Инвазивный и неинвазивный методы регистрации кровяного давления. Инвазивное измерение артериального давления: показания и особенности проведения. Как все проходит

05.03.2020
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Методы измерения давления крови.

В любой точке сосудистой системы давление крови зависит от:

а) атмосферного давления ;

б) гидростатического давления pgh , обусловленного весом кровяного столба высотой h и плотностью р;

в) давления, обеспечиваемого насосной функцией сердца .

В соответствии с анатомо-физиологическим строением сердечно-сосудистой системы различают: внутрисердечное, артериальное, венозное и капиллярное кровяные давления.

Артериальное давление – систолическое (в период изгнания крови из правого желудочка) у взрослых людей в норме составляет 100 – 140 мм. рт. ст.; диастолическое (в конце диастолы) – 70 – 80 мм. рт. ст.

Показатели кровяного давления у детей с возрастом повышаются и зависят от многих эндогенных и экзогенных факторов (Таб. 3). У новорожденных систолическое давление 70 мм. рт. ст., затем повышается до 80 – 90 мм. рт. ст.

Таблица 3.

Артериальное давление у детей.

Разность давлений на внутреннюю (Р в ) и наружную (Р н ) стенки сосуда называют трансмуральным давлением (Р т ): Р т = Р в - Р н .

Можно считать, что давление на наружную стенку сосуда равно атмосферному. Трансмуральное давление является важнейшей характеристикой состояния системы кровообращения, определяя нагрузку сердца, состояние периферического сосудистого русла и ряд других физиологических показателей. Трансмуральное давление, однако, не обеспечивает движение крови от одной точки сосудистой системы к другой. Например, среднее по времени трансмуральное давление в крупной артерии руки составляет около 100 мм.рт.ст. (1,33 . 10 4 Па). В то же время, движение крови из восходящей дуги аорты в эту артерию обеспечивается разностью трансмуральных давлений между указанными сосудами, которое составляет 2-3 мм.рт.ст. (0,03 . 10 4 Па).

При сокращении сердца величина давления крови в аорте колеблется. Практически измеряют среднее за период давление крови. Ее величина может быть оценена по формуле:

Р ср » Р д + (Р с +Р д ). (28)

Закон Пуазейля объясняет падение давления крови вдоль сосуда. Так, как гидравлическое сопротивление крови растет с уменьшением радиуса сосуда, то, согласно формуле 12, давление крови падает. В крупных сосудах давление падает всего на 15%, а в мелких – на 85%. Поэтому большая часть энергии сердца затрачивается на течение крови по мелким сосудам.

В настоящее время известны три способа измерения артериального давления: инвазивный (прямой), аускультативный и осциллометрический .



Иглу или канюлю, соединенную трубкой с манометром, вводят непосредственно в артерию. Основная область применения – кардиохирургия. Прямая манометрия - практически единственный метод измерения давления в полостях сердца и центральных сосудах. Венозное давление надежно измеряется так же прямым методом. В клинико-физиологических экспериментах применяется суточное инвазивное мониторирование артериального давления. Игла, введенная в артерию, промывается гепаринизированным солевым раствором с помощью микроинфузатора, а сигнал датчика давления непрерывно записывается на магнитную ленту.

Рис.12. Распределение давления (превышение над атмосферным) в различных частях кровеносной системы: 1 – в аорте, 2 – в крупных артериях, 3 – в мелких артериях, 4 – в артериолах, 5 – в капиллярах.

Недостатком прямых измерений давления крови является необходимость введения измерительных устройств в полость сосуда. Без нарушения целостности сосудов и тканей осуществляется измерение давления крови с помощью инвазивных (непрямых) методов. Большинство непрямых методов являются компрессионными - они основаны на уравновешивании давления внутри сосуда внешним давлением на его стенку.

Простейшим из таких методов является пальпаторный способ определения систолического артериального давления, предложенный Рива-Роччи . При использовании данного метода на среднюю часть плеча накладывают компрессионную манжету. Давление воздуха в манжете измеряется с помощью манометра. При закачивании воздуха в манжету давление в ней быстро поднимается до значения, превышающего систолическое. Затем воздух из манжеты медленно выпускают, одновременно наблюдая за появлением пульса в лучевой артерии. Зафиксировав пальпаторно появление пульса, отмечают в этот момент давление в манжете, которое и соответствует систолическому давлению.

Из неинвазивных (непрямых) методов наибольшее распространение получили аускультативный и осциллометрический методы измерения давления.

Иглу или канюлю, соединенную трубкой с манометром, вводят непосредственно в артерию.

Аускультативный метод Н. С. Короткова.

Аукультативный метод имеет наибольшее распространение и основан на установлении систолического и диастолического давления по возникновению и исчезновению в артерии особых звуковых явлений, характеризующих турбулентность потока крови, - тонов Короткова.

Осциллометрический метод.

Метод основан на том, что при прохождении крови во время систолы через сдавленный участок артерии в манжете возникают микропульсации давления воздуха, анализируя которые можно получить значения систолического, диастолического и среднего давления.

Показатели нормального артериального давления:

Систолическое АД – 100-139 мм. рт. ст.

Диастолическое АД – 60- 89 мм. рт. ст.

Факторы, влияющие на величину АД:

Ударный объем крови

Минутный объем крови

Общее периферическое сопротивление

Объем циркулирующей крови

Венозное давление - давление крови в правом предсердии.

Факторы, влияющие на величину ВД:

Объем циркулирующей крови

Венозный возврат

Сократительная способность миокарда

Факторы, участвующие в формировании венозного возврата.

2 группы факторов:

1 группа представлена факторами, которые объединяет общий термин «vis a tegro», действующие сзади.

13% энергии, сообщенной потоку крови сердцем;

Сокращение скелетной мускулатурымышечное сердце», «мышечная венозная помпа»);

Переход жидкости из ткани в кровь в венозной части капилляров;

Наличие клапанов в крупных венах, препятствует обратному току крови;

Констрикторные (сократительные) реакции венозных сосудов на нервные и гуморальные воздействия.

2 группа представлена факторами, которые объединяет общий термин «vis a fronte», действующие спереди:

Присасывающая функция грудной клетки.
При вдохе отрицательное давление в плевральной полости увеличивается и это приводит снижению центрального венозного давления (ЦВД), к ускорению кровотока в венах

Присасывающая функция сердца.
Осуществляется за счет понижения давления в правом предсердии (ЦВД) до нуля в диастолу.

Кривая регистрации АД:

Волны первого порядка – это колебания артериального давления, обусловленные систолой и диастолой. Если запись проводится достаточно длительно, то на кимографе можно зарегистрировать волны 2-ого и 3-го порядка. Волны 2-го порядка – это колебания артериального давления, связанные с актом вдоха и выдоха. Вдох сопровождается понижением АД, а выдох – повышением. Волны 3-го порядка обусловлены изменением артериального давления на протяжении примерно 10-30 минут – это медленные колебания. Эти волны отражают колебание тонуса сосудов, которые возникают в результате изменения тонуса сосудодвигательного центра.

  1. Функциональная классификация отделов сосудистого русла. Факторы, обеспечивающие движение крови по сосудам высокого и низкого давления.

Функциональная классификация сосудов.

1. Упруго-растяжимые (аорта и легочная артерия), сосуды «котла» или «компрессионной камеры». Сосуды эластического типа, принимающие порцию крови за счет растяжения стенок. Обеспечивают непрерывный, пульсирующий ток крови, формируют в динамике систолическое и пульсовое давление в большом и малом кругах кровообращения, определяют характер пульсовой волны.

