Механизм свертывания крови: почему это происходит? Особенности свертывания крови Способствует нормальной свертываемости крови

19.07.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Поддерживает постоянство объема крови в кровеносном русле. Низкая способность свертывания крови при незначительной травме может быть опасной и привести к сильной кровопотере.

Кровь – это жидкая субстанция, которая течет по кровеносным сосудам. важный показатель, который предотвращает длительное кровотечение, обеспечивает тканевое дыхание и способность передвигаться по сосудам.

Во время пореза в крови происходят некоторые изменения – образуется тромб, служащий для закупоривания раны. Этот кровяной сгусток помогает остановить кровотечение. Тромб состоит из волокон фибрина, на которых захвачены клетки крови. В результате рана затягивается и заживает. Такой процесс происходит благодаря тому, что кровь сворачивается.

Обычно этот процесс занимает около 3-4 минут.

В данном процессе большую роль играет временной промежуток. Если тромб образуется позже, то человек может потерять много крови. Кровь не должна быть очень жидкой или густой. При низкой свертываемости кровь жидкая и под давлением может просачиваться через стенки сосудов. Если свертываемость высокая и кровь густая, то она плохо циркулирует и может не попасть в капилляры.

Факторы свертывания содержатся в плазме и представлены белками. В организме они присутствуют в неактивном состоянии и обозначаются римскими цифрами. Если они становятся активными, то к основному обозначению добавляют букву «а».

Фазы свертывания крови

Реакция свертывания крови происходит после соприкосновения крови и ткани. Этот процесс состоит из нескольких этапов:

  • Фаза образования протромбиназы. В ходе этой фазы протекают 2 процесса – образование кровяной и тканевой протромбиназы. Продолжительность около 3-4 минут для первого процесса и около 3-6 секунд для второго.
  • Фаза образования тромбина. На данном этапе протромбин переходит в активную форму – тромбин (IIа). Этот процесс происходит под влиянием протромбиназы и ионов кальция. Длительность этой фазы составляет 2-5 секунд.
  • Фаза образования фибрина. В дальнейшем с помощью тромбина переходит в фибрин. Сначала происходит образование мономера и полимера. Фибринстабилизирующий фактор укрепляет отношения фибрин-полимер, а затем переводит его из растворимого состояния в нерастворимое.
  • Фаза образования фибринового сгустка. Волокна фибрина представляют собой трехмерную сеть, в которой содержатся различные клетки крови. Волокна активно сокращаются и окончательную форму принимают после уменьшения объема сгустка – ретракции. Благодаря этому тромб становится плотным, что и способствует остановке кровотечения. Последняя фаза длится около 2-5 секунд.


Анализ на свертываемость проводится натощак. На результат могут повлиять физические нагрузки, переедание, стрессы, прием некоторых лекарственных препаратов. Поэтому для получения точных результатов следует учесть вышеперечисленные факторы. Забор материала для исследования осуществляют из пальца.

Определить время свертываемости крови можно несколькими методами:

  • Метод Моравица. На предметное стекло наносится капля крови. Далее в каплю опускают тонкий капилляр каждые 30 секунд, воспользовавшись секундомером. С появлением тонкой нити фибрина определяется время свертывания. Нормальным показателем считается 5 минут.
  • . Взятый материал из пальца помещают в аппарат Панченкова, где кровь в сосуде наклоняется сначала вправо, а потом влево. В этот период с помощью секундомера засекают время от начала движения до образования сгустка. В норме началом движения считается 30-120 секунд, а завершение образование сгустка – от 3 до 5 минут.
  • Метод Мас-Магро. Стекло покрыть горячим парафином, после его остывания на предметное стекло добавить каплю вазелина. Далее кровь из пипетки выдувают на стекло. Затем каждые 1-2 минуты с помощью пипетки набирают кровь и обратно выдувают. Таким образом кровь набирают и выдувают, пока она не свернется. В норме свертываемость составляет 8-12 минут.
  • Метод Ли-Уайта. Для данного исследования забор крови осуществляют из вены. Кровь помещают в две пробирки силиконовую и несиликоновую. Время свертываемости определяется при соблюдении температурного режима 37 градусов. В обычной пробирке норма находится в пределах 5-7 минут, а в силиконовой – от 15 до 25 минут.

Это самые распространенные способы определения времени . Методы Сухарева и Ли-Уайта могут показывать разное время, поэтому в результатах обычно указывается способ диагностики.

Нарушение свертываемости и последствия

Нарушение свертываемости крови может вызвать опасные для жизни осложнения и последствия

Скорость свертывания зависит от многих факторов, а именно:

  • Состояние стенок сосудов
  • Количества
  • Уровень антиплазмина, гепарина, антитромбина
  • Состояние плазменных элементов

Среди основных причин нарушений свертываемости крови выделяют:

  • Патологии
  • ДВС-синдром
  • Заболевания крови (гемобластоз, лейкоз)
  • Дефицит витамина К
  • Атеросклероз сосудов
  • Инфекционные заболевания
  • Обезвоживание организма

Побочное действие антикоагулянтов и цитостатиков также могут спровоцировать нарушение свертываемости. Эти препараты ухудшают свертываемость крови. Причиной могут быть врожденные и генетические патологии: гемофилия, афибриногенемия, болезнь Виллебранда, тромбастения Гланцмана. Признаком нарушения свертываемости крови является кровоизлияние в кожу и кровоточивость слизистой.

При дефиците протромбина, проконвертина, проакцелерина в области лодыжек наблюдаются капиллярные кровоизлияния – красно-фиолетовые пятна.

При высоком показателе свертываемости в сосудах образуются сгустки, в результате в ткани поступает недостаточное количество кислорода. К тому же велика вероятность развития сердечно-сосудистых заболеваний: инфарктов, инсультов и др.

При повышенной свертываемости крови назначают антикоагулянты. Эти вещества препятствуют склеиванию клеток. Из препаратов используют Гепарин, Аспирин. Последнее средство хорошо помогает при атеросклерозе.

