Антиоксидантный статус (Общий антиоксидантный статус) (Total Antioxidant Status, TAS). Анализы на общий антиоксидантный статус Материал и методы

06.11.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Общий раздел Состояние антиоксидантной системы у жителей Москвы с впервые выявленными тиреопатиями. Возможности использования нутрицевтиков для коррекции антиоксидантного и тиреоидного статусов

Традиционно в ходе планирования профилактических программ эндемический зоб рассматривается в качестве изолированного йоддефицитного микроэлементоза. Вместе с тем общеизвестно, что в генезе этого патологического состояния может иметь значение нарушение оптимального содержания и/или соотношение других макро- и микроэлементов (В.В.Ковальский, 1974, De Groot L.Y.et al.,1996, М.В.Велданова, 2000), важное место среди которых занимает селен. Роль селена в оптимизации тиреоидной функции определена относительно недавно. Установлено, что, с одной стороны, селен является необходимым компонентом монодейодиназы — фермента периферической конверсии тироксина в трийодтеронин (G.Canettieri et al.,1999), с другой стороны, — структурным компонентом глутатионпериоксидазы — ключевого фермента естественной системы антиоксидантной защиты (J. Kvicala et al., 1995, Р.Беркоу, Э.Флетчер, 1997, Л.В.Аникина).

В литературе многократно обсуждалось патогенетическое значение перекисного окисления липидов в возникновении и эволюции зобной трансформации в йоддефицитных регионах (Н.Ю.Филина, 2003). Особую актуальность приобретает этот вопрос в связи с планированием и реализацией программ массовой йодной профилактики.
Очевидно, что поступление йода в дозах, превышающих традиционные для пищевых цепей данной местности, вызывает активизацию тиреоидного синтеза, что и является целью профилактических мероприятий. Однако параллельно активизируется образование свободных радикалов в связи со стимуляцией окислительно-восстановительных процессов, непосредственно регулируемых гормонами щитовидной железы. При слабости ферментных антиоксидантных систем на фоне дефицита селена, цинка, меди и ряда других элементов, это неминуемо приводит к развитию окислительного стресса.
Целью настоящего исследования явилось изучение особенностей антиоксидантного статуса у москвичей с впервые выявленными тиреопатиями, а также установление возможностей его коррекции с использованием нутрициологических препаратов.
Материалы и методы. Определение антиоксидантного статуса проводилось 38 пациентам, впервые обратившимся к эндокринологу по поводу зобной трансформации и не получавшим в течение последних 6 месяцев лечебные и профилактические препараты, стимулирующие естественную систему антиоксидантной защиты. Среди испытуемых было 35 женщин (средний возраст 46 лет) и 3 мужчин (средний возраст 43 года). Комплексное биохимические исследование с использованием диагностических реагентов фирмы Ranbox (Великобритания) включало в себя определение в сыворотке крови общего антиоксидантного статуса (TAS), уровней глутатионпероксидазы (ГПО), супероксиддисмутазы (СОД), перекисного окисления липидов (ПОЛ). Тиреоидный статус испытуемых оценивался по результатам клинического осмотра, ультрозвукового исследования щитовидной железы, а также по содержанию в сыворотки крови антител к тиреоглобулину и тиреоидной пероксидазе, свободного тироксина, свободного трийодтиронина и тиреотропного гормона. Определение антител и гормонов системы «гипофиз — щитовидная железа» проводилось методом иммуноферментного анализа с использованием стандартных наборов реактивов »Immunotech RIO kit» (Чехия).
Результаты и их обсуждение. В ходе изучения тиреоидного статуса в группе испытуемых были диагностированы следующие формы тиреопатий: диффузное увеличение щитовидной железы — 5 пациентов, узловой зоб — 12 пациентов, смешанный зоб — 8 пациентов, аутоиммунный тиреоидит — 12 пациентов, идиопатический гипотиреоз — 1 пациент.
Те или иные изменения показателей антиоксидантного статуса были выявлены у 36 испытуемых, что составило 94,7%. Среди них — снижение TAS наблюдалось у 76, 8 % пациентов; снижение уровня СОД — у 93,8%; показатели ГПО, максимально приближенные к нижнему значению диапазона нормальных колебаний — у 50,0%; снижение уровня ГПО — у 12,5%; повышение ПОЛ — у 15,6%.
Наиболее значимые нарушения в системе естественной антиоксидантной защиты были выявлены у пациентов с выраженными формами зобной трансформации (смешанный зоб, аутоимунный тиреоидит), однако, учитывая недостаточную репрезентативность выборки, этот результат нельзя считать статистически достоверным.
Исходя из полученных данных, в традиционные схемы лечения пациентов исследуемой нами группой были добавлены препараты корпорации «VITALINE» (США), обладающие антиоксидантной активностью. Все испытуемые со снижением TAS и/или повышением ПОЛ получали препарат «Пикногенол», представляющий собой смесь биофлавоноидов. При выявлении сниженных показателей ГПО и СОД в сыворотке крови назначались соответственно препараты «Селен» и «Цинк» в физиологических для данных элементов дозах.
Контрольные исследования антиоксидантного статуса были выполнены испытуемым спустя 6 месяцев после начала терапии. В результате нормализация показателей TAS была получена — у 85,6 % пациентов, нормализация ПОЛ — у 97,4 %. У 50,4 % испытуемых уровень супероксиддисмутазы в сыворотке крови достоверно увеличился по сравнению с исходным, у 30,2 % — пришел к норме. Уровень глутатионпероксидазы нормализовался по сравнению с исходным у 100% пациентов.
Примечательно, что на фоне проводимой терапии у всех испытуемых, страдающих аутоиммунным тиреоидитом, было получено достоверное снижение уровня антител к тиреоидной пероксидазе в сыворотке крови, причем у 93,4 % пациентов этот показатель уменьшились в 2-3 раза по сравнению с исходным.
Таким образом, проведённые нами исследования выявили изменения антиоксидантного статуса у абсолютного большинства москвичей, страдающих патологией житовидной железы. подобная ситуация может быть следствием выраженного техногенного прессинга, истощающего резервы естественной системы антиоксидантной защиты. отчетливая тенденция к снижению показателей ГПУ в сыворотке крови испытуемых служит косвенным подтверждением дефицита селена в пищевых цепях москвичей, вызванного как природным, так и антропогенными факторами.
Очевидно, что в подобной ситуации обогащение рациона йодом без одновременного повышения функциональных резервов антиоксидантной системы населения может привести к развитию окислительного стресса и, как следствие, к росту встречаемости к наиболее тяжелых форм зобной трансформации. Особое опасение вызывают перспективы использования для йодирования поваренной соли йодатов — солей йодноватой кислоты, исходно являющихся сильными окислителями. Риск развития йодиндуцированного патоморфоза зобной болезни возрастает в условиях техногенного стресса, также сопровождающегося свободнорадикальной агрессией. Обоснованность высказанного прогноза подтверждается отдаленными результатами изолированнгй йодной профилактики во многих очагах эндемическогго зоба (P.A.Rolon, 1986; E.Roti,L.E.Braverman,2000,О.В.Терпугова, 2002).
Выполненные нами исследования позволяют рекомендовать исползование антиоксидантных препаратов, в том числе физиологических доз селена и цинка, являющихся коферментами естественной системы антиоксидантной защиты, для оптимизации программ профилактики йоддефицитных заболеваний, особенно в экологически неблагополучных регионах.
Биография:
Аникина Л.В. Роль селена в патогенезе и коррекции эндемического зоба: Автореф. дис. … д-ра мед. наук. — Чита, 1998. — 37 с.
Беркоу Р.,Флетчер Э. Руководство по медицине. Диагностика и терапия. Т.1: Пер. с англ. — М.: Мир, 1997. — 667 с.
Велданова М.В. Роль некоторых струмогенных факторов