2. Транзиторные (крупные, средние артерии и крупные вены). Сосуды мышечно-эластического типа, почти не подвержены нервным и гуморальным влияниям, не влияют на характер кровотока.

3. Резистивные (мелкие артерии, артериолы и венулы). Сосуды мышечного типа, вносят основной вклад в формирование сопротивление току крови, существенно изменяют свой просвет под действием нервных и гуморальных влияний.
4. Обменные (капилляры). В этих сосудах происходит обмен между кровью и тканями.

5. Емкостные (мелкие и средние вены). Сосуды, в которых находится основной объем крови. Хорошо реагируют на нервные и гуморальные воздействия. Обеспечивают адекватный возврат крови к сердцу. Изменение давления в венах на несколько мм.рт.ст. увеличивает количество крови в емкостных сосудах в 2-3 раза.

6. Шунтирующие (артерио-венозные анастомозы). Обеспечивают переход крови из артериальной системы в венозную систему, минуя обменные сосуды.

7. Сосуды-сфинктеры (прекапиллярные и посткапиллярные). Определяют зональное включение и выключение обменных сосудов в кровоток.

Движение крови по артериям обусловлено следующими факторами:

1. Работой сердца, обеспечивающего восполнение энергозатрат системы кровообращения.

2. Упругостью стенок эластических сосудов. В период систолы энергия систолической порции крови переходит в энергию деформации сосудистой стенки. Во время диастолы стенка сокращается и ее потенциальная энергия переходит в кинетическую. Это способствует поддержанию снижающегося артериального давления и сглаживанию пульсаций артериального кровотока.

3. Разность давлений в начале и конце сосудистого русла. Она возникает в результате затраты энергии на преодоление сопротивления току крови.

Стенки вен более тонкие и растяжимые, чем у артерий. Энергия сердечных сокращений в основном уже затрачена на преодоление сопротивления артериального русла. Поэтому давление в венах невысокое и требуются дополнительные механизмы, способствующих венозному возврату к сердцу. Венозный кровоток обеспечивают следующие факторы:

1. Разность давлений в начале и конце венозного русла.

2. Сокращения скелетных мышц при движении, в результате которых кровь выталкивается из периферических вен к правому предсердию.

3. Присасывающее действие грудной клетки. На вдохе давление в ней становится отрицательным, что способствует венозному кровотоку.

4. Присасывающее действие правого предсердия в период его диастолы. Расширение его полости приводит к появлению отрицательного давления в нем.

5. Сокращения гладких мышц вен.

Движение крови по венам к сердцу связано и с тем, что в них имеются выпячивания стенок, которые выполняют роль клапанов.

  1. Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и различных веществ между кровью и тканями.

Микроциркуля́ция- транспорт биологических жидкостей на тканевом уровне. Совокупность всех сосудов, обеспечивающих микроциркуляцию, называется микроциркуляторное русло и включает в себя артериолы, прекапилляры, капилляры, посткапилляры, венулы, артериоло-венулярные анастомозы, лимфатические капилляры.

Кровоток в этом отделе кровообращения обеспечивает его ведущую функцию – обмен между кровью и тканями. Вот почему главное звено в этой системе - капилляры, называют обменными сосудами. Их функция тесно связана с сосудами, из которых они начинаются – артериолами и сосудами, в которые они переходят – венулами. Существуют прямые артериовенозные анастомозы, соединяющие их, минуя капилляры. Если к этой группе сосудов добавить еще и лимфокапилляры, то все это вместе составит то, что именуется системой микроциркуляции. Это самое главное звено системы кровообращения. Именно в нем происходят те нарушения, которые являются причиной основной массы заболеваний. Основу этой системы составляют капилляры. В норме, в покое открыто только 25-35% капилляров, если раскроются сразу многие из них, то происходит кровоизлияние в капилляры и организм может даже погибнуть от внутренней кровопотери, так как кровь скапливается в капиллярах и не поступает к сердцу.

Капилляры проходят в межклеточных промежутках и, поэтому обмен веществ идет между кровью и межклеточной жидкостью. Факторы, которые этому способствуют: разница гидростатического давления в начале и в конце капилляра (30-40 мм рт.ст. и 10 мм рт.ст.), скорость движения крови (0,05 м/с), давление фильтрации (разница между гидростатическим давлением в межклеточной жидкости – 15 мм рт.ст.) и давлением реабсорбции (разница между гидростатическим давлением в венозном конце капилляра и онкотическим давлением в межклеточной жидкости – 15 мм рт.ст.). Если эти соотношения изменяются, то жидкость идет преимущественно в том или ином направлении.

Фильтрационное давление рассчитывается по формуле ФД=ГД-ОД , а точнее ФД= (ГД кр - ГД тк)- (ОК кр - ОД тк).

Объемную скорость транскапиллярного обмена (мл/мин) можно представить как:

V=K фильт /(ГД кр -ГД тк)-К осм (ОД кр -ОД тк), где К фильт коэффици­ент капиллярной фильтрации, отражающий площадь обменной поверхности (количество функционирующих капилляров) и проницаемость капиллярной стенки для жидкости, К осм - осмотический коэффициент , отражающий реальную проницаемость мембраны для электролитов и белков.

Диффузия – это проникновение веществ через мембрану; движение растворенного вещества из зоны с большей концентрации в зону с меньшей концентрацией.

Осмос – это вид транспорта, при котором происходит движение растворителя из зоны с меньшей концентрацией в зону с большей концентрацией.

Фильтрация – вид транспорта, при которой перенос вещества происходит через фенестры («окошечки» в капиллярах, которые представляют собой пронизывающие цитоплазму отверстия, диаметром 40-60 нм, образованные тончайшей мембраной) или через щели между клетками.

Активный транспорт - с помощью мелких переносчиков, с затратой энергии. Таким образом, транспортируются отдельные аминокислоты, углеводы и др. вещества. Активный транспорт часто связан с транспортом Na+. Т. е. вещество образует комплекс с молекулой переносчиком Na+.

  1. Лимфатическая система. Функции лимфы. Лимфообразование, его механизм. Особенности регуляции лимфообразования и лимфооттока.

Лимфатическая система (лат. systema lymphaticum) - часть сосудистой системы у позвоночных животных, дополняющая сердечно-сосудистую систему. Она играет важную роль в обмене веществ и очищении клеток и тканей организма. В отличие от кровеносной системы, лимфатическая система млекопитающих незамкнутая и не имеет центрального насоса. Лимфа, циркулирующая в ней, движется медленно и под небольшим давлением.

Лимфа состоит из лимфоплазмы и форменных элементов (ионы K, Na, Ca, Cl и др), причем в периферической лимфе клеток очень мало, в центральной лимфе - существенно больше.

Лимфа выполняет или участвует в реализации следующих функций:

1) поддержание постоянства соста­ва и объема интерстициальной жидкости и микросреды клеток;
2) возврат белка из тканевой среды в кровь;
3) участие в перераспреде­лении жидкости в организме;
4) обеспечение гуморальной связи между тканями и органами, лимфоидной системой и кровью;
5) всасывание и транспорт продуктов гидролиза пищи, особенно, липидов из желудочно-кишечного тракта в кровь;
6) обеспечение механизмов иммунитета путем транспорта антигенов и антител, переноса из лимфоидных органов плазматических клеток, иммунных лимфоцитов и макрофагов.

Лимфообразование.