Полезное видео — Система свертывания крови:

В аптеке выпускают кардиоаспирины, содержащие вспомогательные вещества, в число которых входит магний. Эти лекарственные средства применяют для лечения пациентам старше 40 лет. Это хорошая профилактика инфарктов и инсультов. Их постоянно следует применять лицам, перенесшим сосудистые патологии. При наследственных тромбофилиях Аспирин назначают в малых дозах длительное время.

Во время беременности при нарушении свертываемости необходимо контролировать состояние крови. В противном случае это обернется кровотечением. Применение Аспирина строго противопоказано беременным женщинам. Препараты назначает только врач и в каждом случае индивидуально.

Гемостаз – это система, которая поддерживает жидкое состояние крови и предупреждает развитие кровотечений. Кровь осуществляет жизненно важные функции в организме человека, поэтому значительная потеря крови грозит нарушением работы всех органов и систем.

Система свертывания крови включает три составляющие:

  1. Собственно свертывающую систему – непосредственно осуществляет коагуляцию крови.
  2. Противосвертывающую систему – действие направлено на предотвращение сворачивания крови (патологического тромбообразования).
  3. Фибринолитическую систему – обеспечивает распад образовавшихся тромбов.

Свертывание крови – физиологический процесс, предотвращающий выход плазмы и клеток крови из кровеносного русла, путем поддержания целостности сосудистой стенки.

Учение о свертываемости крови сформировал А. Шмидт еще в прошлом столетии. При возникновении кровотечения активируются и участвуют в его остановке такие структуры как: эндотелий, факторы свертывания, форменные элементы, в большей мере тромбоциты. Для осуществления коагуляции крови нужны вещества, такие как кальций, протромбин, фибриноген.

Стадии первичного гемостаза (сосудисто-тробоцитарного)

Процесс свертывания крови начинается с включения сосудисто-тромбоцитарного этапа. Существует четыре стадии:

  1. Идет кратковременный спазм в сосудистом русле , который длится около 1 минуты. Диаметр просвета сужается на 30% под действием тромбоксана и серотонина, которые выделяются из активированных тромбоцитов.
  2. Адгезия тромбоцитов – начинается скапливание тромбоцитов возле поврежденного участка, они видоизменяются – меняют форму и формируют отростки, и способны прикрепится к сосудистой стенке.
  3. Агрегация тромбоцитов – процесс склеивания тромбоцитов друг с другом. Формируется неплотный тромб, способный пропускать плазму, как следствие все больше тромбоцитов наслаиваются на новообразованный тромб. Потом он уплотняется и плазма не проходит сквозь плотный сгусток – наступает необратимая агрегация тромбоцитов.
  4. Ретракция тромба – продолжающееся уплотнение тромботического сгустка.

Сосудисто-тромбоцитарный способ прекращения кровотечения – это первичный гемостаз, есть более сложный механизм свертывания крови – это вторичный гемостаз, происходит с помощью ферментных и неферментных веществ.

Стадии вторичного гемостаза

Существует 3 фазы свертывание крови на этапе вторичного гемостаза:

  • Фаза активации – ферменты активируются, все заканчивается образованием протромбиназы и получением тромбина из протромбина;
  • фаза коагуляция – формирование фибриновых нитей из фибриногена;
  • фаза ретракции – идет образование плотного тромба.

Первая фаза свертывания крови

Плазменные факторы свертывания крови – совокупность неактивных ферментов и неферментных соединений, которые обитают в плазменной части крови и кровяных пластинках. Для свертывания крови помимо прочего необходимы ионы Са (IV) и витамин К.

Когда повреждаются ткани, разрываются сосуды, идет гемолиз клеток крови включается череда реакций с активацией ферментов. Начало активации обусловлено взаимодействием плазменных факторов свертывания с разрушенными тканями (внешний тип активации коагуляции), частями эндотелия и форменных элементов (внутренний тип активации коагуляции).

Внешний механизм

Из оболочки разрушенных клеток в кровяное русло попадает специфический белок – тромбопластин (III фактор). Он активирует VII фактор, присоединяя молекулу кальция, эта новообразованная субстанция воздействует на X фактор для последующей активации. После X фактор соединяется с тканевыми фосфолипидами и V фактором. Сформировавшийся комплекс за пару секунд преобразовывает долю протромбина в тромбин.

Внутренний механизм

Под действием разрушенного эндотелия или форменных элементов активируется XII фактор, который после воздействия кининогена плазмы активирует XI фактор. XI действует на IX фактор, который после перехода в активную фазу формирует комплекс: «коагуляционный фактор (IX) + Антигемофильный фактор В (VIII) + тромбоцитарный фосфолипид + ионы Са (IV)». Он активирует фактор Стюарта-Прауэра (X). Активированный X совместно с V и ионами Са действуют на фосфолипидную оболочку клетки и формируют новое образование – кровяную протромбиназу, которое обеспечивает переход протромбина в тромбин.

К плазменным факторам свертывания относятся неферментные белки – акселераторы (V, VII). Они нужны для эффективного и быстрого оседания крови, потому что ускоряют коагуляцию в тысячи раз.

Внешний механизм свертывания крови длится примерно 15 секунд, на внутренний приходится от 2 до 10 минут. Завершается эта фаза свертывания образованием тромбина из протромбина.

Протромбин синтезируется в печени, чтобы синтез осуществлялся нужен витамин К, который поступает с едой и накапливается в печеночной ткани. Таким образом, при поражении печени или недостатке витамина К, система свертывания крови не функционирует нормально, и часто возникает неконтролируемый выход крови из сосудистого русла.