Позвоните в клинику, и мы расскажем, как правильно подготовиться к сдаче необходимых вам анализов. Строгое соблюдение правил гарантирует точность исследований.

Накануне сдачи анализов необходимо воздержаться от физических нагрузок, приема алкоголя и существенных изменений в питании и режиме дня. Большинство исследований сдаются строго натощак, то есть должно пройти не менее 12 и не более 16 часов после последнего приема пищи.

За два часа до сдачи следует воздержаться от курения и кофе. Все анализы крови сдаются до проведения рентгенографии УЗИ и физиотерапевтических процедур. По возможности воздержитесь от приема лекарств, а если это невозможно, предупредите доктора, назначающего вам анализы.

Исследования крови

Общий анализ крови

Кровьсдается из пальца или из вены. Подготовка: кровь сдается натощак. Перед сдачей анализа избегайте физический нагрузок, стрессов. Время и место забора материала: в течение дня, в клинике.

Биохимический анализ крови

Кровь сдается из вены. Определение биохимических показателей позволяет оценить все обменные процессы, протекающие в организме, а также функцию органов и систем. Подготовка: кровь сдается натощак. Время и место забора материала: до 14 часов, в клинике (электролиты - в будние дни до 09.00).

Глюкозотолерантный тест

Соблюдение правил подготовки к сдаче анализа позволит получить достоверные результаты и правильно оценить работу поджелудочной железы, а следовательно, назначить адекватное лечение. Подготовка: необходимо соблюдать правила подготовки и рекомендации по питанию, данные вашим лечащим врачом. Количество углеводов в пище должно быть не менее 125 г. в день в течение 3-х дней перед проведением теста. Физические нагрузки не допускаются в течение 12 часов перед началом теста и во время его проведения. Время и место забора материала: ежедневно до 12.00, в клинике.

Гормональные исследования

Гормоны - вещества, концентрация которых в крови изменяется циклически и имеет суточные колебания, поэтому анализ должен забираться в строгом соответствии с физиологическими циклами или по рекомендации вашего лечащего врача. Подготовка: кровь сдается натощак. Время и место забора материала: ежедневно до 11.00, в клинике.

Исследование системы гемостаза

Кровь сдается из вены. Подготовка: кровь сдается натощак. Время и место забора материала: в будние дни до 09.00, в клинике.

Определение группы крови

Определение антител к возбудителям

Кровь сдается из вены. Подготовка: кровь сдается натощак. Время и место забора материала: до 14 часов, в клинике.

Гепатиты (В, С)

Кровь сдается из вены. Подготовка: кровь сдается натощак. Время и место забора материала: до 14 часов, в клинике.

RW (сифилис)

Кровь сдается из вены. Подготовка: кровь сдается натощак. Время и место забора материала: до 14 часов, в клинике.

Экспресс-анализ на ВИЧ

Кровь сдается из вены. Подготовка: кровь сдается натощак. Время и место забора материала: в течение дня, в клинике.

Антиоксидантный статус – это показатель общего здоровья, который отражает количественное значение реактивных форм кислорода. Это такие химические формы кислорода, которые не участвуют в клеточном дыхании, но нужны для различных реакций – передачи сигналов от молекул, регуляции работы гормонов, для транспорта. Они принимают участие в жизни практически всех клеток человеческого организма и отвечают за множество важнейших физиологических процессов.

Антиоксиданты – это вещества, которые позволяют сбалансировать воздействие свободных радикалов. Последние постоянно образуются в организме и в норме мало влияют на работу клеток – как раз благодаря актиоксидантам.

При определении статуса измеряют четыре основных показателя: общий статус (ТАS), а также кислородные эритроцитарные показатели – фермент супероксидисмутаза (СОД), фермент глутатинредуктаза (ГПР) и фермент глутатионпероксидаза (ГП). За аббревиатурами скрываются названия ферментов - веществ, которые активнее всего реагируют на различные изменения в организме, а, значит, позволяют выявить патологию.

