировой геодезической системы в рамках международной службы вращения Земли (IERS). Кроме других функциональных задач по оценке параметров Земли этой службой были применены международные земная система отсчета (ITRS) и отсчетная основа (ITRF). Если коротко, то отличия между ними заключаются в следующем. В системе отсчета (ITRS) определяются и устанавливаются параметры геодезической, математической, физической (гравиметрической) Земных моделей. В отсчетной основе (ITRF) происходит физическое построение и закрепление своего рода каркаса в виде опорных станций с фактическими их координатами, через которые реализуется практически глобальная геодезическая система.

    Более просто можно объяснить путем следующего примера. Стоит задача построить на плоскости бумажного листа, например, формата А-1 прямоугольную систему координат с началом в центре этого листа, а - оси 0X и 0Y должны быть параллельны краям формата.

    Такую задачу можно решить двумя способами. В первом из них центр получить при соединении между собой диагоналей. Вторым способом возможно нахождение всех четырех центров сторон прямоугольника, каковым является формат бумаги. Соединив между собой центры сторон, получают центр листа. В идеале две точки должны совпасть. Но вероятнее всего это не произойдет из-за погрешностей определения середины сторон. Далее графическая точность проведения диагоналей именно из углов также внесет свои неточности. Не идеален, возможно, и прямоугольный лист бумаги, его края могут быть не параллельны. При графическом построении непосредственно из точки центра осей координат возникают инструментальные погрешности линейки, карандаша, транспортира.

    Очевидно, могут получиться две немного отличающиеся друг от друга системы координат с разными центрами и небольшими разворотами осей. Так вот сам лист, систему координат, ее центр условно можно отнести к системе отсчета ITRS. А вот опорные метки, например, точки середины сторон формата закрепляют систему координат на бумаге и относятся по аналогии условно к отсчетной основе ITRF.

    В отношении фигуры Земли и определения, например, ее центра масс в качестве начала геоцентрической системы координат значительно сложнее. Физически его не начертишь карандашом. В качестве опорных меток для WGS84 на рис.2 выступают контрольные станции, заложенные вдоль линии экватора. Система координат в WGS84 и система отсчета в ITRS теоретически одинаковы. Однако, точность привязки к началу отсчета в центре масс нашей планеты выше ввиду того, что в отсчетной основе ITRF находятся сотни таких опорных меток

    К настоящему времени в ITRF, как физического воплощения мировой геодезической сети, наблюдается порядка 800 станций с GPS-примемниками Navstar. Периодически происходят обновления, уточнения, корректировка исходных координат как на станциях в WGS84, которые можно считать составной частью ITRF, так и во всей земной геодезической основе.

    Для формирования полной и довольно сложной физико-математической картины под именем Земля в качестве параметров перехода от геоида к трехосному эллипсоиду вращения в WGS84 принимаются основные и вспомогательные параметры, указанные в таблице ниже.

    Все размеры и параметры эллипсоида, вычисленного и принятого для использования в геодезической среде отдельной страны или глобальной сети, такой как WGS84, имеют свои значения, время (дату) вычисления и наименование «датум». Наиболее точными считаются параметры (датум) ITRF, которые ежесуточно контролируются спутниковыми методами измерений координат на опорных станциях и ежегодно публикуются с указанием даты.

    В глобальных системах отличных от WGS84, которые в последние годы стали применяться в ведущих странах мира, в том числе и в России (ПЗ90 , ПЗ90.02, ПЗ90.11) при необходимости решения определенных задач имеются возможности увязывать разные датумы, определять коэффициенты преобразования и производить собственно пересчеты координат в разные системы. В Российской Федерации такие пересчеты регламентируются государственным стандартом 51794-2001.

    Геодезические координаты, методы их преобразования. Системы ITRF, WGS-84, ПЗ-90, СК-42, СК-95. Преобразование координат по методу Гельмерта и Молоденского

    3.1. Системы отсчета координат и времени

    Единая государственная система геодезических координат 1995 года получена в результате совместного уравнивания трех самостоятельных, но связанных между собой, геодезических построений различных классов точности: КГС, ДГС, по их состоянию на период 1991 - 93 годов.

    Объем измерительной астрономо-геодезической информации, обработанной для введения системы координат 1995 года, превышает на порядок соответствующий объем информации, использованной для установления системы координат 1942 года (СК-42).

    Космическая геодезическая сеть предназначена для задания геоцентрической системы координат, доплеровская геодезическая сеть - для распространения геоцен­трической системы координат, астрономо-геодезическая сеть - для задания системы геодезических координат и до­ ведения системы координат до потребителей.

    В совместном уравнивании АГС представлена в виде пространственного построения. Высоты пунктов АГС от­ носительно референц- эллипсоида Красовского определены как сумма их нормальных высот и высот квазигеоида, полученных из астрономо- гравиметрического нивелирования.