Таблица факторов свертываемости крови

Факторы свертывания крови
Факторы Свойства
I – фибриноген Тромбин инициирует превращение первого фактора в фибрин
II – протромбин Синтез в печени только совместно с витамином К
III – тромбопластин При его участии протромбин преобразуется в тромбин
IV – ионы кальция Нужны для активации факторов свертывания
V – проакцелерин Стимулирует переход протромбина в тромбин
VI – сывороточный акцелератор Инициирует переход протромбина в тромбин
VII – проконвертин Действует на третий фактор (активация)
VIII - антигемофильный фактор А Кофактор Х фактора
IX - антигемофильный фактор В (Кристмаса) Активирует VIII и IV факторы
X – фактор Стюарта-Прауэра Стимулирование протромбиназы
XI – предшественник тромбопластина Активирует VIII и IX факторы
XII – фактор Хагемана Берет участие в преобразовании прекалликреина в калликреин
XIII – фибрин- стабилизирующий фактор Стабилизация сформировавшейся фибриновой массы

Вторая фаза свертывания крови

Свертывание крови связано с переходом I фактора в нерастворимую субстанцию — фибрин. Фибриноген – гликопротеин, который при воздействии тромбина распадается на низкомолекулярное вещество — мономеры фибрина.

Следующий шаг образование неплотной массы – геля фибрина, из него формируется фибриновая сеть (белый тромб), нестабильная субстанция. Для ее стабилизации включается фибринстабилизирующий фактор (XIII) и тромб закрепляется в участке повреждения. Образованная сеть фибрина задерживает кровяные тельца — тромб становится красным.

Третья фаза свертывания крови

Ретракция кровяного сгустка идет при участии белка тромбостенина, Са, фибриновых нитей, актина, миозина, которые обеспечивают сжатие образованного тромба, тем самым предотвращают полную закупорку сосуда. После фазы ретракции восстанавливается кровоток по поврежденному сосуду, а тромб плотно прилегает и фиксируется к стенке.

Для предотвращения дальнейшего свертывания крови в организме активируется противосвертывающая система. Ее основные составляющие: нити фибрина, антитромбин III, гепарин.

К неповрежденным сосудам кровяные пластинки не адгезируются, этому способствуют сосудистые факторы: эндотелий, соединения гепарина, гладкость внутренней выстилки сосудов и др. Таким образом, в системе гемостаза поддерживается равновесие, и функционирование организма не нарушается.


Время свертывания крови в норме

Существует ряд методов определения время коагуляции. Для применения способа по Сухареву, каплю крови помещают в пробирку и ждут, когда она выпадет в осадок. При отсутствии патологии, продолжительность свертывания составляет 30 – 120 секунд.

Свертываемость по Дуке определяют следующим образом: производят прокол мочки уха и через 15 секунд промокают область прокола специальной бумагой. Когда кровь не будет появляться на бумаге, значит коагуляция произошла. В норме время свертывания по Дуке от 60 до 180 секунд.

При определении свертывания венозной крови пользуются методикой Ли-Уайта. Необходимо набрать 1 мл крови из вены и поместить в пробирку, наклонить под углом 50°. Проба заканчивается, когда кровь не вытекает из колбы. В норме продолжительность свертывания не должна превышать 4-6 минут.

Время свертывания может увеличиваться при геморрагическом диатезе, врожденной гемофилии, недостаточном количестве тромбоцитов, при развитии диссеминированного внутрисосудистого свертывания и других заболеваниях.

Свертывание крови - крайне сложный и во многом еще загадочный биохимический процесс, который запускается при повреждении кровеносной системы и ведет к превращению плазмы крови в студенистый сгусток, затыкающий рану и останавливающий кровотечение. Нарушения этой системы крайне опасны и могут привести к кровотечению, тромбозу или другим патологиям, которые совместно отвечают за львиную долю смертности и инвалидности в современном мире. Здесь мы рассмотрим устройство этой системы и расскажем о самых современных достижениях в ее изучении.

Каждый, кто хоть раз в жизни получал царапину или рану, приобретал тем самым замечательную возможность наблюдать превращение крови из жидкости в вязкую нетекучую массу, приводящее к остановке кровотечения. Этот процесс называется свертыванием крови и управляется сложной системой биохимических реакций.

Иметь какую-нибудь систему остановки кровотечения - абсолютно необходимо для любого многоклеточного организма, имеющего жидкую внутреннюю среду. Свертывание крови является жизненно необходимым и для нас: мутации в генах основных белков свертывания, как правило, летальны. Увы, среди множества систем нашего организма, нарушения в работе которых представляют опасность для здоровья, свертывание крови также занимает абсолютное первое место как главная непосредственная причина смерти: люди болеют разными болезнями, но умирают почти всегда от нарушений свертывания крови . Рак, сепсис, травма, атеросклероз, инфаркт, инсульт - для широчайшего круга заболеваний непосредственной причиной смерти является неспособность системы свертывания поддерживать баланс между жидким и твердым состояниями крови в организме.

Если причина известна, почему же с ней нельзя бороться? Разумеется, бороться можно и нужно: ученые постоянно создают новые методы диагностики и терапии нарушений свертывания. Но проблема в том, что система свертывания очень сложна. А наука о регуляции сложных систем учит, что управлять такими системами нужно особым образом. Их реакция на внешнее воздействие нелинейна и непредсказуема, и для того, чтобы добиться нужного результата, нужно знать, куда приложить усилие. Простейшая аналогия: чтобы запустить в воздух бумажный самолетик, его достаточно бросить в нужную сторону; в то же время для взлета авиалайнера потребуется нажать в кабине пилота на правильные кнопки в нужное время и в нужной последовательности. А если попытаться авиалайнер запустить броском, как бумажный самолетик, то это закончится плохо. Так и с системой свертывания: чтобы успешно лечить, нужно знать «управляющие точки».

Вплоть до самого последнего времени свертывание крови успешно сопротивлялось попыткам исследователей понять его работу, и лишь в последние годы тут произошел качественный скачок. В данной статье мы расскажем об этой замечательной системе: как она устроена, почему ее так сложно изучать, и - самое главное - поведаем о последних открытиях в понимании того, как она работает.