Это новый метод исследования, который позволяет оценить общее состояние организма. Он не применяется для дифференциальной диагностики, но дает хорошие результаты, как вспомогательный метод, при постановке самых различных диагнозов, а также при подборе лечения.

Что дает анализ?

Серьезное повышение показателей может наблюдаться при хронических заболеваниях и отравлениях токсинами или при наличии вредных привычек. Также повышение может указывать на наличие облучения, ИБС или прием некоторых лекарств. Снижение характерно для заболеваний сердца, костной системы и нервов. Снижение показателей наблюдается гораздо чаще, чем повышение.

Если нет правильной коррекции, и у пациента долгое время наблюдается сниженный уровень актиоксидантов, то наступает так называемый окислительный стресс – это увеличение количества свободных радикалов. В норме актиоксиданты их разрушают, тем самым защищая важнейшие молекулярные структуры от повреждения. Во время окислительного стресса разрушению подвергаются белки, липиды и молекулы ДНК.

Длительное воздействие свободных радикалов не проходит бесследно: разрушаются клеточные мембраны, запускаются процессы мутагенеза, повреждаются клеточные рецепторы, меняется активность ферментов, повреждаются энергетические станции клетки – митохондрии.

Повреждения на клеточном уровне могут спровоцировать развитие множества серьезных заболеваний: от сердечно-сосудистых до онкологических. Если есть предрасположенность, то начинается болезнь.

Анализ на антиоксиданты позволяет распознать снижение защитной активности антиоксидантной системы. Если заболеваний еще нет – можно вовремя начать лечение и предотвратить потерю здоровья. А при диагностике имеющихся болезней, результаты анализа подскажут, насколько высока вероятность болезни.

Общий антиоксидантный статус (TAS) - 2 300 руб.

Сроки выполнения

3 рабочих дня.

Взятие крови из вены оплачивается отдельно - 300 руб. (При единовременном выполнении нескольких анализов, услуга по сбору биоматериала оплачивается однократно)

Показания к исследованию

  • Для оценки рисков развития болезней, связанных со снижением антиоксидантной защиты.
  • Для диагностики различных наследственных обменных заболеваний.
  • Для оценки уровня актиоксидантов и диагностики дефицита их в рационе.

Материал для анализа

Эритроциты (цельная кровь, гепарин);

Подготовка к исследованию

Подготовка заключается в отказе от алкоголя и ночном голодании. Кровь принято брать с утра. Голодание должно продолжаться минимум 8 часов. Если пациент принимает какие-либо лекарства или БАДы, об этом нужно предупредить лечащего врача еще до назначения анализа.

Референсные значения:

ТАS ммоль/л, норма 1,50 - 2,75

ГП Ед/г Нb, норма 50 - 100

ГПР Ед/г Hb, норма 2,5 - 6,0

СОД Ед/г Hb, норма 1200 - 2000

Кроме того, изменение показателей наблюдается при выраженном дефиците основных витаминов, микро- и макроэлементов в ежедневном рационе. В таком случае требуется только диетологическая коррекция.

Антиоксидантные показатели не используются в контексте постановки конкретного диагноза, но имеют значение вместе с клинической картиной и результатами других инструментальных исследований и лабораторных тестов. Результаты анализа не стоит интерпретировать самостоятельно.

Для проведения анализа и подбора оптимального лечения обращайтесь в клинику ЦЭЛТ. Компетентные специалисты, высокотехнологичное оборудование и дружелюбная атмосфера – вот залог быстрого выздоровления.

Резюме Оценено состояние процессов перекисного окисления липидов (ПОЛ) (содержание в плазме крови диеновых конъюгатов, ТБК-активных продуктов) и антиоксидантной защиты (общая АОА, концентрация α-токоферола, ретинола в плазме крови и рибофлавина в цельной крови), определенные спектрофотометрическими и флуорометрическими методами у 75 практически здоровых детей, проживающих в Иркутске. Обследованы дети 3 возрастных групп: дошкольного возраста (3-6 лет, средний возраст 4,7±1,0 года) - 21 ребенок, младшего школьного возраста (7-8 лет, средний возраст 7,6±0,4 года) - 28 детей и среднего школьного возраста (9-11 лет, средний возраст 9,9±0,7 года) - 26 детей. У детей младшего школьного возраста достоверно увеличено содержание первичных продуктов ПОЛ, у детей среднего школьного возраста - конечных ТБК-активных продуктов по сравнению с показателями детей дошкольного возраста. В то же время у детей младшего и среднего школьного возраста отмечены достоверно увеличенный уровень общей АОА и содержание жирорастворимых витаминов и рибофлавина по сравнению с показателями дошкольников. Оценка фактической обеспеченности витаминами показала недостаток α-токоферола у половины детей-дошкольников, 36% детей младшего школьного и 38% детей среднего школьного возраста. Недостаточность ретинола и рибофлавина регистрировалась у незначительного количества детей всех возрастов. В связи с этим дополнительное снабжение витаминами детей дошкольного и среднего школьного периодов крайне необходимо.

Ключевые слова: дети, возрастные периоды, антиоксидантная защита, витамины-антиоксиданты, ПОЛ

Вопр. питания. - 2013. - № 4. - С. 27-33.

В последние годы отмечают высокую распространенность соматических, неврологических и психических расстройств у детей дошкольного и школьного возраста, резкое увеличение стрессовых воздействий на ребенка, снижение его адаптационных возможностей . Среди условий, способствующих формированию неполноценного здоровья детского населения, особая роль отводится экологическому неблагополучию на фоне резкого ухудшения социально-бытовых условий жизни, в первую очередь неполноценного питания с недостаточностью белкового и витаминно-минерального компонентов . Кроме того, в результате массированной антибиотикотерапии у значительной части детей формируются дефекты микробионта, нарушающие усвоение пищевых веществ, в достаточном количестве поступающих с пищей. Исследования, проведенные в регионе, показали ухудшение состояния здоровья детей дошкольного и младшего школьного возраста: рост заболеваемости (91,2%), уменьшение числа лиц 1-й группы здоровья (7,2%), морфофункциональные отклонения (33,2%), замедленный темп развития (33%), низкий уровень нервно-психического развития у 15,5% практически здоровых детей, высокое психоэмоциональное напряжение (30,6%) . При этом наблюдается рост школьной дизадаптации и нейропсихосоматических расстройств .