    В процессе нескольких приближений совместного уравнивания высоты квазигеоида для территории отдаленных восточных регионов дополнительно уточнялись с учетом результатов уравнивания. С целью контроля геоцеитричности системы координат в совместное уравнивание включены неза­висимо определенные геоцентрические радиус-векторы 35 пунктов КГС и ДГС, удаленных один от другого на расстояния около 1000км, для которых высоты квазигеоида над общим земным эллипсоидом получены гравиметрическим методом; а нормальные высоты - из нивелирования.

    В результате совместного уравнивания КГС, ДГС, АГС и значений радиус-векторов пунктов построена сеть из 134 опорных пунктов ГГС, покрывающая всю территорию при сред­нем расстоянии между смежными пунктами 400...500 км.


    Точность определения взаимного положения этих пунктов по каждой из трех , пространственных координат характеризуется средними квадратическими ошибками 0,25...0,80 м при расстояниях от 500 до 9000 км.

    Абсолютные ошибки отнесения положений пунктов к центру масс Земли не превышают 1 м по каждой из трех осей пространственных координат.

    Эти пункты использовались в качестве исходных при заключительном общем уравнивании АГС.

    Точность определения взаимного планового положения пунктов, полученная в результате заключительного уравнивания АГС по состоянию на 1995 год, характе­ризуется средними квадратическими ошибками: 0,02...0,04 м для смежных пунктов, 0,25...0,80 м при расстояниях от 1 до 9 тыс. км.

    Между единой государственной системой геодезических координат 1995 года (СК-95) и единой государ­ственной геоцентрической системой координат “Параметры Земли 1990 года” (ПЗ-90) установлена связь, определяемая па­раметрами взаимного перехода (элементами ориентирования). Направления координатных осей Х,У,2 используемой гео­центрической системы координат определены координатами пунктов КГС; начало координат этой системы установлено под условием совмещения с центром масс Земли.

    За отсчетную поверхность в государственной геоцентрической системе координат (ПЗ-90) принят общий земной эллипсоид со следующими геометрическими параметрами:


    • большая полуось 6378 136 м;

    • сжатие 1:298,257839.
    Центр этого эллипсоида совмещен с началом геоцен­трической системы координат; плоскость начального (нулевого) меридиана совпадает с плоскостью Х Z этой системы.

    Геометрические параметры общего земного эллип­соида приняты равными соответствующим параметрам уровенного эллипсоида вращения. При этом за уровенный эл­липсоид вращения принята внешняя поверхность нормаль­ной Земли, масса и угловая скорость вращения которой за­даются равными массе и угловой скорости вращения Земли.

    Масса Земли М , включая массу ее атмосферы, умножен­ная на постоянную тяготения f , составляет геоцентрическую гравитационную постоянную f М = 39860044 х 10 7 м 3 /с 2 , угловая скорость вращения Земли w принята равной 7292115 х10 11 рад/с, гармонический коэффициент геопотенциала второй степени J 2 , определяющий сжатие общего земного эллипсоида, принят равным 108263х10 8 .

    Система координат 1995 года установлена так, что ее оси параллельны осям геоцентрической системы координат. Положение начала СК-95 задано таким образом, что значения координат пункта ГГС Пулково в системах СК-95 и СК-42 совпадают.

    Переход от геоцентрической системы координат к СК-95 выполняется по формулам:

    X СК-95 = X ПЗ-90 - ДX 0

    Y СК-95 = Y ПЗ-90 - ДY 0

    Z СК-95 = Z ПЗ-90 - ДZ 0
    где ДХ 0 , ДУ 0 , ДZ 0 - линейные элементы ориентирова­ния., задающие координаты начала системы координат 1995 года относительно геоцентрической системы координат ПЗ-90, составляют ДХо = +25,90 м; ДУ 0 = -130,94 м, ДЖо = -81,76 м.

    За отсчетную поверхность в СК-95 принят эллипсоид Красовского с параметрами:


    • большая полуось 6378 245 м;

    • сжатие 1: 298,3.
    Малая полуось эллипсоида совпадает с осью 7 , ос­тальные оси системы координат СК-95 лежат в его эквато­риальной плоскости , при этом плоскость начального (нуле­вого) меридиана совпадает с плоскостью ХЖ этой системы.

    Положение пунктов ГГС в принятых системах задается следующими координатами:


    • пространственными прямоугольными координата­ ми X, У, Z ;

    • геодезическими (эллипсоидальными) координата­ ми В, L, Н;

    • плоскими прямоугольными координатами х и у, вычисляемыми в проекции Гаусса-Крюгера.
    При решении специальных задач могут применяться и другие проекции эллипсоида на плоскость.