Как устроено свертывание крови

Остановка кровотечения основана на той же идее, что используют домохозяйки для приготовления холодца - превращении жидкости в гель (коллоидную систему, где формируется сеть молекул, способная удержать в своих ячейках тысячекратно превосходящую ее по весу жидкость за счет водородных связей с молекулами воды). Кстати, та же идея используется в одноразовых детских подгузниках, в которые помещается разбухающий при смачивании материал. С физической точки зрения, там нужно решать ту же самую задачу, что и в свертывании - борьбу с протечками при минимальном приложении усилий.

Свертывание крови является центральным звеном гемостаза (остановки кровотечения). Вторым звеном гемостаза являются особые клетки - тромбоциты , - способные прикрепляться друг к другу и к месту повреждения, чтобы создать останавливающую кровь пробку.

Общее представление о биохимии свертывания можно получить из рисунка 1, внизу которого показана реакция превращения растворимого белка фибриногена в фибрин , который затем полимеризуется в сетку. Эта реакция представляет собой единственную часть каскада, имеющую непосредственный физический смысл и решающую четкую физическую задачу. Роль остальных реакций - исключительно регуляторная: обеспечить превращение фибриногена в фибрин только в нужном месте и в нужное время.

Рисунок 1. Основные реакции свертывания крови. Система свертывания представляет собой каскад - последовательность реакций, где продукт каждой реакции выступает катализатором следующей. Главный «вход» в этот каскад находится в его средней части, на уровне факторов IX и X: белок тканевый фактор (обозначен на схеме как TF) связывает фактор VIIa, и получившийся ферментативный комплекс активирует факторы IX и X. Результатом работы каскада является белок фибрин, способный полимеризоваться и образовывать сгусток (гель). Подавляющее большинство реакций активации - это реакции протеолиза, т.е. частичного расщепления белка, увеличивающего его активность. Почти каждый фактор свертывания обязательно тем или иным образом ингибируется: обратная связь необходима для стабильной работы системы.

Обозначения: Реакции превращения факторов свертывания в активные формы показаны односторонними тонкими черными стрелками . При этом фигурные красные стрелки показывают, под действием каких именно ферментов происходит активация. Реакции потери активности в результате ингибирования показаны тонкими зелеными стрелками (для простоты стрелки изображены как просто «уход», т.е. не показано, с какими именно ингибиторами происходит связывание). Обратимые реакции формирования комплексов показаны двусторонними тонкими черными стрелками . Белки свертывания обозначены либо названиями, либо римскими цифрами, либо аббревиатурами (TF - тканевый фактор, PC - протеин С, APC - активированный протеин С). Чтобы избежать перегруженности, на схеме не показаны: связывание тромбина с тромбомодулином, активация и секреция тромбоцитов, контактная активация свертывания.

Фибриноген напоминает стержень длиной 50 нм и толщиной 5 нм (рис. 2а ). Активация позволяет его молекулам склеиваться в фибриновую нить (рис 2б ), а затем в волокно, способное ветвиться и образовывать трехмерную сеть (рис. 2в ).

Рисунок 2. Фибриновый гель. а - Схематическое устройство молекулы фибриногена. Основа ее составлена из трех пар зеркально расположенных полипептидных цепей α, β, γ. В центре молекулы можно видеть области связывания, которые становятся доступными при отрезании тромбином фибринопептидов А и Б (FPA и FPB на рисунке). б - Механизм сборки фибринового волокна: молекулы крепятся друг к другу «внахлест» по принципу головка-к-серединке, образуя двухцепочечное волокно. в - Электронная микрофотография геля: фибриновые волокна могут склеиваться и расщепляться, образуя сложную трехмерную структуру.

Рисунок 3. Трехмерная структура молекулы тромбина. На схеме показаны активный сайт и части молекулы, ответственные за связывание тромбина с субстратами и кофакторами. (Активный сайт - часть молекулы, непосредственно распознающее место расщепления и осуществляющее ферментативный катализ.) Выступающие части молекулы (экзосайты) позволяют осуществлять «переключение» молекулы тромбина, делая его мультифункциональным белком, способным работать в разных режимах. Например, связывание тромбомодулина с экзосайтом I физически перекрывает доступ к тромбину прокоагулянтным субстратам (фибриноген, фактор V) и аллостерически стимулирует активность по отношению к протеину C.

Активатор фибриногена тромбин (рис. 3) принадлежит к семейству сериновых протеиназ - ферментов, способных осуществлять расщепление пептидных связей в белках. Он является родственником пищеварительных ферментов трипсина и химотрипсина. Протеиназы синтезируются в неактивной форме, называемой зимогеном . Чтобы их активировать, необходимо расщепить пептидную связь, удерживающую часть белка, которая закрывает активный сайт. Так, тромбин синтезируется в виде протромбина, который может быть активирован. Как видно из рис. 1 (где протромбин обозначен как фактор II), это катализируется фактором Xa.

Вообще, белки свертывания называют факторами и нумеруют римскими цифрами в порядке официального открытия. Индекс «а» означает активную форму, а его отсутствие - неактивный предшественник. Для давно открытых белков, таких как фибрин и тромбин, используют и собственные имена. Некоторые номера (III, IV, VI) по историческим причинам не используются.

Активатором свертывания служит белок, называемый тканевым фактором , присутствующий в мембранах клеток всех тканей, за исключением эндотелия и крови. Таким образом, кровь остается жидкой только благодаря тому, что в норме она защищена тонкой защитной оболочкой эндотелия. При любом нарушении целостности сосуда тканевой фактор связывает из плазмы фактор VIIa, а их комплекс - называемый внешней теназой (tenase, или Xase, от слова ten - десять, т.е. номер активируемого фактора) - активирует фактор X.

Тромбин также активирует факторы V, VIII, XI, что ведет к ускорению его собственного производства: фактор XIa активирует фактор IX, а факторы VIIIa и Va связывают факторы IXa и Xa, соответственно, увеличивая их активность на порядки (комплекс факторов IXa и VIIIa называется внутренней теназой ). Дефицит этих белков ведет к тяжелым нарушениям: так, отсутствие факторов VIII, IX или XI вызывает тяжелейшую болезнь гемофилию (знаменитую «царскую болезнь», которой болел царевич Алексей Романов); а дефицит факторов X, VII, V или протромбина несовместим с жизнью.