В результате фильтрации плазмы в кровеносных капиллярах жидкость выходит в межклеточное (интерстициальное) пространство, где вода и электролиты частично связываются с коллоидными и волокнистыми структурами, а частично образуют водную фазу. Так образуется тканевая жидкость, часть которой реабсорбируется обратно в кровь, а часть - поступает в лимфатические капилляры, образуя лимфу. Таким образом, лимфа является пространством внутренней среды организма, образуемым из межклеточной жидкости. Образование и отток лимфы из межклеточного пространства подчинены силам гидростатического и онкотического давления и происходят ритмически.

Лимфати́ческий у́зел (лимфоузел) - периферический орган лимфатической системы, выполняющий функцию биологического фильтра, через который протекает лимфа, поступающая от органов и частей тела. Лимфатические узлы выполняют функцию лимфоцитопоэза, барьерно-фильтрационную, иммунологическую функцию.

Факторы, обеспечивающие движение лимфы:

Инвазивный (прямой) метод измерения АД применяется только в стационарных условиях при хирургических вмешательствах, когда введение в артерию пациента зонда с датчиком давления необходимо для непрерывного контроля уровня давления.

Датчик вводят непосредственно в артерию. , Прямая манометрия - практически единственный метод измерения давления в полостях сердца и центральных сосудах. Преимуществом этого метода является то, что давление измеряется постоянно, отображаясь в виде кривой давление/время. Однако пациенты с инвазивным мониторингом АД требуют постоянного наблюдения из–за опасности развития тяжелого кровотечения в случае отсоединения зонда, образования гематомы или тромбоза в месте пункции, присоединения инфекционных осложнений.

Скорость кровотока

Скорость кровотока, наряду с давлением крови, является основной физической величиной, характеризующей состояние системы кровообращения.

Различают линейную и объемную скорость кровотока. Линейная скорость кровотока (V-лин) это расстояние, которое, проходит частица крови в единицу времени. Она зависит от суммарной площади перечного сечения всех сосудов, образующих участок сосудистого русла. Поэтому в кровеносной системе наиболее широким участком является аорта. Здесь наибольшая линейная скорость кровотока, составляющая 0,5-0,6 м/сек. В артериях среднего и мелкого калибра она снижается до 0,2-0,4 м/сек. Суммарный просвет капиллярного русла в 500-600 раз меньше чем аорты, поэтому скорость кровотока в капиллярах уменьшается до 0,5 мм/сек. Замедление тока крови в капиллярах имеет большое физиологическое значение, так как в них происходит транскапиллярный обмен. В крупных венах линейная скорость кровотока вновь возрастает до 0,1-0.2 м/сек. Линейная скорость кровотока в артериях измеряется ультразвуковым методом. Он основан на эффекте Доплера. На сосуд помешают датчик с источником и приемником ультразвука. В движущейся среде - крови частота ультразвуковых колебаний изменяется. Чем больше скорость течения крови по сосуду, тем ниже частота отраженных ультразвуковых волн. Скорость кровотока в капиллярах измеряется под микроскопом с делениями в окуляре, путем наблюдения за движением определенного эритроцита.

Объемная скорость кровотока (объём.) это количество крови проходящей через поперечное сечение сосуда за единицу времени. Она зависит от разности давлений в начале и конце сосуда и сопротивления току крови. В клинике объемный кровоток оценивают с помощью реовазографии. Этот метод основан на регистрации колебаний электрического сопротивления органов для тока высокой частоты, при изменении их кровенаполнения в систолу и диастолу. При увеличении кровенаполнения сопротивление понижается, а уменьшении возрастает. С целью диагностики сосудистых заболеваний производят реовазографию конечностей, печени, почек, грудной клетки. Иногда используют плетизмографию. Это регистрация колебаний объема органа, возникающих при изменении их кровенаполнения. Колебания объема регистрируют с помощью водных, воздушных и электрических плетизмографов.

При ведении тяжелых больных, а также пациентов с нестабильной гемодинамикой для оценки состояния сердечно-сосудистой системы и эффективности терапевтических воздействий возникает необходимость в постоянной регистрации гемодинамических параметров.

Прямое измерения артериального давления осуществляют через катетер или канюлю, введенную в просвет артерии. Прямой доступ используют как для непрерывной регистрации АД, так и для забора анализов газового состава и кислотно-основного состояния крови. Показаниями к катетеризации артерии служат нестабильное АД и инфузия вазоактивных препаратов.

Наиболее распространенными доступами для введения артериального катетера являются лучевая и бедренная артерии. Значительно реже используются плечевая, подмышечная артерии или артерии стопы. При выборе доступа учитывают следующие факторы:

Место катетеризации должно быть доступным и свободным от попадания на него секретов организма;

Конечность дистальнее места введения катетера должна иметь достаточный коллатеральный кровоток, поскольку всегда существует вероятность окклюзии артерии.

Чаще всего используют лучевую артерию, поскольку она имеет поверхностное расположение и легко пальпируется. Кроме того, ее канюляция связана с наименьшим ограничением подвижности пациента.

Перед канюляцией лучевой артерии проводят пробу Аллена. Для этого пережимают лучевую и локтевую артерии. Затем пациента просят несколько раз сжать и разжать кулак до побледнения кисти. Локтевую артерию освобождают и наблюдают за восстановлением цвета кисти. Если он восстанавливается в течение 5-7 с, кровоток по локтевой артерии считают адекватным. Время, составляющее от 7 до 15 с, свидетельствует о нарушении кровообращения по локтевой артерии. Если цвет конечности восстанавливается более через чем 15 с, от канюляции лучевой артерии отказываются.

Канюляцию артерии выполняют в стерильных условиях. Предварительно заполняют раствором систему для измерения АД и калибруют тензометрический датчик. Для заполнения и промывки системы пользуются физиологическим раствором, в который добавляют 5000 ЕД гепарина.

Мониторинг инвазивного АД обеспечивает непрерывное измерение этого параметра в режиме реального времени, но при интерпретации получаемой информации возможен целый ряд ограничений и погрешностей. Прежде всего форма кривой артериального давления, полученная в периферической артерии, не всегда точно отражает таковую в аорте и других магистральных сосудах. На форму кривой АД влияют инотропная функция левого желудочка, сопротивление в аорте и периферических сосудах и характеристики системы для мониторирования АД. Сама мониторная система может вызывать различные артефакты, в результате чего меняется форма кривой артериального давления. Правильная интерпретация информации, получаемой с помощью инвазивного мониторинга, требует определенного опыта. Здесь следует указать на необходимость распознавания недостоверных данных. Это имеет важное значение, поскольку неверный анализ и неверная интерпретация получаемых данных могут приводить к неправильным врачебным решениям.

Инвазивный (прямой) метод измерения артериального давления

Инвазивный (прямой) метод измерения АД применяется только в стационарных условиях при хирургических вмешательствах, когда введение в артерию пациента зонда с датчиком давления необходимо для непрерывного контроля уровня давления.

Датчик вводят непосредственно в артерию. , Прямая манометрия - практически единственный метод измерения давления в полостях сердца и центральных сосудах. Преимуществом этого метода является то, что давление измеряется постоянно, отображаясь в виде кривой давление/время. Однако пациенты с инвазивным мониторингом АД требуют постоянного наблюдения из–за опасности развития тяжелого кровотечения в случае отсоединения зонда, образования гематомы или тромбоза в месте пункции, присоединения инфекционных осложнений.

Скорость кровотока, наряду с давлением крови, является основной физической величиной, характеризующей состояние системы кровообращения.

