Понятие размерности физической величины. Различие понятий размера и размерности. Метрология

21.09.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Когда мы говорим о размерности величины, мы имеем в виду основные единицы или основные величины, с помощью которых можно построить данную величину.
 Размерность площади, например, всегда равна квадрату длины (сокращенно ; квадратные скобки здесь и далее обозначают размерность); единицами измерения площади могут быть квадратный метр, квадратный сантиметр, квадратный фут и т.п.
 Скорость же может измеряться в единицах км/ч, м/с и миль/ч, но размерность ее всегда равна размерности длины [L] , деленной на размерность времени [Т] , т. е. мы имеем . Формулы, описывающие величину, в разных случаях могут быть различны, но размерность сохраняется той же самой. Например, площадь треугольника с основанием b и высотой h равна S = (1/2)bh , а площадь круга радиусом r равна S = πr 2 . Эти формулы отличаются друг от друга, но размерности в обоих случаях совпадают и равны .
 При определении размерности величины обычно пользуются размерностями основных, а не производных величин. Например, сила, как мы увидим ниже, имеет размерность массы [М] , умноженной на ускорение т.е. ее размерность равна .
 Правило подбора размерностей может помочь при выводе различных соотношений; такая процедура называется анализом размерностей. Один из полезных методов − это применение анализа размерностей для проверки правильности того или иного соотношения. В этом случае используются два простых правила. Во-первых, складывать или вычитать можно величины только одинаковой размерности (нельзя складывать сантиметры и граммы); во-вторых, величины, стоящие в обеих частях любого равенства, должны иметь одинаковые размерности.
 Пусть, например, получено выражение v = v o + (1/2)at 2 , где v − скорость тела по прошествии времени t , v o − начальная скорость тела, а − испытываемое им ускорение. Для проверки правильности этой формулы произведем анализ размерностей. Запишем равенство для размерности, учитывая, что скорость имеет размерность , а ускорение - размерность :

В этой формуле с размерностью не все в порядке; в правой части равенства стоит сумма величин, размерности которых не совпадают. Отсюда можно сделать вывод о том, что при выводе исходного выражения была допущена ошибка.
 Совпадение размерности в обеих частях еще не доказывает правильности выражения в целом. Например, может быть неверным безразмерный числовой множитель вида 1/2 или . Поэтому проверка размерности может указать только на ошибочность выражения, но не может служить доказательством его правильности.
 Анализ размерностей можно также использовать как быструю проверку правильности соотношения, в котором вы не уверены. Предположим, вы не можете вспомнить выражение для периода Т (времени, необходимого для совершения полного колебания) простого математического маятника длиной l : то ли эта формула выглядит как

то ли

где g − ускорение свободного падения, размерность которого, как и у любого ускорения, равна .
 Нас будет только интересовать, входят ли в нее величины l и g в виде отношения l/g или g/l .) Анализ размерностей показывает, что верна первая формула:

в то время как вторая ошибочна, поскольку

 Обратите внимание на то, что постоянный множитель является безразмерным и не входит в окончательный результат.
 Наконец, важное применение анализа размерностей (которое, впрочем, требует большой осторожности) − это нахождение вида искомого соотношения. Такая необходимость может возникнуть, если требуется определить лишь то, как одна величина зависит от других.
 Рассмотрим конкретный пример получения формулы для периода Т колебаний математического маятника. Сначала определим, от каких величин может зависеть Т . Период может зависеть от длины нити l , масса на конце маятника m , угла отклонения маятника α и ускорение свободного падения g . Он может также зависеть от сопротивления воздуха (мы будем использовать здесь вязкость воздуха), силы гравитационного притяжения Луны и т.д. Однако повседневный опыт указывает на то, что сила притяжения к Земле значительно превышает все остальные силы, которыми поэтому мы пренебрежем. Предположим, что период Т является функцией величин l , m , α и g , причем каждая из этих величин возведена в некоторую степень:

здесь С − безразмерная постоянная; α , β , и δ − показатели степени, которые нужно определить.
Запишем формулу размерности для этого соотношения:

После некоторых упрощений мы получаем

 В силу того что семь основных величин системы СИ (Система Интернациональная) − международная система единиц, вариант метрической системы используемый с 1960 г., когда на XI Генеральной конференции по мерам и весам был принят стандарт, который впервые получил название «Международная система единиц (СИ)». СИ является наиболее широко используемой системой единиц в мире, как в повседневной жизни, так и в науке и технике
Основные единицы СИ, названия единиц СИ пишутся со строчной буквы, после обозначений единиц СИ точка не ставится.