Важнейшим компонентом адаптивных реакций организма является система "перекисное окисление липидов (ПОЛ)-антиоксидантная защита (АОЗ)", которая позволяет оценить устойчивость биологических систем к воздействиям внешней и внутренней среды.

Природными антиоксидантами и необходимыми факторами питания являются жирорастворимые витамины: α-токоферол и ретинол. α-Токоферол принадлежит к числу важнейших жирорастворимыхантиоксидантов,проявляющихмембранозащитную и антимутагенную активность.

Взаимодействуя с природными антиоксидантами других классов, он является важнейшим регулятором окислительного гомеостаза клеток и организма . Антиоксидантная функция ретинола выражается в защите биологических мембран от повреждения активными формами кислорода, в частности супероксидным радикалом, синглетным кислородом, пероксидными радикалами . Важным водорастворимым антиоксидантом является рибофлавин (витамин B 2), участвующий в окислительно-восстановительных процессах. Данные литературы показывают, что для большинства детского населения во всех регионах страны характерна недостаточная обеспеченность витаминами группы В, а также витаминами С, Е и А .

Недостаточная активность защитных антиоксидантных факторов и бесконтрольное увеличение свободнорадикальных компонентов могут играть решающую роль в развитии ряда заболеваний детского возраста: инфекциях респираторного тракта, бронхиальной астме, сахарном диабете типа 1, некротическом энтероколите, артритах, болезнях желудочно-кишечного тракта, расстройствах сердечно-сосудистой системы, аллергопатологиях,психосоматическихрасстройствах .

В связи с этим адекватное обеспечение организма детей пищевыми антиоксидантами, являющимися важными факторами формирования защитного статуса организма, является одним из способов профилактики и лечения заболеваний . Несомненно, для анализа состояния неспецифической защиты организма ребенка, необходимо учитывать, в том числе и онтогенетические аспекты, то есть интенсивность процессов пролиферации и дифференцировки в организме ребенка в конкретный возрастной период .

Таким образом, целью исследования стало изучение системы "ПОЛ-АОЗ" у детей разного возраста.

Материал и методы

Исследования проведены у 75 детей г. Иркутска (крупного промышленного центра) 3 возрастных групп: дошкольного возраста (3-6 лет, средний возраст 4,7±1,0 года) - 21 ребенок (1-я группа), младшего школьного возраста (7-8 лет, средний возраст 7,6±0,4 года) - 28 детей (2-я группа) и среднего школьного возраста (9-11 лет, средний возраст 9,9±0,7 года) - 26 детей (3-я группа).

Для обследования были отобраны практически здоровые дети, не имеющие в анамнезе хронических заболеваний и не болевшие в течение 3 мес, предшествующих осмотру и забору крови. Все дети посещали детские дошкольные учреждения или школы. Обследованные не принимали витаминов на момент забора крови. Кровь забирали утром натощак из локтевой вены.

В работе соблюдали этические принципы, предъявляемые Хельсинкской декларацией Всемирной медицинской ассоциации (World Medical Association Declaration of Helsinki , 1964, 2000 ред.).

Метод определения первичных продуктов ПОЛ - диеновых конъюгатов в плазме крови - основан на интенсивном поглощении конъюгированных диеновых структур гидроперекисей липидов в области 232 нм . Содержание ТБК-активных продуктов в плазме крови определяли в реакции с тиобарбитуровой кислотой флуориметрическим методом .

Для оценки общей антиоксидантной активности (АОА) плазмы крови использовали модельную систему, представляющую суспензию липопротеидов желтка куриных яиц, позволяющую оценить способность плазмы крови тормозить накопление ТБК-активных продуктов в суспензии. ПОЛ индуцировали добавлением FeSO 4 ×7H 2 O . Метод определения концентраций α-токоферола и ретинола в плазме крови предусматривает удаление веществ, препятствующих определению, путем омыления проб в присутствии больших количеств аскорбиновой кислоты и экстракцию неомыляющихся липидов гексаном с последующим флуориметрическим определением содержания α-токоферола и ретинола. При этом α-токоферол обладает интенсивной флуоресценцией с максимумом возбуждения при λ=294 нм и излучения при 330 нм; ретинол - при 335 и 460 нм . Референтные значения для α-токоферола - 7-21 мкмоль/л, ретинола - 0,70-1,71 мкмоль/л . За основу метода определения рибофлавина взят принцип измерения флуоресценции люмифлавина для обнаружения рибофлавина в микроколичествах крови, позволяющий с достаточной точностью и специфичностью устанавливать содержание данного витамина в эритроцитах и цельной крови . Референтные значения для рибофлавина - 266-1330 нмоль/л цельной крови . Измерения проводили на спектрофлуориметре "Shimadzu RF-1501" (Япония).

Статистическую обработку полученных результатов, распределение показателей, определение границ нормального распределения проводили с помощью пакета прикладных программ "Statistica 6.1 Stat-Soft Inc.", США (правообладатель лицензии - ФГБУ "НЦ проблем здоровья семьи и репродукции человека" СО РАМН). Для проверки статистической гипотезы разности средних значений использовали критерий Манна-Уитни. Значимость различий по разности выборочных долей оценивали с помощью критерия Фишера. Выбранный критическийуровеньзначимостисоставлял 5% (0,05). Работа выполнена при поддержке Совета по грантам Президента РФ (НШ - 494.2012.7).