Такое устройство системы называется положительной обратной связью : тромбин активирует белки, которые ускоряют его собственное производство. И здесь возникает интересный вопрос, а зачем они нужны? Почему нельзя сразу сделать реакцию быстрой, почему природа делает ее исходно медленной, а потом придумывает способ ее дополнительного ускорения? Зачем в системе свертывания дублирование? Например, фактор X может активироваться как комплексом VIIa-TF (внешняя теназа), так и комплексом IXa-VIIIa (внутренняя теназа); это выглядит совершенно бессмысленным.

В крови также присутствуют ингибиторы протеиназ свертывания. Основными являются антитромбин III и ингибитор пути тканевого фактора. Кроме этого, тромбин способен активировать сериновую протеиназу протеин С , которая расщепляет факторы свертывания Va и VIIIa, заставляя их полностью терять свою активность.

Протеин С - предшественник сериновой протеиназы, очень похожей на факторы IX, X, VII и протромбин. Он активируется тромбином, как и фактор XI. Однако при активации получившаяся сериновая протеиназа использует свою ферментативную активность не для того, чтобы активировать другие белки, а для того, чтобы их инактивировать. Активированный протеин С производит несколько протеолитических расщеплений в факторах свертывания Va и VIIIa, заставляя их полностью терять свою кофакторную активность. Таким образом, тромбин - продукт каскада свертывания - ингибирует свое собственное производство: это называется отрицательной обратной связью. И опять у нас регуляторный вопрос: зачем тромбин одновременно ускоряет и замедляет собственную активацию?

Эволюционные истоки свертывания

Формирование защитных систем крови началось у многоклеточных свыше миллиарда лет назад - собственно, как раз в связи с появлением крови. Сама система свертывания является результатом преодоления другой исторической вехи - возникновения позвоночных около пятисот миллионов лет назад. Скорее всего, эта система возникла из иммунитета. Появление очередной системы иммунных реакций, которая боролась с бактериями путем обволакивания их фибриновым гелем, привело к случайному побочному результату: кровотечение стало прекращаться быстрее. Это позволило увеличивать давление и силу потоков в кровеносной системе, а улучшение сосудистой системы, то есть улучшение транспорта всех веществ, открыло новые горизонты развития. Кто знает, не было ли появление свертывания тем преимуществом, которое позволило позвоночным занять свое нынешнее место в биосфере Земли?

У ряда членистогих (таких, как рак-мечехвост) свертывание также существует, но оно возникло независимо и осталось на иммунологических ролях. Насекомые, как и прочие беспозвоночные, обычно обходятся более слабой разновидностью системы остановки кровотечения, основанной на агрегации тромбоцитов (точнее, амебоцитов - дальних родственников тромбоцитов). Этот механизм вполне функционален, но накладывает принципиальные ограничения на эффективность сосудистой системы, - так же, как трахейная форма дыхания ограничивает максимально возможный размер насекомого.

К сожалению, существа с промежуточными формами системы свертывания почти все вымерли. Единственным исключением являются бесчелюстные рыбы: геномный анализ системы свертывания у миноги показал, что она содержит гораздо меньше компонентов (то есть, устроена заметно проще) . Начиная же с челюстных рыб и до млекопитающих системы свертывания очень похожи. Системы клеточного гемостаза также работают по схожим принципам, несмотря на то, что мелкие, безъядерные тромбоциты характерны только для млекопитающих. У остальных позвоночных тромбоциты - крупные клетки, имеющие ядро.

Подводя итог, система свертывания изучена очень хорошо. В ней уже пятнадцать лет не открывали новых белков или реакций, что для современной биохимии составляет вечность. Конечно, нельзя совсем исключить вероятность такого открытия, но пока что не существует ни одного явления, которое мы не могли бы объяснить при помощи имеющихся сведений. Скорее наоборот, система выглядит гораздо сложнее, чем нужно: мы напомним, что из всего этого (довольно громоздкого!) каскада собственно желированием занимается только одна реакция, а все остальные нужны для какой-то непонятной регуляции.

Именно поэтому сейчас исследователи-коагулологи, работающие в самых разных областях - от клинической гемостазиологии до математической биофизики, - активно переходят от вопроса «Как устроено свертывание?» к вопросам «Почему свертывание устроено именно так?» , «Как оно работает?» и, наконец, «Как нам нужно воздействовать на свертывание, чтобы добиться желаемого эффекта. Первое, что необходимо сделать для ответа - научиться исследовать свертывание целиком, а не только отдельные реакции.

Как исследовать свертывание?

Для изучения свертывания создаются различные модели - экспериментальные и математические. Что именно они позволяют получить?

С одной стороны, кажется, что самым лучшим приближением для изучения объекта является сам объект. В данном случае - человек или животное. Это позволяет учитывать все факторы, включая ток крови по сосудам, взаимодействия со стенками сосудов и многое другое. Однако в этом случае сложность задачи превосходит разумные границы. Модели свертывания позволяют упростить объект исследования, не упуская его существенных особенностей.

Попытаемся составить представление о том, каким требованиям должны отвечать эти модели, чтобы корректно отражать процесс свертывания in vivo .

В экспериментальной модели должны присутствовать те же биохимические реакции, что и в организме. Должны присутствовать не только белки системы свертывания, но и прочие участники процесса свертывания - клетки крови, эндотелия и субэндотелия. Система должна учитывать пространственную неоднородность свертывания in vivo : активацию от поврежденного участка эндотелия, распространение активных факторов, присутствие тока крови.

Рассмотрение моделей свертывания естественно начать с методов исследования свертывания in vivo . Основа практически всех используемых подходов такого рода заключается в нанесении подопытному животному контролируемого повреждения с тем, чтобы вызвать гемостатическую или тромботическую реакцию. Данная реакция исследуется различными методами:

  • наблюдение за временем кровотечения;
  • анализ плазмы, взятой у животного;
  • вскрытие умерщвленного животного и гистологическое исследование;
  • наблюдение за тромбом в реальном времени с использованием микроскопии или ядерного магнитного резонанса (рис. 4).