Задача 3 . Определите энергию взаимодействия двух точечных масс m 1 и m 2 , находящихся на расстоянии r друг от друга.

Задача 4 . Определите силу взаимодействия двух точечных зарядов q 1 и q 2 , находящихся на расстоянии r друг от друга.

Задача 5 . Определите напряженность гравитационного поля бесконечного цилиндра радиусом r o и плотностью ρ на расстоянии R (R > r o ) от оси цилиндра.

Задача 6 . Оценить дальность полета и высоту тела, брошенного под углом α к горизонту. Сопротивлением воздуха пренебречь.

Вывод:
1. Метод размерностей может быть использован в случае, если искомая величина может быть представлена в виде степенной функции.
2. Метод размерностей позволяет качественно решить задачу и получить ответ с точностью до коэффициента.
3. В некоторых случаях метод размерностей является единственным способом решить задачу и хотя бы оценить ответ.
4. Анализ размерностей при решении задачи широко используется в научных исследованиях.
5. Решение задач методом размерностей является дополнительным или вспомогательным методом, позволяющим лучше понять взаимодействие величин, их влияние друг на друга.

Читайте еще статьи из

Законы физики, как уже отмечалось, устанавливают количественные соотношения между физическими величинами. Для установления таких соотношений необходимо иметь возможность измерять различные физические величины.

Измерить какую-либо физическую величину (найример, скорость) означает сравнить ее с величиной того же вида (во взятом примере - со скоростью), принятой за единицу.

Вообще говоря, для каждой физической величины можно было бы установить ее единицу произвольно, независимо от других. Однако оказывается, что можно ограничиться произвольным выбором единиц для нескольких (минимум трех) в принципе любых величин, принятых за основные. Единицы же всех прочих величин можно установить с помощью основных, воспользовавшись для этой цели физическими законами, связывающими соответствующую величину с основными величинами или с величинами, для которых единицы уже установлены подобным образом.

Поясним сказанное следующим примером. Предположим, что мы уже установили единицы для массы и ускорения. Соотношение (9.3) связывает закономерным образом эти величины с третьей физической величиной - силой. Выберем единицу силы так, чтобы коэффициент пропорциональности в этом уравнении был равен единице. Тогда формула (9.3) принимает более простой вид:

Из (10.1) следует, что установленная единица силы представляет собой такую силу, под действием которой тело с массой, равной единице, получает ускорение, равное также единице (подстановка в (10.1) F=1 и дает ).

При указанном способе выбора единиц физические соотношения принимают более простой вид. Сама же совокупность единиц образует определенную систему.

Существует несколько систем, отличающихся выбором основных единиц. Системы, в основу которых положены единицы длины, массы и времени, называются абсолютными.

В СССР введен с 1 января 1963 г. государственный стандарт ГОСТ 9867-61, устанавливающий применение Международной системы единиц, обозначаемой символом СИ. Эта система единиц должна применяться как предпочтительная во всей области науки, техники и народного хозяйства, а также при преподавании. Основными единицами СИ являются: единица длины - метр (сокращенное обозначение - м), единица массы - килограмм (кг) и единица времени - секунда (с). Таким образом, СИ принадлежит к числу абсолютных систем. Кроме указанных трех единиц, СИ принимает в качестве основных единицу силы тока - ампер (А), единицу термодинамической температуры - кельвин (К), единицу силы света - канделу (кд) и единицу количества вещества - моль (моль).