Результаты и обсуждение

Известно, что в разные периоды жизни ребенка адаптивные возможности не однозначны, они определяются функциональной зрелостью организма и биохимическим статусом. Важным, но редко используемым диагностическим критерием является определение показателей процессов ПОЛ.

В результате проведенного исследования было установлено (рис. 1), что у детей 2-й группы концентрация первичных продуктов ПОЛ - диеновых конъюгатов - значимо выше (в 2,45 раз, p<0,05) показателей детей из 1-й группы, по содержанию конечных продуктов различий не было.

В 3-й группе отмечалось увеличение уровня конечных ТБК-активных продуктов по сравнению с предыдущими возрастами соответственно в 1,53 и в 1,89 раз (p<0,05) (рис. 1).

Возрастание первичных продуктов ПОЛ - диеновых конъюгатов - у детей 7-8 лет может быть связано с повышением активности липоперекисных процессов в исследуемый период, что подтверждается данными литературы. Так, известно, что младший школьный возраст является кризисным периодом онтогенеза, во время которого идет становление систем регуляции в детском организме, в связи с чем концентрация продуктов ПОЛ может увеличиваться . Кроме того, неблагоприятная учебная, информационная среда может существенно изменять ход дальнейшего развития систем гомеостаза . Учитывая, что наиболее интегративным показателем, отражающим интенсивность ПОЛ, являются ТБК-активные продукты, повышенная концентрация данного параметра у детей среднего школьного возраста может расцениваться как фактор дизадаптации. Данный факт может быть связан с высокой активностью липидного метаболизма в данном возрасте. Получены данные о высоких концентрациях общих липидов, триглицеридов, неэтерифицированных жирных кислот в динамике подросткового периода . Известно, что образующиеся в процессе ПОЛ гидроперекиси, ненасыщенные альдегиды и ТБК-активные продукты являются мутагенами и обладают выраженной цитотоксичностью. В результате пероксидных процессов в жировой ткани образуются плотные структуры (липофусцин), которые нарушают функционирование микроциркуляторного русла во многих органах и тканях со сдвигом метаболизма в сторону анаэробиоза . Безусловно, повышение уровня конечных токсичных продуктов липопероксидации может выступать в качестве универсального патогенетического механизма и субстрата дальнейших морфофункциональных повреждений.

Лимитирующим фактором процессов ПОЛ является соотношение прооксидантных и антиоксидантных факторов, составляющих общий антиоксидантный статус организма . Проведенные исследования показали увеличение общей АОА в 1,71 раз (p<0,05), концентрации α-токоферола в 1,23 раза (p<0,05) и ретинола в 1,34 раза (p<0,05) у детей 2-й группы по сравнению с 1-й (рис. 2). В 3-й группе обследованных детей изменения в системе АОЗ касались повышенных значений общей АОА (в 1,72 раза выше, p<0,05) и содержания ретинола (в 1,32 раза выше, p<0,05) в сравнении с показателями детей из 1-й группы (рис. 2). При этом значимых различий с показателями 2-й группы нами не выявлено. Известно о несовершенстве и нестабильности системы АОЗ у детей раннего возраста. Снижение концентраций витаминов в дошкольном возрасте можно связать с двумя факторами: интенсификацией липоперекисных процессов, в связи с чем повышается потребность в витаминах, играющих антиоксидантную роль, и с недостаточностью данных компонентов в питании детей. Обеспеченность детского организма витамином Е зависит не только от его содержания в пищевых продуктах и степени усвоения, но и от уровня полиненасыщенных жирных кислот (ПНЖК) в рационе. Известно о синергизме данных нутриентов, при этом ПНЖК вносят существенный вклад в формирование АОЗ у детей, и их уровень в крови претерпевает существенную возрастную динамику . Полученные результаты согласуются с данными ряда авторов, указывающих на низкую обеспеченность витамином Е и ПНЖК детей дошкольного возраста в ряде регионов страны . По полученным ранее результатам анкетирования пищевой рацион детей разного возраста, проживающих в регионе, характеризуется низким содержанием жирорастворимых витаминов, белка, незаменимых ПНЖК семейства ω-3 и ω-6 . Судя по анкетным данным, основные энерготраты организма восполняются не за счет жиров, а за счет хлеба, хлебобулочных и зерновых изделий. Часто повторяющиеся инфекционные заболевания у детей данного возраста протекают на фоне нарушения адаптационных возможностей организма и снижения активности иммунной системы, что способствует более тяжелому и длительному течению вирусных и бактериальных инфекций . Обращает на себя внимание повышенная антиоксидантная интенсивность в младшем школьном возрасте, что может свидетельствовать о повышении неспецифической резистентности организма, адаптации к условиям среды . Необходимо отметить недостаточную активность АОЗ у детей среднего школьного возраста, что происходит на фоне увеличения интенсивности липоперекисных процессов. Учитывая важную роль вышеперечисленных антиоксидантов как регуляторов роста и морфологической дифференцировки тканей организма, высокая напряженность в данном звене метаболизма крайне значима. Ряд исследований показали сочетанный дефицит 2 или 3 витаминов (полигиповитаминоз) у детей 9-11 лет , что подтверждается нашими данными.

Другим, не менее важным антиоксидантом является водорастворимый антиоксидант - рибофлавин. Нами было отмечено увеличение его концентрации у детей 2-й группы - в 1,18 раза (p<0,05) относительно 1-й группы и в 1,28 раз (p<0,05) относительно 3-й (рис. 3). Более высокие значения этого антиоксиданта в младшем школьном возрасте могут быть обусловлены как его более высоким поступлением с рационом, так и повышением активности системы АОЗ, направленной на обеспечение нормального уровня липоперекисных процессов. Важно отметить, что дефицит витамина В 2 отражается на тканях, чувствительных к недостатку кислорода, в том числе и на ткани мозга, поэтому ограниченное его поступление с пищей может негативно отразиться на адаптивных реакциях ребенка в ходе учебного процесса .