Различают линейную и объемную скорость кровотока. Линейная скорость кровотока (V-лин) это расстояние, которое, проходит частица крови в единицу времени. Она зависит от суммарной площади перечного сечения всех сосудов, образующих участок сосудистого русла. Поэтому в кровеносной системе наиболее широким участком является аорта. Здесь наибольшая линейная скорость кровотока, составляющая 0,5-0,6 м/сек. В артериях среднего и мелкого калибра она снижается до 0,2-0,4 м/сек. Суммарный просвет капиллярного русла враз меньше чем аорты, поэтому скорость кровотока в капиллярах уменьшается до 0,5 мм/сек. Замедление тока крови в капиллярах имеет большое физиологическое значение, так как в них происходит транскапиллярный обмен. В крупных венах линейная скорость кровотока вновь возрастает до 0,1-0.2 м/сек. Линейная скорость кровотока в артериях измеряется ультразвуковым методом. Он основан на эффекте Доплера. На сосуд помешают датчик с источником и приемником ультразвука. В движущейся среде - крови частота ультразвуковых колебаний изменяется. Чем больше скорость течения крови по сосуду, тем ниже частота отраженных ультразвуковых волн. Скорость кровотока в капиллярах измеряется под микроскопом с делениями в окуляре, путем наблюдения за движением определенного эритроцита.

Объемная скорость кровотока (объём.) это количество крови проходящей через поперечное сечение сосуда за единицу времени. Она зависит от разности давлений в начале и конце сосуда и сопротивления току крови. В клинике объемный кровоток оценивают с помощью реовазографии. Этот метод основан на регистрации колебаний электрического сопротивления органов для тока высокой частоты, при изменении их кровенаполнения в систолу и диастолу. При увеличении кровенаполнения сопротивление понижается, а уменьшении возрастает. С целью диагностики сосудистых заболеваний производят реовазографию конечностей, печени, почек, грудной клетки. Иногда используют плетизмографию. Это регистрация колебаний объема органа, возникающих при изменении их кровенаполнения. Колебания объема регистрируют с помощью водных, воздушных и электрических плетизмографов.

Инвазивное (прямое) измерение АД

При ведении тяжелых больных, а также пациентов с неста­бильной гемодинамикой для оценки состояния сердечно-сосу- дистой системы и эффективности терапевтических воздействий возникает необходимость в постоянной регистрации гемоди- намических параметров.

Прямое измерения артериального давления осуществляют через катетер или канюлю, введенную в просвет артерии. Пря­мой доступ используют как для непрерывной регистрации АД, так и для забора анализов газового состава и кислотно-основно- го состояния крови. Показаниями к катетеризации артерии слу­жат нестабильное АД и инфузия вазоактивных препаратов.

Наиболее распространенными доступами для введения ар­териального катетера являются лучевая и бедренная артерии. Значительно реже используются плечевая, подмышечная арте­рии или артерии стопы. При выборе доступа учитывают сле­дующие факторы:

Соответствие диаметра артерии диаметру канюли;

Место катетеризации должно быть доступным и свобод­ным от попадания на него секретов организма;

Конечность дистальнее места введения катетера должна иметь достаточный коллатеральный кровоток, поскольку всег­да существует вероятность окклюзии артерии.

Чаще всего используют лучевую артерию, поскольку она имеет поверхностное расположение и легко пальпируется. Кро­ме того, ее канюляция связана с наименьшим ограничением подвижности пациента.

Во избежание осложнений предпочтительно пользоваться не артериальными катетерами, а артериальными канюлями.

Перед канюляцией лучевой артерии проводят пробу Алле­на (рис. 3.7). Для этого пережимают лучевую и локтевую арте­рии. Затем пациента просят несколько раз сжать и разжать ку­лак до побледнения кисти. Локтевую артерию освобождают и на­блюдают за восстановлением цвета кисти. Если он восстана­вливается в течение 5-7 с, кровоток по локтевой артерии счи­тают адекватным. Время, составляющее от 7 до 15 с, свидетель­ствует о нарушении кровообращения по локтевой артерии. Если цвет конечности восстанавливается более через чем 15 с, от ка- нюляции лучевой артерии отказываются.

Рисунок 3.7 Проба Аллена

Канюляцию артерии выполняют в стерильных условиях. Предварительно заполняют раствором систему для измерения АД и калибруют тензометрический датчик. Для заполнения и про­мывки системы пользуются физиологическим раствором, в ко­торый добавляют 5000 ЕД гепарина.

Мониторинг инвазивного АД обеспечивает непрерывное измерение этого параметра в режиме реального времени, но при интерпретации получаемой информации возможен целый ряд ограничений и погрешностей. Прежде всего форма кривой артериального давления, полученная в периферической артерии, не всегда точно отражает таковую в аорте и других магистраль­ных сосудах. На форму кривой АД влияют инотропная функция левого желудочка, сопротивление в аорте и периферических со­судах и характеристики системы для мониторирования АД. Са­ма мониторная система может вызывать различные артефакты, в результате чего меняется форма кривой артериального давле­ния. Правильная интерпретация информации, получаемой с помощью инвазивного мониторинга, требует определенного опыта. Здесь следует указать на необходимость распознавания не­достоверных данных. Это имеет важное значение, поскольку неверный анализ и неверная интерпретация получаемых данных могут приводить к неправильным врачебным решениям.

Оборудование для прямого измерения АД. Система для ин­вазивного мониторинга артериального давления обычно состо­ит из гидравлической системы, которую заполняют жидкостью, жидкостно-механического интерфейса, трансдюсера и элек­тронного оборудования, включающего в себя усилитель, мони­тор, осциллоскоп и записывающее устройство (рис. 3.8).

Гидравлическая часть мониторной системы состоит из ка­тетера (или канюли), соединительной трубки, краников, устрой­ства для промывки катетера и головки трансдюсера. Обычно применяются тефлоновые или полиуритановые внутриарте- риальные катетеры или канюли. Несмотря на то, что короткие широкопросветные катетеры обеспечивают максимально точное отображение физиологических характеристик, в настоящее вре­мя предпочитают использовать короткие катетеры небольшого Диаметра, поскольку это значительно снижает вероятность тром­боза сосуда. Коннектор, соединяющий катетер и трансдюсер, не

Рисунок 3.8 Оборудование для прямого измерения АД

должен быть длиннее 1 м. Краник присоединяют непосред­ственно к катетеру и используют для забора проб крови. Еще один краник устанавливают на головку трансдюсера для того, чтобы выставлять нулевой уровень давления. Система для про­мывки, в которой создается давление до 300 мм рг. ст., обеспе­чивает постоянную инфузию гепаринизированного физиоло­гического раствора со скоростью от 1 до 3 мл в час для обеспе­чения проходимости системы и снижения риска тромбоза.

Изменения внутрисосудистого давления передаются через заполненную жидкостью соединительную трубку на мембрану трансдюсера, где механические колебания преобразуются в элек­трический сигнал, который пропорционален колебаниям да­вления. Сигнал усиливается и фильтруется для удаления высо­кочастотных помех. Кривая давления отображается на дисплее монитора, на котором представлена графическая и цифровая ин­формация. Калиброванная бумага, которая используется в пи­шущем устройстве, позволяет проверять данные, отображаемые на экране прикроватного монитора. Точность измерение АД за­висит от свойств всей системы, и прежде всего от ее способно­сти к передаче физиологического сигнала. Поскольку гидра­влическая составляющая системы может быть источником оши­бок (ввиду инерции при колебаниях столба жидкости), она яв­ляется одним из слабых компонентов в мониторной системе.