Об этих единицах будет речь в соответствующих разделах курса.

Метр определяется как длина, равная 1650763,73 длин волн в вакууме излучения, соответствующего переходу между уровнями атома криптона-86 (оранжевая линия криптона-86), Метр приближенно равен 1/40 000 000 доле длины земного меридиана. Применяются также кратные и дольные единицы: километр ), сантиметр ), миллиметр (1 мм ), микрометр (1 мкм ) и т. д.

Килограмм представляет собой массу платино-иридиевого тела, хранящегося в Международном бюро мер и весов в Севре (близ Парижа). Это тело называется международным прототипом килограмма. Масса прототипа близка к массе 1000 см3 чистой воды при 4 °С. Грамм равен 1/1000 килограмма.

Секунда определяется как промежуток времени, равный сумме 9 192 631 770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133. Секунда приблизительно равна 1/86 400 средних солнечных суток.

В физике применяется также абсолютная система единиц, называемая СГС-системой. Основными единицами в этой системе, являются сантиметр, грамм и секунда.

Единицы введенных нами в кинематике величин (скорости и ускорения) являются производными от основных единиц. Так, за единицу скорости принимается скорость равномерно движущегося тела, проходящего в единицу времени (секунду) путь, равный единице длины (метру или сантиметру). Обозначается эта единица м/с в СИ и см/с в СГС-системе. За единицу ускорения принимается ускорение равномерно-переменного движения, при котором скорость тела за единицу времени (секунду) изменяется на единицу (на м/с или см/с). Обозначается эта единица в СИ и в СГС-системе.

Единица силы в СИ называется ньютоном (Н). Согласно ньютон равен силе, под действием которой тело с массой 1 кг получает ускорение . Единица силы в СГС-системе называется диной (дин). Одна дина равна силе, под действием которой тело с массой 1 г получает ускорение 1 см/с2. Между ньютоном и диной имеется следующее соотношение:

В технике широко применялась система МКГСС (называемая обычно технической системой единиц). Основными единицами этой системы являются метр, единица силы - килограмм - сила (кгс) и секунда. Килограмм - сила определяется как сила, сообщающая массе в 1 кг ускорение, равное 9,80655 м/с2. Из этого определения следует, что 1 кгс=9,80655 Н (приближенно 9,81 Н).

За единицу массы в МКГСС согласно (10.1) должна быть принята масса такого тела, которое под действием силы в 1 кгс получает ускорение 1 м/с2. Эта единица обозначается кгс с2/м, специального названия она не имеет. Очевидно, что 1 кгс с2/м=9,80655 кг (приблизительно 9,81 кг).

Из способа построения систем единиц следует, что изменение основных единиц влечет за собой изменение производных единиц. Если, например, за единицу времени принять вместо секунды минуту, т. е. увеличить единицу времени в 60 раз, то единица скорости уменьшится в 60 раз, а единица ускорения уменьшится в 3600 раз.

Соотношение, показывающее, как изменяется единица какой-либо величины при изменении основных единиц, называется размерностью этой величины. Для обозначения размерности произвольной физической величины используется ее буквенное обозначение, взятое в квадратные скобки. Так, например, символ Ы означает размерность скорости. Для размерностей основных величин используются специальные обозначения для длины L, для массы М и для времени Т. Таким образом, обозначив длину буквой I, массу буквой и время буквой t, можно написать:

В указанных обозначениях размерность произвольной физической величины имеет вид и у могут быть как положительными, так и отрицательными, в частности, они могут равняться нулю). Эта запись означает, что при увеличении единицы длины в раз единица данной величины увеличивается в раз (соответственно число, которым выражается значение величины в этих единицах, уменьшается в раз); при увеличении единицы массы в раз единица данной величины увеличивается в раз и, наконец, при увеличении единицы времени в раз единица данной величины увеличивается в раз.

Написанное соотношение называется формулой размерности, а его правая часть - размерностью соответствующей величины (в данном случае скорости).