Рисунок 4. Формирование тромба in vivo в модели тромбоза, индуцированного лазером. Эта картинка воспроизведена из исторической работы, где ученые впервые смогли пронаблюдать развитие тромба «вживую». Для этого в кровь мыши впрыснули концентрат флуоресцентно меченных антител к белкам свертывания и тромбоцитам, и, поместив животное под объектив конфокального микроскопа (позволяющего осуществлять трехмерное сканирование), выбрали доступную для оптического наблюдения артериолу под кожей и повредили эндотелий лазером. Антитела начали присоединяться к растущему тромбу, сделав возможным его наблюдение.

Классическая постановка эксперимента по свертыванию in vitro заключается в том, что плазма крови (или цельная кровь) смешивается в некоторой емкости с активатором, после чего производится наблюдение за процессом свертывания. По методу наблюдения экспериментальные методики можно разделить на следующие типы:

  • наблюдение за самим процессом свертывания;
  • наблюдение за изменением концентраций факторов свертывания от времени.

Второй подход дает несравненно больше информации. Теоретически, зная концентрации всех факторов в произвольный момент времени, можно получить полную информацию о системе. На практике исследование даже двух белков одновременно дорого и связано с большими техническими трудностями.

Наконец, свертывание в организме протекает неоднородно. Формирование сгустка запускается на поврежденной стенке, распространяется с участием активированных тромбоцитов в объеме плазмы, останавливается с помощью эндотелия сосудов. Адекватно изучить эти процессы с помощью классических методов невозможно. Вторым важным фактором является наличие потока крови в сосудах.

Осознание этих проблем привело к появлению, начиная с 1970-х годов, разнообразных проточных экспериментальных систем in vitro . Несколько больше времени потребовалось на осознание пространственных аспектов проблемы. Только в 1990-е годы стали появляться методы, учитывающие пространственную неоднородность и диффузию факторов свертывания, и только в последнее десятилетие они стали активно использоваться в научных лабораториях (рис. 5).

Рисунок 5. Пространственный рост фибринового сгустка в норме и патологии. Свертывание в тонком слое плазмы крови активировалось иммобилизованным на стенке тканевым фактором. На фотографиях активатор расположен слева . Серая расширяющаяся полоса - растущий фибриновый сгусток.

Наряду с экспериментальными подходами для исследований гемостаза и тромбоза также используются математические модели (этот метод исследований часто называется in silico ). Математическое моделирование в биологии позволяет устанавливать глубокие и сложные взаимосвязи между биологической теорией и опытом. Проведение эксперимента имеет определенные границы и сопряжено с рядом трудностей. Кроме того, некоторые теоретически возможные эксперименты неосуществимы или запредельно дороги вследствие ограничений экспериментальной техники. Моделирование упрощает проведение экспериментов, так как можно заранее подобрать необходимые условия для экспериментов in vitro и in vivo , при которых интересующий эффект будет наблюдаем.

Регуляция системы свертывания

Рисунок 6. Вклад внешней и внутренней теназы в формирование фибринового сгустка в пространстве. Мы использовали математическую модель, чтобы исследовать, как далеко может простираться влияние активатора свертывания (тканевого фактора) в пространстве. Для этого мы посчитали распределение фактора Xa (который определяет распределение тромбина, который определяет распределение фибрина). На анимации показаны распределения фактора Xa, произведенного внешней теназой (комплексом VIIa–TF) или внутренней теназой (комплексом IXa–VIIIa), а также общее количество фактора Xa (заштрихованная область). (Вставка показывает то же самое на более крупной шкале концентраций.) Можно видеть, что произведенный на активаторе фактор Xa не может проникнуть далеко от активатора из-за высокой скорости ингибирования в плазме. Напротив, комплекс IXa–VIIIa работает вдали от активатора (т.к. фактор IXa медленнее ингибируется и потому имеет большее расстояние эффективной диффузии от активатора), и обеспечивает распространение фактора Xa в пространстве.

Сделаем следующий логический шаг и попробуем ответить на вопрос - а как описанная выше система работает?

Каскадное устройство системы свертывания

Начнем с каскада - цепочки активирующих друг друга ферментов. Один фермент, работающий с постоянной скоростью, дает линейную зависимость концентрации продукта от времени. У каскада из N ферментов эта зависимость будет иметь вид t N , где t - время. Для эффективной работы системы важно, чтобы ответ носил именно такой, «взрывной» характер, поскольку это сводит к минимуму тот период, когда сгусток фибрина еще непрочен.

Запуск свертывания и роль положительных обратных связей

Как упоминалось в первой части статьи, многие реакции свертывания медленны. Так, факторы IXa и Xa сами по себе являются очень плохими ферментами и для эффективного функционирования нуждаются в кофакторах (факторах VIIIa и Va, соответственно). Эти кофакторы активируются тромбином: такое устройство, когда фермент активирует собственное производство, называется петлей положительной обратной связи.

Как было показано нами экспериментально и теоретически, положительная обратная связь активации фактора V тромбином формирует порог по активации - свойство системы не реагировать на малую активацию, но быстро срабатывать при появлении большой. Подобное умение переключаться представляется весьма ценным для свертывания: это позволяет предотвратить «ложное срабатывание» системы.

Роль внутреннего пути в пространственной динамике свертывания

Одной из интригующих загадок, преследовавших биохимиков на протяжении многих лет после открытия основных белков свертывания, была роль фактора XII в гемостазе. Его дефицит обнаруживался в простейших тестах свертывания, увеличивая время, необходимое для образования сгустка, однако, в отличие от дефицита фактора XI, не сопровождался нарушениями свертывания.