На следующем этапе исследования мы оценивали обеспеченность витаминами детей исследуемых групп в соответствии с возрастными нормативами (см. таблицу). При этом статистически значимых различий по частоте встречаемости детей с недостатком водо- и жирорастворимых витаминов в разных группах не выявлено (p>0,05).

В ходе исследования недостаток α-токоферола был выявлен у половины детей, ретинола - у 4 и рибофлавина - у 1 ребенка дошкольного возраста. Во 2-й группе недостаточный уровень α-токоферола обнаруживался у трети детей (10 человек), содержание остальных витаминов было оптимальным. В 3-й группе недостаточная обеспеченность α-токоферолом была выявлена у 10 детей, ретинолом - у 2 детей и рибофлавином - у 5 детей. Обнаруженный недостаток витаминов может отражать несбалансированность питания конкретного ребенка вследствие недостаточного употребления в пищу продуктов - источников данных микронутриентов. Полностью удовлетворить потребности во всех основных витаминах только за счет пищевого рациона достаточно трудно. В связи с этим дополнительное снабжение витаминами детей дошкольного и среднего школьного периодов является крайне необходимым.

Таким образом, проведенное исследование показало определенные особенности становления биохимического статуса организма детей, которые проявляются на фоне общих закономерностей развития организма ребенка. Для детей дошкольного возраста характерно снижение активности АОЗ (низкая обеспеченность α-токоферолом у половины обследованных детей), что представляет дополнительный фактор риска развития многих патологических процессов. Возрастной период 7-8 лет характеризуется повышенной активностью компонентов про- и антиоксидантной систем, что выражается увеличением содержания первичных продуктов ПОЛ, общей АОА и неферментативных показателей системы АОЗ. У детей к 9-11 годам биохимический гомеостаз характеризуется повышенной интенсивностью липоперекисных процессов в виде увеличения конечных продуктов ПОЛ, меньшей стабильности системы АОЗ (недостаточная обеспеченность α-токоферолом и рибофлавином части детей). Изучение состояния антиоксидантного гомеостаза у здоровых детей в онтогенезе имеет важное значение в плане расширения диагностики и прогнозирования индивидуального здоровья детского населения Сибири. Вследствие этого большое значение имеет биохимический мониторинг здоровья детей по риску развития патологических состояний и обоснования профилактических мероприятий в отношении дошкольного и среднего школьного возрастов.

Литература

1.Богомолова М.К., Бишарова Г.И. // Бюл. ВСНЦ СО РАМН. - 2004. - № 2. - С. 64-68.

2.Бурыкин Ю.Г., Горынин Г.Л., Корчин В.И. и др. // Вестн. новых мед. технологий. - 2010. - Т. XVII, № 4. - С. 185-187.

3. ВолковИ. К. // Consilium Medicum. - 2007. - Т. 9, № 1. - С. 53-56.

4.Волкова Л.Ю., Гурченкова М.А. // Вопр. соврем. педиатрии. - 2007. - Т. 6, № 2. - С. 78-81.

5.Гаврилов В.Б., Мишкорудная М.И. // Лаб. дело. - 1983. - № 3. - С. 33-36.

6.Гаврилов В.Б., Гаврилова А.Р., Мажуль Л.М. // Вопр. мед. химии. - 1987. - № 1. - С. 118-122.

7.Гаппаров М.М., Первова Ю.В. // Вопр. питания. - 2005. - № 1. - С. 33-36.

8.Дадали В.А., Тутельян В.А., Дадали Ю.В. и др. // Там же. - 2011. - Т. 80, № 4. - С. 4-18.

9.Даренская М.А., Колесникова Л.И., Бардымова Т.П. и др. // Бюл. ВСНЦ СО РАМН. - 2006. - № 1. - С. 119-122.

10.Завьялова А.Н., Булатова Е.М., Бекетова Н.А. и др. // Вопр. дет. диетологии. - 2009. - Т. 7, № 5. - С. 24-29.

11.Клебанов Г.И., Бабенкова И.В., Теселкин Ю.О. и др. // Лаб. дело. - 1988. - № 5. - С. 59-62.

12.Клиническое руководство по лабораторным тестам / Под ред. Н. Тица. - М.: ЮНИМЕД-пресс, 2003. - 960 с.

13.Коденцова В.М., Вржесинская О.А., Спиричева Т.В. и др. // Вопр. питания. - 2002. - Т. 71, № 3. - С. 3-7.

14.Коденцова В.М., Вржесинская О.А., Сокольников А.А. // Вопр. соврем. педиатрии. - 2007. - Т. 6, № 1. - С. 35-39.

15.Коденцова В.М., Вржесинская О.А., Светикова А.А. и др. // Вопр. питания. - 2009. - Т. 78, № 1. - С. 22-32.

16.Коденцова В.М., Спиричев В.Б., Вржесинская О.А. и др. // Леч. физкульт. и спорт. медицина. - 2011. - № 8. - С. 16-21.

17.Козлов В.К., Козлов М.В., Лебедько О.А. и др. // Дальневост. мед. журн. - 2010. - № 1. - С. 55-58.

18.Козлов В.К. // Бюл. СО РАМН. - 2012. - Т. 32, № 1. - С. 99-106.

19.Колесникова Л.И., Долгих В.В., Поляков В.М. и др. Проблемы психосоматической патологии детского возраста. - Новосибирск: Наука, 2005. - 222 с.

20. Колесникова Л.И., Даренская М.А., Долгих В.В. и др. // Изв. Самар. НЦ РАН. - 2010. - Т. 12, № 1-7. - С. 1687-1691.

21. Колесникова Л.И., Даренская М.А., Лещенко О.Я. и др. // Репрод. здоровье детей и подростков. - 2010. - № 6. - С. 63-70.