На основании соотношения можно установить размерность ускорения:

Размерность силы

Аналогично устанавливаются размерности всех прочих величин.

Под системой физических величин понимается совокупность физических величин вместе с совокупностью уравнений, связывающих эти величины между собой. В свою очередь, система единиц представляет собой набор основных и производных единиц вместе с их кратными и дольными единицами, определенными в соответствии с установленными правилами для данной системы физических величин .

Все величины, входящие в систему физических величин, делят на основные и производные. Под основными понимают величины, условно выбранные в качестве независимых так, что никакая основная величина не может быть выражена через другие основные. Все остальные величины системы определяются через основные величины и называются производными .

Каждой основной величине сопоставляется символ размерности в виде заглавной буквы латинского или греческого алфавита. В различных системах физических величин используются следующие обозначения размерностей :

Символы размерностей используют также для обозначения систем величин . Так, система величин, основными величинами которой являются длина, масса и время, обозначается как LMT . На её основе были образованы такие системы единиц, как СГС , МКС и МТС . На основе системы LFT , в которой основными величинами являются длина, сила и время, создана система единиц МКГСС .

Как следует из сказанного выше, размерность физической величины зависит от используемой системы величин. Так, например, размерность силы в системе LMT , как указано выше, выражается равенством dim F =LMT -2 , а в системе LFT выполняется dim F =F . Кроме того, безразмерная величина в одной системе величин может стать размерной в другой. Например, в системе LMT электрическая ёмкость имеет размерность L и отношение ёмкости сферического тела к его радиусу - безразмерная величина, тогда как в Международной системе величин (ISQ) это отношение не является безразмерным. Однако многие используемые на практике безразмерные числа (например, критерии подобия , постоянная тонкой структуры в квантовой физике или числа Маха , Рейнольдса , Струхаля и др. в механике сплошных сред) характеризуют относительное влияние тех или иных физических факторов и являются отношением величин с одинаковыми размерностями, поэтому, несмотря на то, что входящие в них величины в разных системах могут иметь разную размерность, сами они всегда будут безразмерными.

Проверка размерности

В формулах, имеющих физический смысл, только величины, имеющие одинаковую размерность, могут складываться, вычитаться или сравниваться. Например, сложение массы какого-либо предмета с длиной другого предмета не имеет смысла. Также невозможно сказать, что больше: 1 килограмм или 3 секунды . Из этого правила, в частности, следует, что левые и правые части уравнений должны иметь одинаковую размерность.

Кроме того, аргументы экспоненциальных, логарифмических и тригонометрических функций должны быть безразмерными величинами.

Эти правила используются для проверки правильности физических формул. Если в полученном уравнении какое-то из них нарушается, то ясно, что в вычислениях была допущена ошибка.

Анализ размерности

Анализ размерности - метод, используемый физиками для построения обоснованных гипотез о взаимосвязи различных размерных параметров сложной физической системы. Иногда анализ размерности можно использовать для получения готовых формул (с точностью до безразмерной константы). Суть метода заключается в том, что из параметров, характеризующих систему, составляется выражение, имеющее нужную размерность.

При анализе размерностей формул размерность левой части уравнения должна быть равна размерности правой части уравнения. Отсутствие такого равенства говорит о неверности формулы. Однако наличие такого равенства не даёт стопроцентной гарантии верности формулы.

Физические величины и их размерность

ФОРМИРОВАНИЕ У УЧАЩИХСЯ ПОНЯТИЙ О ФИЗИЧЕСКИХ ВЕЛИЧИНАХ И ЗАКОНАХ

Классификация физических величин

Единицы измерения физических величин. Системы единиц.

Проблемы формирования у учащихся физических понятий

Формирование у учащихся понятий о физических величинах методом фреймовых опор

Формирование у учащихся понятий о физических законах методом фреймовых опор

Физические величины и их размерность

Физической величиной называют свойство, общее в качественном отношении многим физическим объектам, но в количественном отношении индивидуальное для каждого объекта(Болсун, 1983)/

Совокупность ФВ связанных между собой зависимостями, называют системой физи­ческих величин. Система ФВ состоит из основных величин , которые условно приняты в каче­стве независимых, и из производных величин , которые выражаются через основные величины системы.