Большое значение имеют частотные характеристики мони­торной системы, а именно ее электронной части, поскольку ча­стота работы нормальной сердечно-сосудистой системы ко­леблется от 60 до 180 циклов в минуту или составляет 1-3 Гц [Сагго1 С.С., 1998]. Следовательно, мониторная система для из­мерения артериального давления должна иметь флотирующую частоту, составляющую по меньшей мере от 5 до 20 Гц, что по­зволяет обеспечить точное отображение сигнала. Любая си­стема, заполненная жидкостью, имеет тенденцию к вибрации (или осцилляции) и, кроме того, каждая из них имеет так на­зываемую резонансную частоту. Физиологические частоты со­судистой системы могут достигать 10-15 Гц, следовательно, мониторная система должна иметь резонансную частоту, пре­вышающую 15 Гц, алучше 25 Гц [СагйпегК.М., 1981]. Ксожа- лению, резонансная частота трубок, заполненных жидкостью, колеблется от 5 до 20 Гц [Уететакга С. и соавт., 1989], следова­тельно, кривая частотного ответа не всегда может соответство­вать частотным характеристикам физиологического сигнала, исходящего из сосудистой системы. В этой связи возможно появление артефактов при усилении сигнала, соответствующе­го систолическому давлению. Колебания столба жидкости в си­стеме гасятся за счет сил трения, благодаря действию которых система приходит к нулевой отметке. Этот эффект также зави­сит от вязкости и компляйнса системы и называется демпин­гом. Характеристики демпинга описываются демпинговым коэффициентом.

При значении коэффициента, равном нулю, наблюдаются избыточные осцилляторные колебания, в то время как при ко­эффициенте, достигающем единицы, подавляются любые осцил­ляции, даже обусловленные резонансом [Сагго1 С.С., 1998; 8Ьа- Рш> С.С. и соавт., 1970]. Теоретически оптимальный демпинго­вый коэффициент находится в пределах от 0,6 до 0,7 [Сгауеп- йещ 1.8. и соавт., 1987].

Основными характеристиками мониторной системы явля­ются резонансная частота и демпинговый коэффициент. Обыч­ные мониторные системы, применяемые в клинической прак­тике, имеют резонансную частоту между 10 и 20 Гц, и для их нор­мальной работы требуется демпинговый коэффициент в преде­лах от 0,5 до 0,7. В системах, имеющих резонансную частоту, со­ставляющую 25 Гц, возможен демпинговый коэффициент, дости­гающий 0,2-0,3. Для увеличения частоты и оптимизации дем­пингового эффекта применяют короткие удлинительные труб­ки и небольшие тензометрические датчики, производят тща­тельное удаление пузырьков воздуха и использу­ют минимальное количество краников и мест для инъекций [БЫпогаИ Т. и соавт., 1980]. Для точного измерения давления необходима калибровка системы и прежде всего нулевой точки. Для этого краник на головке датчика давления открывают в ат­мосферу, а сам тензометрический датчик помещают на уровне правого предсердия (4-е межреберье, на уровне средней подмы­шечной линии), после чего на мониторе нажимают кнопку ка­либровки нуля. Необходимо помнить, что после калибровки изменение уровня положения тензометрического датчика влия­ет на получаемый показатель давления [Оагдпег К.М. и соавт., 1986]. Если датчик находится ниже указанного уровня, получа­емые значения давления будут завышенными и наоборот.

Тензометрический датчик необходимо периодически ка­либровать. Для этого к нему присоединяют систему, заполнен­ную водой, давление в которой известно. Если получаемые на мо­ниторе числа соответствуют данному давлению, значит, тензо­метрический датчик показывает верные результаты.

Кривая артериального давления. Нормальная кривая арте­риального давления характеризуется быстрым подъемом, вы­раженным дикротическим зубцом и четко выраженной конеч­но-диастолической частью (рис. 3.9). Первый острый зубец А отражает быстрое изгнание крови из левого желудочка в аорту.

Дикротический зубец В отражает обратный ток крови в аорте при закрытии аортального клапана. В этот момент давление крови в аорте превышает давление в левом желудочке.

Пик кривой соответствует систолическому давлению, кото­рое в норме колеблется от 90 до 140 мм рт. ст. Дикротический зубец отражает конец систолы и начало ди­астолы левого желудочка. Нижняя точка кривой С соответствует диасто­лическому давлению, которое в нор­ме составляет от 60 до 90 мм рт. ст. Среднее артериальное давление ис­пользуют для оценки перфузии жиз­ненно важных органов. В большин­стве прикроватных мониторов его ве­личина определяется автоматически. Нормальные значения среднего АД составляют от 70 до 105 мм рт. ст Сгла­живание или отсутствие характерных зубцов на кривой АД наблюдается при образовании тромба в просвете каню­ли, попадании воздуха в систему или при использовании удли­нительных систем избыточной длины. На форму артериальной кривой оказывает большое влияние место канюляции и канюли- руемая артерия. Считается, что канюляция лучевой, плечевой, бе­дренной артерии и а. скнзаНз ресНз адекватно отражает показатель центрального артериального давления, то есть давления в аорте. Однако эти предположения не всегда верны.

При использовании плечевой артерии получают сигнал, который достаточно точно отражает кривую давления в аорте, од­нако при канюляции лучевой артерии могут быть получены ре­зультаты, на 10-15 % превышающие получаемые в плечевой артерии [Вгуап-Вго\уп С.ХУ. и соавт., 1983]. И эти цифры могут быть выше, чем получаемые при катетеризации бедренной ар­терии. Данные, получаемые на а. йогзаИя ресНз, могут быть на 20 мм выше, чем при использовании лучевой артерии [Уоип^Ьег§ З.А. и соавт., 1976]. То, что данные, получаемые в периферических ар­териях, могут быть выше, чем в центральных, объясняется бо­

лее высоким сопротивлением в них, связанным с тем, что калибр их меньше, таким образом, чем меньше диаметр канюлируе- мой артерии, тем более высокие значения систолического и ди­астолического давления получаются [Вгипег.1.К.М. и соавт., 1981]. Величина среднего артериального давления подвержена меньшей зависимости от места канюляции, поскольку для его из­мерения производят интегрирование области, находящейся под кривой давления, в результате периферическое среднее арте­риальное давление соответствует полученному в центральных ар­териях и может служить в качестве достаточно информативно­го показателя при определении терапевтической тактики.

Одним из наиболее частых артефактов при записи кривой АД, который наблюдается в клинической практике, является систолический скачок. При измерении АД в периферической ар­терии нередко может наблюдаться систолический пик, на 10-15 мм рт. ст. превышающий значение систолического АД в центральном сосуде. Вместе с тем завышение АД на 20-40 мм рт. ст. очень часто наблюдается у больных в течение пер­вых 48 ч после операции на сердце и магистральных сосудах. Этот феномен подобен наблюдаемому у больных с генерализован­ным, или мультифокальным атеросклерозом [О’Коигке М.Е и со­авт., 1984]. Кроме того, систолический спайк может наблюдать­ся у больных с гипердинамическим состоянием кровообращения и при ЧСС, превышающей 120 ударов в минуту. Наблюдаемые изменения могут являться суммой высокочастотной компонен­ты сигнала АД, резонансной частоты мониторной системы и/или особенностями сосудистого дерева пациента.