Один из наиболее правдоподобных вариантов разгадки роли внутреннего пути был предложен нами с помощью пространственно неоднородных экспериментальных систем. Было обнаружено, что положительные обратные связи имеют большое значение именно для распространения свертывания. Эффективная активация фактора X внешней теназой на активаторе не поможет сформировать сгусток вдали от активатора, так как фактор Xa быстро ингибируется в плазме и не может далеко отойти от активатора. Зато фактор IXa, который ингибируется на порядок медленнее, вполне на это способен (и ему помогает фактор VIIIa, который активируется тромбином). А там, куда сложно дойти и ему, начинает работать фактор XI, также активируемый тромбином. Таким образом, наличие петель положительных обратных связей помогает создать трехмерную структуру сгустка.

Путь протеина С как возможный механизм локализации тромбообразования

Активация протеина С тромбином сама по себе медленна, но резко ускоряется при связывании тромбина с трансмембранным белком тромбомодулином, синтезируемым клетками эндотелия. Активированный протеин С способен разрушать факторы Va и VIIIa, на порядки замедляя работу системы свертывания. Ключом к пониманию роли данной реакции стали пространственно-неоднородные экспериментальные подходы. Наши эксперименты позволили предположить, что она останавливает пространственный рост тромба, ограничивая его размер.

Подведение итогов

В последние годы сложность системы свертывания постепенно становится менее загадочной. Открытие всех существенных компонентов системы, разработка математических моделей и использование новых экспериментальных подходов позволили приоткрыть завесу тайны. Структура каскада свертывания расшифровывается, и сейчас, как мы видели выше, практически для каждой существенной части системы выявлена или предложена роль, которую она играет в регуляции всего процесса.

На рисунке 7 представлена наиболее современная попытка пересмотреть структуру системы свертывания. Это та же схема, что и на рис. 1, где разноцветным затенением выделены части системы, отвечающие за разные задачи, как обсуждалось выше. Не все в этой схеме является надежно установленным. Например, наше теоретическое предсказание, что активация фактора VII фактором Xa позволяет свертыванию пороговым образом отвечать на скорость потока, остается пока еще непроверенным в эксперименте.

Гемостаз - совокупность физиологических процессов, направленных на предупреждение и остановку кровотечений, а также поддержания жидкого состояния крови.

Кровь является очень важной составляющей организма, ведь при участии этой жидкой среды протекают все обменные процессы его жизнедеятельности. Количество крови у взрослых людей составляет около 5 литров у мужчин и 3,5 литров у женщин. Никто не застрахован от различных травм и порезов, при которых нарушается целостность кровеносной системы и ее содержимое (кровь) вытекает за пределы организма. Поскольку крови у человека не так уж и много, то при таком "проколе" вся кровь может вытечь за довольно короткое время и человек умрет, т.к. его организм лишится главной транспортной артерии, питающей весь организм.

Но, к счастью, природа предусмотрела этот нюанс и создала свертывающую систему крови. Это удивительная и очень сложная система, которая позволяет крови находится в жидком состоянии внутри сосудистого русла, но при его нарушении запускает специальные механизмы, который закупоривают образовавшуюся "прореху" в сосудах и не дают крови вытекать наружу.

Свертывающая система состоит из трех компонентов:

  1. свертывающая система - отвечает за процессы свертывания (коагуляции) крови;
  2. противосвертывающая система - отвечает за процессы, препятствующие свертыванию (антикоагуляции) крови;
  3. фибринолитическая система - отвечает за процессы фибринолиза (растворения образовавшихся тромбов).

В нормальном состоянии все эти три системы находятся в состоянии равновесия, давая крови беспрепятсвенно циркулировать по сосудистому руслу. Нарушение такой равновесной системы (гемостаза) дает "перекос" в ту или иную сторону - в организме начинается патологическое тромбообразование, или повышенная кровоточивость.

Нарушение гемостаза наблюдается при многих заболеваниях внутренних органов: ишемической болезни сердца, ревматизме, сахарном диабете, заболеваниях печени, злокачественных новообразованиях, острых и хронических заболеваниях легких и проч.

Свертывание крови - жизненно важное физиологическое приспособление. Образование тромба при нарушении целостности сосуда - это защитная реакция организма, направленная на предохранение от кровопотери. Механизмы образования кровоостанавливающего тромба и патологического тромба (закупоривающего кровеносный сосуд, питающий внутренние органы) очень схожи. Весь процесс свертывания крови можно представить как цепь взаимосвязанных реакций, каждая из которых заключается в активации веществ, необходимых для следующего этапа.

Процесс свертывания крови находится под контролем нервной и гуморальной системы, и непосредственно зависит от согласованного взаимодействия по меньшей мере 12 специальных факторов (белков крови).

Механизм свертывания крови

В современной схеме свертывания крови выделяют четыре фазы:

  1. Протромбинообразование (контактно-калликреин-киниикаскадная активация) - 5..7 минут;
  2. Тромбинообразование - 2..5 секунд;
  3. Фибринообразование - 2..5 секунд;
  4. Посткоагуляционная фаза (образование гемостатически полноценного сгустка) - 55..85 минут.

Уже через доли секунды после повреждения стенки сосуда в зоне травмы наблюдается спазм сосудов, и развивается цепь тромбоцитарных реакций, в результате которых образуется тромбоцитарная пробка. Прежде всего, происходит активация тромбоцитов факторами, выделяющимися из поврежденных тканей сосуда, а также малыми количествами тромбина - фермента, образующегося в ответ на повреждение. Затем происходит склеивание (агрегация) тромбоцитов друг с другом и с фибриногеном, содержащимся в плазме крови, и одновременное прилипание (адгезия) тромбоцитов к коллагеновым волокнам, находящимся в стенке сосуда, и поверхностным адгезивным белкам клеток эндотелия. В процесс вовлекается все большее и большее число тромбоцитов, поступающих в зону повреждения. Первая стадия адгезии и агрегации обратима, но позже эти процессы становятся необратимыми.