Производныефизическиевеличины - это физические величины, входящие в систему и определяемые через основные величины этой системы. Математическое соотношение (форму­ла), посредством которого интересующая нас производ­ная ФВ выражается в явном виде через другие величины системы и в котором проявляется непосредственная связь между ними, называется определяющим уравнением . Например, определяющим уравнением скорости служит соотношение

V = (1)

Опыт показывает, что система ФВ, охватывающая все разделы физики может быть построена на семи основных величинах: масса, время, длина, температура, сила света, количество вещества, сила электрического тока.

Учёные договорились обозначать основные ФВ символами: длину (расстояние) в любых уравнениях и любых системах символом L (с этой буквы начинается на английском и немецком языках слово длина), а время – символом T (с этой буквы начинается на английском языке слово время). То же самое относится и к размерностям массы (символ М), электрического тока (символ I), термодинамической температуры (символ Θ), количества вещества (символ

N), силы света (символ J). Эти символы называются размерностями длины и времени, массы и т.д., причем независимо от размера длины или времени. (Иногда эти символы называют логическими операторами, иногда – радика-лами, но чаще всего размерностями.) Таким образом, Размерность основной ФВ -это всего лишь символ ФВ в виде заглавной буквы латинского или греческого алфавита.
Так, например, размерность скорости – это символ скорости в виде двух букв LT −1 (согласно формуле (1)), где Т представляет собой размерность времени, а L - длины Эти символы обозначают ФВ времени и длины независимо от их конкретного размера (секунда, минута, час, метр, сантиметр и т. д.). Размерность силы - MLT −2 (согласно уравнению второго закона Ньютона F = ma) . У любой производной ФВ имеется размерность, так как имеется уравнение, определяющее эту величину. В физике имеется одна чрезвычайно полезная математическая процедура, называемая анализом размерностей или проверка формулы размерностью .

По поводу понятия “размерность“ до сих пор имеются два противоположных мнения Проф. Коган И. Ш., в статье Размерность физической величины (Коган,) приводит следующие аргументы по поводу этого спора.. Более ста лет продолжаются споры о физическом смысле размерностей. Два мнения – размерность относится к физической величине, и размерность относится к единице измерений – уже целый век делят учёных на два лагеря. Первую точку зрения отстаивал известный физик начала ХХ века А.Зоммерфельд. Вторую точку зрения отстаивал выдающийся физик М.Планк, который считал размерность физической величины некоторой условностью. Известный метролог Л.Сена (1988) придерживался той точки зрения, согласно которой понятие размерности относится вообще не к физической величине, а к ее единице измерений. Эта же точка зрения изложена и в популярном учебнике по физике И.Савельева (2005).

Однако это противостояние искусственно. Размерность физической величины и ее единица измерений – различные физические категории, и их не следует сравнивать. В этом кроется суть ответа, решающего эту проблему.

Можно сказать, что у физической величины размерность имеется постольку, поскольку имеется уравнение, определяющее эту величину. Пока нет уравнения, нет и размерности, хотя от этого физическая величина не перестает существовать объективно. В существовании же размерности у единицы измерений физической величины объективной необходимости нет.

Опять же, размерности физических величин для одних и тех же физических величин должны быть одинаковыми на любой планете в любой звездной системе. В то же время единицы измерений тех же величин могут оказаться там какими угодно и, конечно же, не похожими на наши земные.

Подобный взгляд на проблему говорит о том, что правы и А.Зоммерфельд, и М.Планк . Просто каждый из них имел в виду разное. А.Зоммерфельд имел в виду размерности физических величин, а М.Планк − единицы измерений . Противопоставляя их взгляды друг другу, метрологи безосновательно приравнивают размерности физических величин к их единицам измерений, тем самым искусственно противопоставляя точки зрения А.Зоммерфельда и М.Планка.