22. Коровина Н.А., Захарова И.Н., Скоробогатова Е.В. // Врач. - 2007. - № 9. - С. 79-81.

23. Меньщикова Е.Б., Ланкин В.З., Зенков Н.К. и др. Окислительный стресс. Прооксиданты и антиоксиданты. - М.: Слово, 2006 - 556 с.

24. Никитина В.В., Абдулнатипов А.И., Шарапкикова П.А. // Фундамент. исслед.- 2007. - № 10. - С. 24-25.

25. Новоселова О.А., Львовская Е.И. // Физиология человека. - 2012. - Т. 38, № 4. - С. 96-97.

26. Осипова Е.В., Петрова В.А., Долгих М.И. и др. // Бюл. ВСНЦ СО РАМН. - 2003. - № 3. - С. 69-72.

27. Петрова В.А., Осипова Е.В., Королева Н.В. и др. // Бюл. ВСНЦ СО РАМН. - 2004. - Т. 1, № 2. - С. 223-227.

28. Приезжева Е.Ю., Лебедько О.А., Козлов В.К. // Новые мед. технологии: новое мед. оборудование. - 2010. - № 1. - С. 61-64.

29. Ребров В.Г., Громова О.А. Витамины и микроэлементы. - М.: АЛЕВ-В, 2003 - 670 с.

30. Рычкова Л.В., Колесникова Л.И., Долгих В.В. и др. // Бюл. СО РАМН. - 2004. - № 1. - С. 18-21.

31. Спиричев В.Б., Вржесинская О.А., Коденцова В.М. и др. // Вопр. дет. диетологии. - 2011. - Т. 9, № 4. - С. 39-45.

32. Трегубова И.А., Косолапов В.А., Спасов А.А. // Успехи физиол. наук. - 2012. - Т. 43, № 1. - С. 75-94.

33. Тутельян В.А. // Вопр. питания. - 2009. - Т. 78, № 1. - С. 4-16.

34. Тутельян В.А., Батурин А.К., Конь И.Я. и др. //Там же. - 2010. - Т. 79, № 6. - С. 57-63.

35. Функциональная активность мозга и процессы перекисного окисления липидов у детей при формировании психосоматических расстройств / Под ред. С.И. Колесникова, Л.И. Колесниковой. - Новосибирск: Наука, 2008. - 200 с.

36. Чернышев В.Г. // Лаб. дело. - 1985. - № 3. - С. 171-173.

37. Черняускене Р.Ч., Варшкявичене З.З., Грибаускас П.С. // Лаб. дело. - 1984. - № 6. - С. 362-365.

38. Чистяков В.А. // Успехи соврем. биологии. - 2008. - Т. 127, № 3. - С. 300-306.

39. Шилина Н.М., Котеров А.Н., Зорин С.Н. и др. // Бюл. экспер. биол. - 2004. - Т. 2, № 2. - С. 7-10.

40. Шилина Н.М. // Вопр. питания. - 2009. - Т. 78, № 3. - С. 11-18.

В последние 10–15 лет ученым удалось раскрыть механизмы многих патологических процессов в организме. В основе этих механизмов, приводящих к развитию различных заболеваний, а также, играющих немаловажную роль в старении организма, лежит одно и то же явление - оксидативное повреждение клеточных структур. Основным фактором такого повреждения клеток оказался кислород – тот самый кислород, который используется клетками для дыхания.

Оценка антиоксидантной активности организма

Выяснилось, что так называемые активные формы кислорода, относящиеся к свободным радикалам, имеют неспаренный электрон и обладают биологическим эффектом, который может оказывать как регуляторное, так и токсическое действие. В клетках организма всегда присутствует какое-то количество свободных радикалов. Они необходимы для осуществления физиологических процессов: дыхания, обмена веществ, защитных иммунных реакций и др.

Однако когда свободных радикалов становится много (например, при недостаточности работы антиоксидантной системы) чаша весов "окисление - восстановление" перевешивает в сторону окисления. В результате свободные радикалы начинают взаимодействовать не только теми молекулами, с которыми это необходимо для нормальной жизнедеятельности организма, но и с различными структурами клеток (молекулами ДНК, липидами и белками мембран), вызывая тем самым их повреждение.

Окисление липидов приводит к образованию опасной формы липидного пероксида. В результате перекисного окисления липидов, клеточные мембраны изменяются, они становятся плохо проницаемыми и не справляются со своей главной функцией: избирательно пропускать в клетку одни ионы и молекулы и задерживать другие. Как результат – клетки не выполняют свои функции, а значит, нарушается работа и целостность органов и тканей. Если это эндотелиоциты сосудов, развиться атеросклероз, если зрительные клетки сетчатки глаза - катаракта. При повреждении нейронов головного мозга - слабеют память и внимание. Если свободные радикалы повреждают наследственный материал (молекулы ДНК), то результатом может быть развитие онкологического заболевания, бесплодие, рождение детей с пороками развития.

Таким образом, эффект окислительного стресса является первичной причиной или одним из основных звеньев патогенеза большинства заболеваний: ускоренного старения, заболеваний сердечно-сосудистой системы, иммунодефицитов, доброкачественных и злокачественных опухолей, гормональных нарушений, бесплодия и др.

Откуда же берутся свободные радикалы? Кроме нормального "воспроизводства" свободных радикалов в процессе жизнедеятельности организма мы "добавляем" их в свой рацион, когда едим консервированное мясо, некачественное масло или ветчину, употребляем некоторые лекарства, спиртные напитки, овощи, прошедшие обработку пестицидами. Они попадают в легкие вместе с воздухом, насыщенным выхлопными газами, табачным дымом, мельчайшими частицами асбестовой пыли. Усиленному образованию их в организме способствуют рентгеновское излучение и инфракрасные лучи. И, наконец, свободные радикалы в ненужном избытке сами образуются в клетках при стрессах любого происхождения, эмоциональных потрясениях, травмах, больших физических нагрузках.