Агрегаты тромбоцитов уплотняются, образуя пробку, плотно закрывающую дефект в сосудах малого и среднего размера. Из адгезированных тромбоцитов высвобождаются факторы, активирующие все клетки крови и некоторые факторы свертывания, находящиеся в крови, в результате чего на основе тромбоцитарной пробки формируется фибриновый сгусток. В сети фибрина задерживаются форменные элементы крови и в результате образуется кровяной сгусток. Позднее из сгустка вытесняется жидкость, и он превращается в тромб, который препятствует дальнейшей потере крови, он же является барьером для проникновения патогенных агентов.

Такая тромбоцитарно-фибриновая гемостатическая пробка может противостоять повышенному кровяному давлению после восстановления тока крови в поврежденных сосудах среднего размера. Механизм прилипания тромбоцитов к эндотелию сосудов в зонах с малой и большой скоростью тока крови различается набором так называемых адгезивных рецепторов - белков, расположенных на клетках кровеносных сосудов. Генетически обусловленное отсутствие или снижение числа таких рецепторов (например, довольно часто встречающаяся болезнь Виллебранда) приводит к развитию геморрагического диатеза (кровоточивости).

Факторы свертывания крови

Фактор: Название фактора Свойства и функции
I Фибриноген Белок-гликопротеид, который вырабатывается пареихиматозными клетками печени, превращается под влиянием тромбина в фибрин.
II Протромбин Белок-гликопротеид, неактивная форма фермента тромбина, синтезируется в печени при участии витамина К.
III Тромбопластин Липопротеид (протеолитический фермент), участвующий в местном гемостазе, при контакте с плазменными факторами (VII и Ca) способен активировать фактор X (внешний путь формирования протромбиназы). Проще говоря: превращает протромбин в тромбин.
IV Кальций Потенцирует большинство факторов свертывания крови - участвувет в активации протромбиназы и образовании тромбина, в процессе свертывания не расходуется.
V Проакцелерин Ас-глобулин, образуется в печени, необходим для образования протромбиназы.
VI Акцелерин Потенцирует превращение протромбина в тромбин.
VII Проконвертин Синтезируется в печени при участии витамина К, в активной форме вместе с факторами III и IV активирует фактор X.
VIII Антигемофильный глобулин А Сложный гликопротеид, место синтеза точно не установлено, активирует образование тромбопластина.
IX Антигемофильный глобулин В (Фактор Кристмаса) Бета-глобулин, образуется в печени, участвует в образовании тромбина.
X Тромботропин (Фактор Стюарта-Прауэра) Гликопротеид, вырабатывается в печени, участвует в образовании тромбина.
XI Предшественник плазменного тромбопластина (Фактор Розенталя) Гликопротеид, активирует фактор X.
XII Фактор контактной активации (Фактор Хагемана) Активатор пусковой реакции свертывания крови и кининовой системы. Проще говоря, начинает и локализует тромбообразование.
XIII Фибринстабилизирующий фактор Фибриназа, стабилизирует фибрин в присутствии кальция, катализирует трансаминирование фибрина. Проще говоря, переводит нестабильный фибрин в стабильный.
Фактор Флетчера Плазменный прекалликреин, активирует факторы VII, IX, переводит киинноген в кинин.
Фактор Фитцжеральда Киинноген, в активной форме (кинин) активирует фактор XI.
Фактор Виллебранда Компонент фактора VIII, вырабатывается в эндотелии, в кровотоке, соединяясь с коагуляционной частью, образует полиоценный фактор VIII (антигемофильный глобулин А).

В процессе свертывания крови принимают участие особые плазменные белки - так называемые факторы свертывания крови , обозначаемые римскими цифрами. Эти факторы в норме циркулируют в крови в неактивной форме. Повреждение сосудистой стенки запускает каскадную цепь реакций, в которых факторы свертывания переходят в активную форму. Сначала освобождается активатор протромбина, затем под его влиянием протромбин превращается в тромбин. Тромбин, в свою очередь, расщепляет крупную молекулу растворимого глобулярного белка фибриногена на более мелкие фрагменты, которые затем вновь соединяются в длинные нити фибрина - нерастворимого фибриллярного белка. Установлено, что при свертывании 1 мл крови образуется тромбин в количестве, достаточном для коагуляции всего фибриногена в 3 литрах крови, однако в нормальных физиологических условиях тромбин генерируется только в месте повреждения сосудистой стенки.

В зависимости от пусковых механизмов различают внешний и внутренний пути свертывания крови . Как при внешнем, так и при внутреннем пути активация факторов свертывания крови происходит на мембранах поврежденных клеток, но в первом случае запускающий сигнал, так называемый тканевой фактор - тромбопластин - поступает в кровь из поврежденных тканей сосуда. Поскольку он поступает в кровь извне, данный путь свертывания крови называют внешним путем. Во втором случае сигнал поступает от активированных тромбоцитов, а, поскольку они являются составными элементами крови, этот путь свертывания называют внутренним. Такое разделение достаточно условно, поскольку в организме оба процесса тесно взаимосвязаны. Однако подобное разделение значительно упрощает интерпретацию тестов, используемых для оценки состояния системы свертывания крови.

Цепь превращений неактивных факторов свертывания крови в активные происходит при обязательном участии ионов кальция, в частности, превращение протромбина в тромбин. Кроме кальция и тканевого фактора, в процессе участвуют факторы свертывания VII и X (ферменты плазмы крови). Отсутствие или снижение концентрации любого из необходимых факторов свертывания крови может вызвать продолжительную и обильную кровопотерю. Нарушения в системе свертывания крови могут быть как наследственными (гемофилия, тромбоцитопатии), так и приобретенными (тромбоцитопения). У людей после 50-60 лет содержание фибриногена в крови увеличивается, возрастает число активированных тромбоцитов, происходит ряд других изменений, ведущих к повышению свертываемости крови и опасности возникновения тромбоза.

ВНИМАНИЕ! Информация, представленная сайте сайт носит справочный характер. Администрация сайта не несет ответственности за возможные негативные последствия в случае приема каких-либо лекарств или процедур без назначения врача!

Последние материалы сайта