При гиповолемии и вазоконстрикции, когда контрак- тильность миокарда не нарушена, на кривой АД может на­блюдаться значительное уширение инотропного пика и ча­сти, характеризующей изгнание крови из левого желудочка в аорту. Как правило, такие изменения наблюдаются при реги­страции АД в периферических сосудах. Иногда высокие зна­чения систолического пика на кривой, получаемой в пери­ферических сосудах, могут давать завышенные результаты, и в этих случаях может ошибочно ставиться диагноз артериаль­ной гипертензии. При одновременном измерении давления в аорте значения его могут быть значительно ниже. Неправиль­ная интерпретация результатов в этих случаях иногда приво­дит к неправильной терапевтической тактике. Повышение инотропного пика может также наблюдаться при использова­нии различных фармакологических воздействий. Вазопрес- соры могут приводить к увеличению систолического пика со значительным снижением части кривой, отражающей перера­спределение кровотока. В противоположность этому, вазоди- лататоры снижают систолический пик и увеличивают часть кривой, отражающей перераспределение кровотока [МсОге- §ог М., 1979]. Важно отметить, что подобные изменения, как правило, наблюдаются при регистрации давления в перифери­ческих артериях. На кривых, полученных из центральных ар­терий, они встречаются крайне редко.

Важно отметить, что наличие систолического пика и его увеличение не оказывают влияния на показатель среднего АД. Следовательно, в подобных ситуациях необходимо ори­ентироваться на среднее артериальное давление и меньше обращать внимание на цифры систолического АД [Уегеша- Ыя С. и соавт., 1989].

Есть сообщения об обратных взаимоотношениях между периферическим и центральным АД, которые наблюдаются непосредственно после операций, выполненных в условиях искусственного кровообращения [УошщЬегё 1.А. и соавт., 1976; 81егп Б.Н. и соавт., 1985; СаПа&Ьег-КО. и соавт., 1985]. В част­ности, наблюдали систолическое АД, которое было ниже цен­трального давления в аорте на 10-30 мм рт. ст. . Авторы объясняют данный феномен изменением со­противления периферических сосудов, и рекомендуют ориен­тироваться на показатель центрального давления, которое ре­гистрируют в аорте.

На величину и форму АД при прямом его измерении мо­гут также оказывать влияние изменения внутриплеврального да­вления. В норме АД немного снижается во время вдоха и уве­личивается в фазу выдоха, что обусловлено изменениями пред- нагрузки левого желудочка и изменениями синергизма рабо­ты левого и правого желудочков сердца [МсОге^ог М., 1979; Е1- Нз О.М., 1985]. Увеличение работы дыхания может влиять на данный механизм, и в этих случаях может наблюдаться пара­доксальный пульс, как, например, при тампонаде сердца или тяжелом приступе бронхиальной астмы [МсОге§ог М., 1979]. Вентиляция с положительным давлением может увеличивать пульсовое давление прежде всего у пациентов с нарушением функции левого желудочка в связи с уменьшением его предна- грузки ГМ$е К., 1985]. Вместе с тем у больных с гиповолеми- ей, которым начинают проводить искусственную вентиляцию легких с положительным давлением, нередко наблюдается па­дение систолического и диастолического АД. Следовательно, при проведении искусственной вентиляции легких очень важ­ное значение имеет оценка ее влияния на данные, получае­мые при мониторинге АД.

Осложнения катетеризации артерии. К непосредствен­ным осложнениям катетеризации артерии относят инфекцион­ные осложнения, кровотечение и нарушение кровообращения в конечности.

Инфекционные осложнения. Риск инфицирования снижа­ется при соблюдении стерильности при катетеризации и забо­ре проб крови, а также правил эксплуатации системы для из­мерения АД. Необходимо периодически осматривать место введения катетера на наличие признаков инфекции. При пере­вязках, замене промывочного раствора и удлинителей и забо­ре анализов пользуются стерильными перчатками. Пробы кро­ви берут через трехходовой краник, после чего его промывают и открытые порты закрывают стерильной заглушкой. Необхо­димо избегать попадания воздуха и крови в систему.

Кповопотепя. При рассоединении системы для прямого из­мерения АД возможна значительная кровопотеря. Во избежа­ние этого конечность, в которую веден катетер, необходимо им­мобилизировать. Части системы для измерения АД должны быть надежно соединены между собой, и доступ к ним должен быть свободным.

Нарушение кровообращения в конечности. Во избежание этого осложнения сразу после канюляции и не реже чем раз в 8 ч исследуют цвет, чувствительность и подвижность конечно­сти, в которую введен катетер. В случае появления симптомов нарушения кровообращения в конечности катетер или каню­лю немедленно удаляют.

Инвазивное измерение кровяного давления

СИСТЕМНОЕ АРТЕРИАЛЬНОЕ ДАВЛЕНИЕ

1. Что такое системное артериальное давление?

Системное артериальное давление (САД) отражает величину силы, воздействую­щей на стенки крупных артерий в результате сокращений сердца.

1. Систолическое артериальное давление давление, создаваемое сокращени­ем сердца (или систолой);

2. Среднее артериальное давление - среднее давление в сосуде во время сердеч­ного цикла, определяющее адекватность перфузии органов,

3. Диастолическое артериальное давление - наименьшее давление в артериях в период фазы наполнения сердца (диастола).

2. Почему так важно измерять САД?

При острых состояниях (травма, сепсис, анестезия) или хронических заболеваниях (почечная недостаточность) часто наблюдаются изменения САД. У животных, нахо­дящихся в критическом состоянии, САД поддерживается в нормальных пределах компенсаторными механизмами до момента возникновения тяжелых нарушений. Периодическое измерение САД в сочетании с другими рутинными исследованиями позволяет выявить пациентов с риском развития декомпенсации на той стадии, когда реанимация еще возможна. Кроме того, контроль САД показан в период анестезии и при назначении препаратов, влияющих на кровяное давление (допамин, вазодилататоры).

3. Каковы величины нормального САД?

мм рт. ст.

Среднее артериальное давление можно приблизительно вычислить по формуле:

Среднее АД = (Сист. АД - Диаст. АД)/3 + Диаст. АД.

4. Что такое гипотензия?

Среднее АД 200/110 мм рт. ст. (систолическое/диастолическое) или среднее АД > 130 мм рт. ст. (среднее: 133 мм рт. ст). У небольших животных встречается так называемая гипертензия болонок, поэтому показатели давления должны быть воспроизводимыми и в идеале сочетаться с кли­ническими симптомами. Гипертензия возникает в результате повышения сердечного выброса или увеличения системного сосудистого сопротивления и может развивать­ся как первичное нарушение или в связи с различными патологическими состояния­ми, в том числе заболеваниями сердца, гипертиреозом, почечной недостаточностью гиперадренокортицизмом, феохромоцитомой и болевым синдромом. Нелеченая ги­пертензия способна привести к отслойке сетчатки, энцефалопатии, острым сосудис­тым расстройствам и недостаточности функции различных органов.

6. Как измеряют САД?

САД измеряют прямым и непрямым методами. При прямом измерении САД в арте­рии размещают катетер (или иглу) и соединяют его с преобразователем давления. Этот способ является “золотым стандартом" при определении САД. Непрямое изме­рение САД осуществляют с помощью осциллометрии или ультразвуковой методики. Допплера над периферической артерией (глава 117).

7. Как выполняют прямое измерение САД?