В настоящем пособии понятие «размерность», как и полагается, относится к ФВ и с единицами ФВ не идентифицируется.

размерность стандартизация сертификации

Размерность физической величины -- выражение, показывающее связь этой величины с основными величинами данной системы физических величин; записывается в виде произведения степеней сомножителей, соответствующих основным величинам, в котором численные коэффициенты опущены.

Говоря о размерности, следует различать понятия система физических величин и система единиц. Под системой физических величин понимается совокупность физических величин вместе с совокупностью уравнений, связывающих эти величины между собой. В свою очередь, система единиц представляет собой набор основных и производных единиц вместе с их кратными и дольными единицами, определенными в соответствии с установленными правилами для данной системы физических величин.

Все величины, входящие в систему физических величин, делят на основные и производные. Под основными понимают величины, условно выбранные в качестве независимых так, что никакая основная величина не может быть выражена через другие основные. Все остальные величины системы определяются через основные величины и называются производными.

Каждой основной величине сопоставляется символ размерности в виде заглавной буквы латинского или греческого алфавита, далее размерности производных величин обозначаются с использованием этих символов.

В Международной системе величин (англ. International System of Quantities, ISQ), на которой базируется Международная система единиц (СИ), в качестве основных величин выбраны длина, масса, время, электрический ток, термодинамическая температура, сила света и количество вещества. Символы их размерностей приведены в таблице.

Для указания размерностей производных величин используют символ dim.

Например, для скорости при равномерном движении выполняется

где -- длина пути, пройденного телом за время. Для того, чтобы определить размерность скорости, в данную формулу следует вместо длины пути и времени подставить их размерности:

Аналогично для размерности ускорения получается

Из уравнения второго закона Ньютона с учётом размерности ускорения для размерности силы следует:

В общем случае размерность физической величины представляет собой произведение размерностей основных величин, возведённых в различные (положительные или отрицательные, целые или дробные) степени. Показатели степеней в этом выражении называют показателями размерности физической величины. Если в размерности величины хотя бы один из показателей размерности не равен нулю, то такую величину называют размерной, если все показатели размерности равны нулю -- безразмерной.

Символы размерностей используют также для обозначения систем величин. Так, система величин, основными величинами которой являются длина, масса и время, обозначается как LMT. На её основе были образованы такие системы единиц, как СГС, МКС и МТС.

Как следует из сказанного выше, размерность физической величины зависит от используемой системы величин. Поэтому, в частности, безразмерная величина в одной системе величин может стать размерной в другой. Например, в системе LMT электрическая ёмкость имеет размерность L и отношение ёмкости сферического тела к его радиусу -- безразмерная величина, тогда как в Международной системе величин (ISQ) это отношение не является безразмерным. Однако многие используемые на практике безразмерные числа (например, критерии подобия, постоянная тонкой структуры в квантовой физике или числа Маха, Рейнольдса, Струхаля и др. в механике сплошных сред) характеризуют относительное влияние тех или иных физических факторов и являются отношением величин с одинаковыми размерностями, поэтому, несмотря на то, что входящие в них величины в разных системах могут иметь разную размерность, сами они всегда будут безразмерными.

Размер физической величины -- значения чисел, фигурирующих в значении физической величины, а размерность физической величины - это единица измерения, фигурирующая в значении физической величины. Как правило, у физической величины много различных размерностей: например, у длины -- метр, миля, дюйм, парсек, световой год и т. д. Часть таких единиц измерения (без учёта своих десятичных множителей) могут входить в различные системы физических единиц -- СИ, СГС и др. Например, автомобиль может быть охарактеризован с помощью такой физической величины, как масса. Размером данной физической величины будет 50, 100, 200 и т.д., а размерность выражена в единицах измерения массы - килограмм, центнер, тонна. Этот же автомобиль может быть охарактеризован с помощью другой физической величины -- скорости. При этом размером будет, например, число 100, а размерностью - единица измерения скорости: км/ч.

Последние материалы сайта