Однако организм обладает немалыми возможностями для борьбы со свободными радикалами. Специальная система защиты, называемая антиоксидантной (противоокислительная система защиты), устраняет нарушения клеточных структур, являясь «ловушкой» для свободных радикалов. Она сдерживает излишнее образование свободных радикалов и направляет их по тем путям клеточного метаболизма, где они приносят пользу.

Сейчас известен целый ряд соединений, обладающих антиоксидантными свойствами. Они представлены ферментами и низкомолекулярными соединениями.


Среди ферментов, в первую очередь, следует выделить супероксиддисмутазу (СОД) – антиоксидант, представляющий первое звено защиты. Этот фермент находится во всех клетках, потребляющих кислород. В организме имеется три формы СОД, содержащие медь, цинк и магний. Роль супероксиддисмутазы заключается в ускорении реакции превращения токсичного для организма кислородного радикала (супероксид ОО-), продукта окислительных энергетических процессов, в перекись водорода и молекулярный кислород. При ишемической болезни сердца СОД защищает сердечную мышцу от действия свободных радикалов. Уровень СОД в сыворотке при ишемической болезни высокий.

Особое место в антиоксидантной системе организма, антиоксидантном статусе принадлежит глутатион-ферментному автономному объединению: глутатион, глутатионпероксидаза, глутатион-S-трансфераза, глутатион-редуктаза.Известно, что мощнейшим «поставщиком» свободных радикалов является перекись водорода. Для расщепления большого количества перекиси водорода требуется малое количество фермента. Фермент, глутатионпероксидаза, заставляет перекисные радикалы вступать в реакцию друг с другом, после чего образуются вода и кислород. Глутатионпероксидаза содержит селен и играет основную роль в инактивации липидных гидроперекисных соединений. Недостаток селена ведет к снижению активности антиоксидантных ферментов и превращению глутатионпероксидазы в глутатион-S-трансферазу. Для сохранения активности глутатионпероксидазы, помимо селена, необходимы витамины А, С, Е, S- содержащие аминокислоты и, естественно, глутатион. Весь этот глутатионферментный комплекс предотвращает нарушение клеточных мембран вследствие разрушения пероксидов.

Фермент церулоплазмин является универсальным внеклеточным «гасителем» свободных радикалов. Он является белком плазмы крови, выполняющим в организме ряд важных биологических функций: повышает стабильность клеточных мембран, участвует в иммунологических реакциях (в формировании защитных сил организма), ионном обмене, оказывает антиоксидантное (препятствующее перекисному окислению липидов клеточных мембран) действие, тормозит перекисное окисление липидов (жиров), стимулирует гемопоэз (кроветворение). Церулоплазмин имеет супероксиддисмутазную активность: восстанавливает в крови супероксидные радикалы до кислорода и воды и этим защищает от повреждения липидные структуры мембран. Одной из основных функций церулоплазмина является нейтрализация свободных радикалов, которые освобождаются вовне макрофагами и нейтрофилами во время фагоцитоза, а также при интенсификации свободнорадикального окисления в очагах воспаления. Он окисляет разные субстраты: серотонин, катехоламины, полиамины, полифенолы, превращает двухвалентное железо в трехвалентное. Церулоплазмин переносит медь из печени к органам и тканям, где она функционирует в виде цитохром-С-редуктазы и супероксиддисмутазы. Фермент является фактором естественной защиты организма при воспалительных, аллергических процессах, стрессовых состояниях, повреждениях тканей, в частности, при инфаркте миокарда, ишемии.

Поддерживать организм в здоровом состоянии - значит сохранять необходимый баланс между свободными радикалами и антиокислительными силами, роль которых выполняют антиоксиданты. Большинство антиоксидантов поступает в организм с пищей. Антиоксиданты являются питательными веществами, в которых постоянно нуждается организм человека. К ним относятся витамины (А, С, Е), селен, цинк, глутатион и др. Наиболее эффективным по своим антиоксидантным свойствам издавна считается витамин Е, улучшающий иммунный статус у пожилых людей и снижающий риск атеросклероза. Витамин С известен, как важный клеточный антиоксидант во многих тканях. Он имеет определенный защитный эффект против возникновения инсульта. Предшественники витамина А– каротиноиды эффективно уничтожают свободные радикалы, в т.ч. синглетный кислород, который может привести к развитию неоплазий.

Исследования показали, что антиоксиданты помогают организму снижать уровень повреждения тканей, ускорять процесс выздоровления, противостоять инфекциям, а следовательно, увеличить продолжительность жизни.

Антиоксиданты все более широко применяются для профилактики последствий простудных заболеваний, при большинстве острых заболеваний и состояний, при обострении хронических заболеваний, интоксикациях, ожогах, травмах, операциях, для устранения синдрома «весенней слабости», обусловленного, как полагают, интенсификацией перекисного окисления липидов (ПОЛ). Перекиси липидов необходимы для биосинтеза эйкозаноидов (простагландинов, простациклинов, тромбоксанов, лейкотриенов), прогестерона. Они участвуют в гидроксилировании холестерина (в частности, при образовании кортикостероидов), что создает благоприятные условия для функционирования ферментных систем в мембранах.

В лаборатории «Хромолаб» проводится комплекс исследований по оценке уровня отдельных ферментов-антиоксидантов (СОД, церулоплазмин, глутатионпероксидаза), витаминов-антиоксидантов, микроэлементов, определению перекисного окисления липидов (ПОЛ) и оценке общего антиоксидантного статуса (TAS) - как показателя многоуровневой системы антиоксидантной защиты организма. Такая комплексная диагностика позволит врачу-специалисту скорректировать антиоксидативный статус пациента до появления симптомов заболевания и использовать показатели TAS и ПОЛ как индикацию для назначения пациенту антиоксидативной терапии.

Последние материалы сайта