САД можно измерять постоянно, если установить катетер в дорсальной предплюсне­вой артерии, что обычно довольно легко сделать у любого животного с пальпируе­мым пульсом и весом более 5 кг. Артериальный катетер вводят либо через кожу, либс через хирургический разрез. Для чрескожного введения катетера участок кожи над дорсальной предплюсневой артерией выстригают и обрабатывают антисептиком Артерия проходит в желобке между 2-й и 3-й предплюсневыми костями. Перед нача­лом манипуляции нащупывают артериальный пульс. Обычно используют катетер на игле длиной 4 см (размер 22 или 24 для небольших собак), который вводят под углом 30-45° прямо над местом пальпации пульса до получения тока артериальной крови через катетер. Затем катетер продвигают вперед, а стилет удаляют. Катетер закреп­ляют по стандартной методике фиксации внутривенных катетеров.

Артериальный катетер отличается от венозного не только тем, что при его поста­новке отмечается больший риск “пробуравливания”, но и трудностями при введении: жидкости в катетер и поддержании его проходимости. Артериальный катетер нужно промывать гепаринизированным раствором каждые 4 ч и время от времени прове­рять его расположение.

Для измерения САД после постановки артериального катетера применяют дат­чик давления и монитор. Многие коммерческие электрокардиографы приспособле­ны для измерения давления.

Перед началом измерений система устанавливается на “нуль”, чтобы не было давления на преобразователь (т. е. переходной кран к пациенту закрыт), а затем уста­навливается “нуль" преобразователя в соответствии с инструкцией к прибору. Обычно для этого достаточно удерживать в нажатом состоянии кнопку “нуль” до момента появления “нуля” на экране. Затем открывают кран к пациенту и регистрируют кри­вую давления.

Достоверная кривая давления характеризуется крутым подъемом с дикротической выемкой. Если кривая сглажена, катетер необходимо промыть. Если животное двигается во время измерения, нужно вновь установить “нуль” датчика давления. Первые несколько попыток постановки артериальных катетеров могут разочаровать врача, однако скоро станет очевидно, что их преимущества значительно перевешива­ют столь явные неудобства.

8. Каковы преимущества и недостатки прямого измерения САД?

Прямое измерение САД является “золотым стандартом”, с которым сравнивают не­прямые методы регистрации САД. Данной методике присуща не только точность из­мерений - она делает возможным непрерывный мониторинг давления. Постоянный доступ к артериальному руслу позволяет взять пробы крови для анализа газового состава в тех случаях, когда это требуется для контроля за состоянием пациента.

Однако у этого метода есть и недостатки. Во-первых, врач должен в совершен­стве владеть профессиональными навыками, необходимыми для введения и поддер­жания проходимости артериальных катетеров. Во-вторых, инвазивная природа по­становки артериального катетера предрасполагает к развитию инфекции или тромбозу сосуда. В-третьих, из места канюлирования при смещении или поврежде­нии катетера не исключено кровотечение.

ЦЕНТРАЛЬНОЕ ВЕНОЗНОЕ ДАВЛЕНИЕ

9. Что такое центральное венозное давление?

Центральное венозное давление (ЦВД) - это давление в краниальной полой вене или правом предсердии; которое отражает внутрисосудистый объем, функцию серд­ца и растяжимость венозных сосудов. Направленность изменений ЦВД достаточно точно характеризует эффективность кровообращения. ЦВД - не только мера цирку­лирующего объема крови, но и показатель способности сердца принимать и прокачи­вать этот объем.

10. Как измеряют ЦВД?

Точное измерение ЦВД осуществимо только прямыми методами. Внутривенный ка­тетер вводят в наружную яремную вену и продвигают так, чтобы конец катетера ока­зался в краниальной полой вене у правого предсердия. Трехходовой кран через удли­нительную трубку присоединяют к катетеру, системе для введения жидкости и манометру. Манометр вертикально крепят на стенке клетки животного таким обра­зом, чтобы “нуль” манометра располагался примерно на уровне конца катетера и пра­вого предсердия. При положении пациента на животе этот уровень находится при­близительно на 5-7,5 см выше грудины по четвертому межреберью. В положении животного на боку нулевая отметка параллельна грудине в области 4-го сегмента. ЦВД измеряют путем заполнения манометра изотоническим кристаллоидным ра­створом и последующего отключения резервуара с жидкостью с помощью запорного крана. Эта процедура позволяет уравнять давления столба жидкости в манометре и крови в катетере (полой вене). Отметка, на которой остановится столбик жидкости в манометре при уравнивании давлений, и является величиной давления в краниаль­ной полой вене.

11. Каковы нормальные значения ЦВД?

Собаки 0-10 см вод. ст.

Кошки 0-5 см вод. ст.

Единичные измерения ЦВД далеко не всегда отражают состояние гемодинамики. Повторные его измерения и анализ тенденций в сопоставлении с проводимым лече­нием более информативны для оценки объема крови, функции сердечно-сосудистой системы и сосудистого тонуса.

12. Кому показан мониторинг ЦВД?

Измерения ЦВД позволяют контролировать жидкостную терапию у животных с плохой перфузией, циркуляторной недостаточностью, заболеваниями легких с ле­гочной гипертензией, снижением общего сосудистого сопротивления, повышенной проницаемостью капилляров, сердечной недостаточностью или нарушенной функ­цией почек.

13. Каковы критические значения ЦВД?

Значение ЦВД (смвод. ст.) Интерпретация

15 Жидкостную терапию необходимо прекратить; ве­

роятно нарушение функции сердца. При высоких значениях ЦВД, наблюдающихся постоянно, в со­четании с вазоконстрикцией или гипотензией пред­полагают сердечную недостаточность.

Инвазивный метод измерения давления

Важным видом мониторинга здоровья человека является измерение артериального давления. Эта процедура осуществляется инвазивным методом в стационарных условиях под пристальным наблюдением квалифицированного медицинского персонала, при острой необходимости проведения именно такого вида диагностического исследования. Показатели артериального давления можно узнать и в домашних условиях, самостоятельно используя аускультативный (при помощи стетоскопа), пальпаторный (прощупывание пальцами) или осциллометрический (тонометром) методы.

Показания

Состояние артериального давления определяется 3-мя показателями, которые указаны в таблице:

Регулярно мониторить параметры АД и следить за его динамикой самостоятельно позволяет тонометр. Если нужно непрерывно наблюдать за показателями пациента, тогда используют инвазивный метод, который помогает:

  • беспрерывно контролировать состояние больного с неустойчивой гемодинамикой;
  • следить за изменениями работы сердца и сосудов в режиме нон-стоп;
  • постоянно анализировать результативность проводимой терапии.

Показания для инвазивного исследования артериального давления:

  • искусственная гипотония, преднамеренная гипотензия;
  • кардиохирургические операции;
  • инфузия вазоактивных средств;
  • реанимационный период;
  • болезни, при которых необходимо получать постоянные и точные параметры артериального давления для продуктивного регулирования гемодинамикой;
  • значительная вероятность сильных скачков систолических, диастолических и пульсовых показателей во время проведения хирургического вмешательства;
  • интенсивная искусcтвенная вентиляция легких;
  • потребность в частой диагностике кислотно-основного состояния и газового состава крови в артериях;
  • нестабильное артериальное давление;

Вернуться к оглавлению

Важность процедуры

Постоянный мониторинг артериального давления поможет своевременно обнаружить смертельно опасные патологии почек, сердца и сосудов. Особое значение инвазивное измерение имеет для гипертоников и гипотоников, которые находятся в повышенной группе риска. Вовремя диагностированное заболевание позволяет уменьшить потенциальные негативные последствия, а в критических ситуациях - спасти жизнь больного.

Очень высокие показатели артериального давления могут стать причиной:

  • сердечной и почечной недостаточности;
  • инфаркта миокарда;
  • инсульта;
  • ишемической болезни.