    Геодезические высоты пунктов ГГС определяют как сумму нормальной высоты и высоты квазигеоида над отсчетным эллипсоидом или непосредственно методами космической геодезии , или путем привязки к пунктам с известными геоцентрическими координатами.

    Нормальные высоты пунктов ГГС определяются в Балтийской системе высот 1977 года, исходным началом которой является нуль Кронштадтского футштока.

    Карты высот квазигеоида над общим земным эллипсоидом и референц - эллипсоидом Красовского на территории Рос­сийской Федерации издаются Федеральной службой геодезии и картографии России и Топографической службой ВС РФ.

    Масштаб ГТС задается Единым государственным эталоном времени-частоты-длины. Длина метра принимается в соответствии с резолюцией MAS Генеральной конференции по мерам к весам (октябрь 1983 г.) как расстояние, проходимое све­том в вакууме за 1:299 792 458-ую долю секунды.

    В работах по развитию ГГС используются шка­лы атомного ТА (813) и координированного UTC (SU) времени, задаваемые существующей эталонной базой Российской Федерации, а 1-акже параметры вращения Земли и поправки для пе­рехода к международным шкалам времени, периодически публикуемые Госстандартом России в специальных бюллетенях Государственной службы времени и частоты (ГСВЧ).

    Астрономические широты и долготы, астрономические и геодезические азимуты, определяемые по наблюдениям звезд, приводятся к системе фундаментального звездного каталога, к системе среднего полюса и к системе ас­трономических долгот, принятых на эпоху уравнивания ГГС.

    Метрологическое обеспечение геодезических работ осуществляется в соответствии с требованиями государственной системы обеспечения единства измерений.

    Постледниковая отдача, наблюдаемая преимущественно в северных широтах как последствие ледникового периода. Влияние может доходить до нескольких миллиметров в год по высоте;

    Полюсный прилив, являющийся реакцией эластичной коры Земли на смещения полюса вращения. При компонентах полярного движения порядка 10 м максимальное смещение будет 10-20 мм.

    Модели перечисленных поправок даются в . Другие поправки добавляются, если они больше 1 мм и их можно вычислить в соответствии с некоторой моделью.

    Скорости тектонических движений могут достигать 10 см/год. Если для некоторой станции скорость в ITRF еще не определена из наблюдений, то вектор скорости должен определяться как сумма скоростей:

    , (3.47)
    где - горизонтальная скорость плиты, вычисляемая по модели движения тектонических плит NNR NUVEL1A, а epncb . oma . be ]. Основная сеть из 93 фундаментальных пунктов была измерена через GPS в течение мая 1989 г. Позднее она была расширена до 150 постоянно действующих станций GPS наблюдений. Окончательно EUREF представляет собой единую систему на всю Европу, которая согласована с системами WGS-84 и ITRF. Полученная система координат известна как ETRF-89 (или ETRS89), для многих целей она может рассматриваться как реализация WGS-84 в Европе. Многие страны адаптируют пункты EUREF как сеть «нулевого» класса, от которой они расширяют национальные сети .

    В Южной Америке реализована подобная отсчетная основа SIRGAS (Sistema de Referência Geocêntrico para as Américas), в Австралии – GDA94 (Geocentric Datum of Australia), в США и Канаде – NAD83(CORS96) .


    3.3. Референцные системы координат
    Эти земные системы связаны с локальными референц-эллипсоидами. Центры референц-эллипсоидов как правило не совпадают с центром масс Земли из-за ошибок ориентирования. Поэтому эти системы иногда называют еще квазигеоцентрическими.

    Основной плоскостью в референцной системе является плоскость экватора референц-эллипсоида. Ось Z направлена по нормали к экватору , вдоль малой оси эллипсоида. Ось X направлена в плоскости начального меридиана геодезической системы, то есть проходит через точку B =0, L =0. Ось Y дополняет две предыдущие оси до правой (или левой) координатной системы. Возможно использование размеров и формы одного и того же эллипсоида в различных координатных системах, отличающихся своей ориентировкой (исходными геодезическими датами).

    В референцных системах обычно применяются геодезические (сфероидические) координаты (рис. 3.6): геодезическая широта B , геодезическая долгота L и высота над эллипсоидом H .

    Из-за наблюдательных ограничений, наложенных ранее условностями геодезии, исторически оказались выполненными два разных типа геодезических систем:

    Двухмерные континентальные плановые геодезические системы, закрепленные пунктами геодезических сетей с координатами , , например системы координат 1942 г. (СК-42), североамериканская система NAD-27,

    Полностью независимые континентальные высотные системы, являющиеся по существу физическими геодезическими основами, независимыми от эллипсоида, и строящиеся на основании уравнивания нивелирных наблюдений. К таким системам относится принятая в России Балтийская система высот 1942 г. и принятая в США Национальная геодезическая система высот 1929 г. (National Geodetic Vertical Datum, NGVD29). В этих системах высоты точек задаются относительно геоида (квазигеоида). Глобальные систем высот пока не определены и не приняты NAD-27

    В порядке обсуждения.