Слишком низкие систолические и диастолические параметры значительно увеличивают риск:

  • инсульта;
  • патологических изменений периферического кровообращения;
  • остановки сердца;
  • кардиогенного шока.

Инвазивный (прямой) метод измерения АД применяется только в стационарных условиях при хирургических вмешательствах, когда введение в артерию пациента зонда с датчиком давления необходимо для контроля уровня давления. Преимуществом этого метода является то, что давление измеряется постоянно, отображаясь в виде кривой давление/время. Однако пациенты с инвазивным мониторингом АД требуют постоянного наблюдения из–за опасности развития тяжелого кровотечения в случае отсоединения зонда, образования гематомы или тромбоза в месте пункции, присоединения инфекционных осложнений.

Не инвазивные. Пальпаторный метод предполагает постепенную компрессию или декомпрессию конечности в области артерии и пальпацию ее дистальнее места окклюзии. Давление в манжете поднимается до полного прекращения пульса, а затем постепенно снижается. Систолическое АД определяется при давлении в манжете, при котором появляется пульс, а диастолическое – по моментам, когда наполнение пульса заметно снижается либо возникает кажущееся ускорение пульса.

Аускультативный метод измерения АД был предложен в 1905 г. Н.С. Коротковым. Типичный прибор для определения давления по методу Короткова (сфигмоманометр или тонометр) состоит из окклюзионной пневмоманжеты, груши для нагнетания воздуха с регулируемым клапаном для стравливания и устройства, измеряющего давление в манжете. В качестве подобного устройства используются либо ртутные манометры, либо стрелочные манометры анероидного типа, либо электронные манометры. Аускультация производится стетоскопом либо мембранным фонендоскопом, с расположением чувствительной головки у нижнего края манжеты над проекцией плечевой артерии без значительного давления на кожу. Систолическое АД определяют при декомпрессии манжеты в момент появления первой фазы тонов Короткова, а диастолическое АД – по моменту их исчезновения (пятая фаза). Аускультативная методика в настоящее время признана ВОЗ, как референтный метод неинвазивного определения АД, несмотря на несколько заниженные значения для систолического АД и завышенные – для диастолического АД по сравнению с цифрами, получаемыми при инвазивном измерении. Важными преимуществами метода является более высокая устойчивость к нарушениям ритма сердца и движениям руки во время измерения. Однако у метода есть и ряд существенных недостатков, связанных с высокой чувствительностью к шумам в помещении, помехам, возникающим при трении манжеты об одежду, а также необходимости точного расположения микрофона над артерией. Точность регистрации АД существенно снижается при низкой интенсивности тонов, наличии «аускультативного провала» или «бесконечного тона». Сложности возникают при обучении больного выслушиванию тонов, снижении слуха у пациентов. Погрешность измерения АД этим методом складывается из погрешности самого метода, манометра и точности определения момента считывания показателей, составляя 7–14 мм рт.ст.


Осциллометрическая методика определения АД, предложенная E. Marey еще в 1876 г., основана на определении пульсовых изменений объема конечности. Долгое время она не получала широкого распространения из–за технической сложности. Лишь в 1976 г. корпорацией OMRON (Япония) был изобретен первый прикроватный измеритель АД, работавший по модифицированному осциллометрическому методу. По этой методике снижение давления в окклюзионной манжете осуществляется ступенчато (скорость и величина стравливания определяется алгоритмом прибора) и на каждой ступени анализируется амплитуда микропульсаций давления в манжете, возникающая при передаче на нее пульсации артерий. Наиболее резкое увеличение амплитуды пульсации соответствует систолическому АД, максимальные пульсации – среднему давлению, а резкое ослабление пульсаций – диастолическому. В настоящее время осциллометрическая методика используется примерно в 80% всех автоматических и полуавтоматических приборов, измеряющих АД. По сравнению с аускультативным осциллометрический метод более устойчив к шумовому воздействию и перемещению манжеты по руке, позволяет проводить измерение через тонкую одежду, а также при наличии выраженного «аускультативного провала» и слабых тонах Короткова. Положительным моментом является регистрация уровня АД в фазе компрессии, когда отсутствуют местные нарушения кровообращения, появляющиеся в период стравливания воздуха. Осциллометрический метод в меньшей степени, чем аускультативный, зависит от эластичности стенки сосудов, что снижает частоту выявления псевдорезистентной гипертонии у больных с выраженным атеросклеротическим поражением периферических артерий. Методика оказалась более надежной и при суточном мониторировании АД. Использование осциллометрического принципа позволяет оценить уровень давления не только на уровне плечевой и подколенной артерий, но и на других артериях конечностей.

Ортопроба, Принцип метода:

Пассивная ортостатическая (вертикальная) проба позволяет выявить нарушения вегетативной нервной регуляции работы сердца, а именно барорецепторного контроля артериального давления (АД), приводящие к головокружениям и обморочным состояниям и иным проявлениям вегетативной дисфункции.

Описание метода: При проведении пассивной ортостатической пробы сначала измеряют исходный уровень АД и частоту сердечных сокращений (ЧСС) в положении больного лежа на спине (около 10 минут), после чего ортостатический стол резко переводят в полувертикальное положение, проводя повторные измерения АД и ЧСС. Рассчитывается степень отклонения АД и ЧСС от исходных показателей в (%).

Нормальная реакция: увеличение ЧСС (до 30% от фона) при незначительном снижении систолического АД (не более 2-3% от исходного).

Снижение АД более 10-15% от исходного: Нарушение вегетативной регуляции по ваготоническому типу.

Используются, в основном, для выявления и уточнения патогенеза ортостатических расстройств кровообращения, к-рые могут возникать при вертикальном положении тела вследствие снижения венозного возврата крови к сердцу из-за частичной ее задержки (под действием силы тяжести) в венах нижних конечностей и брюшной полости, что ведет к снижению сердечного выброса и уменьшению кровоснабжения тканей и органов, включая головной мозг.

#44. Оценивать статус сосудов и сосудистую реактивность методом реовазографии. Холодовая и тепловая пробы.

Физический смысл методики реовазографии состоит в регистрации изменений электропроводности тканей, обусловленных пульсовыми колебаниями объема исследуемой области. Реовазограмма (РВГ) является результирующей кривой изменения кровенаполнения всех артерий и вен исследуемой области конечностей. По форме реограмма напоминает кривую объемного пульса и состоит из восходящей части (анакроты), вершины и нисходящей части (катакроты), на которой, как правило, имеется дикротический зубец.

Реовазография позволяет оценить тонус артериальных и венозных сосудов, величину пульсового кровенаполнения, эластичность сосудистой стенки. При визуальном анализе реографической волны обращают внимание на ее амплитуду, форму, характер вершины, выраженность дикротического зубца и его место на катакроте. Важное место занимает и анализ расчетных показателей реограммы. При этом определяется целый ряд величин:

Реовазографический индекс.

Амплитуда артериальной компоненты (оценка интенсивности кровоснабжения артериального русла).

Венозно-артериальный показатель (оценка величины сосудистого сопротивления, определяемого тонусом мелких сосудов).

Артериальный дикротический индекс (показатель преимущественно тонуса артериол).

Артериальный диастолический индекс (показатель тонуса венул и вен).

Коэффициент асимметрии кровенаполнения (показатель симметричности кровообращения в парных областях тела) и т.д.

#45 Уметь давать оценку состояния сосудов по результатам измерения скорости пульсовой волны. Объясните непрерывность движения крови по сосудам.

Последние материалы сайта