    Одна из составляющих ошибок спутниковых сетей - ошибка трансформации полевых данных из геоцентрической СК (WGS-84), в которой выполняются измерения, в референцную СК (СК-95, СК-42, СК-63, МСК…), где вычисляются окончательные координаты пунктов сети.
    Официальные параметры связи WGS-84 и СК-42, указанные в ГОСТ Р 51794-2008, относятся к району Пулково (началу СК-42). По мере удаления, в СК-42 идет накопление ошибок сдвига, которые в районах Сибири и Дальнего Востока могут достигать нескольких метров. То есть, локальные параметры в различных регионах, могут существенно отличаться от официально известных.
    Для определения (вычисления) локальных параметров связи нужны координаты 4-5 пунктов, известные в двух системах. И если одни координаты (СК-42, СК-63, МСК…) можно получить официальным путем, то точные координаты пунктов на основе WGS-84, как правило, не известны. Обычно их получают из спутниковых измерений, где сеть вычисляется от одного пункта, координаты которого в WGS-84 получены как навигационные (автономно, с использованием бортовых эфемерид спутников). Ошибка определения таких координат (сдвижка по X, Y) может быть 2-3 метра и более. Если те же самые пункты отнаблюдать в другое время, или в том же районе взять другую группу пунктов, то будут получены иные значения координат в WGS-84.
    Следовательно, таким путём получить точные координаты в WGS-84 и, соответственно, точные параметры связи не получится. И чем меньше расстояние между пунктами "калибровки" локализации, тем грубее определяются параметры связи между системами.
    Однако, в конечном счёте, нам важна не сама точность определения координат пунктов в WGS-84, а то, насколько ошибки определения параметров отразятся на точности преобразования векторов из WGS-84 в СК-42 (и другие СК, основанные на эллипсоиде Красовского)?
    Так ли это важно – всякий раз определять локальные параметры связи? Например, работая в Европейской части России, где удаление от Пулково не столь велико, где СК-42 ещё не подверглась большим искажениям и эти искажения соизмеримы с ошибками автономного определения координат в WGS-84? Ведь от автономных координат (с ошибкой в несколько метров) параметры точнее получить не удастся.
    Не лучше ли по ГОСТовским параметрам пересчитать координаты исходных пунктов в WGS-84, и использовать для первичной обработки спутниковых измерений?
    Или сразу, используя ГОСТовские параметры, настроить программу на работу в СК-42 (СК-63, МСК…)? Это уж кому как удобнее и кто в каком ПО работает.

    Когда-то, начиная свои спутниковые измерения, каждый раз выполнял локализацию. Со временем набралось несколько десятков пунктов, которые удалось объединить в единую сеть и получить уточненные параметры связи по большому числу пунктов и на большую площадь. Сравнивая приращения векторов, преобразованные из WGS в МСК по уточнённым и локальным параметрам, убедился в отсутствии существенной разницы. Из-за разворота может несколько различаться величина приращений, но длина проекции вектора на плоскость МСК практически не меняется. То же самое получалось при сравнении приращений векторов полученных по уточнённым и по ГОСТовским параметрам.
    И это в местах, где локальные ошибки СК-42 достигали 10 метров.
    Ошибка вычисления приращений векторов в разы меньше, чем ошибка взаимного положения пунктов ГГС.
    После уравнивания на пункты ГГС невязки приращений разбрасываются, и окончательные координаты определяемых пунктов в том и другом варианте отличаются в первых миллиметрах.

    Я вовсе не хочу сказать, что всегда и везде нужно применять именно ГОСТовские параметры связи между СК. Это, наверное, не приемлемо для длинных векторов или для обработки классных сетей. Но в топографических работах, когда исходных пунктов недостаточно для определения локальных параметров, вполне можно использовать ГОСТовские. Сеть с достаточным контролем может опираться всего на 2-3 исходных пункта.

    Все желающие могут выполнить эксперимент без выхода в поле. На своём отработанном проекте, где ранее были определены параметры связи между WGS-84 и СК-42 путём локализации, заменить локальные параметры на ГОСТовские и заново обработать измерения (перед обработкой не забыть отредактировать координаты исходных пунктов – могут измениться после замены параметров связи).
    Сравнить координаты определяемых пунктов из двух вариантов и огласить полученные расхождения "в студии". Было бы интересно.

    Последние материалы сайта