Современные аспекты биотехнологических исследований презентация. Биотехнологии. Бактерии - наша последняя надежда на выживание

31.10.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Биотехнология, ее достижения и перспективы развития. Этические аспекты некоторых достижений в биотехнологии. Клонирование животных

БИОТЕХНОЛОГИЯ. химическая бионика. Бионика - это использование секретов живой природы с целью создания более совершенных технических устройств. В широком смысле биотехнология - это использование живых организмов и биологических процессов в производстве, т.е. производство необходимых для человека веществ с использованием достижений микробиологии, биохимии и технологии, в которых используются бактерии, микроорганизмы и клетки различных тканей.

Микроб, этот гадкий утенок первых лет эпидемиологии, благодаря успехам науки и техники, достижениям человеческого гения, превратился в прекрасного лебедя генетической инженерии современной биотехнологии и индустрии живых клеток. Б.Я. Нейман

Микроорганизмы характеризуются большой скоростью размножения, часто путем простого деления пополам. Например: бактериальная клетка в благоприятных условиях делится пополам через каждые 20-25 минут. 2. Разнообразны по физиологическим и биохимическим свойствам, некоторые живут в условиях, не пригодных для жизни других. Например: выдерживают высокий уровень радиации, высокие (75–105°С) и низкие (-80°С) температуры, концентрацию хлорида натрия до 30%, отсутствие кислорода (анаэробы).

3. Очень продуктивны. Например: 1 корова массой 500 кг вырабатывает в сутки 0,5 кг белка. 500 кг растений – 5 кг белка. 500 кг дрожжей – 50 т белка (а это масса 10 слонов!) ! При определенных условиях микробная клетка способна за равное время продуцировать в 100 000 раз больше белка, чем животная клетка. При этом использует дешевые вещества (крахмальные растворы, сточные воды). 4. Чрезвычайная приспособляемость, т.е. их можно быстро и легко селекционировать

Например: чтобы получить новый сорт хлебного злака, необходимы десятилетия или даже столетия, а у кистевидной плесени всего за 30 лет удалось в 1000 раз повысить продуктивность. 5. Микроорганизмы повсеместно распространены в природе, играют важную роль в круговороте веществ (благодаря большому разнообразию микроорганизмы бывают автотрофами, хемоавтотрофами и гетеротрофами, в трофических цепях часто являются редуцентами).

Использование микроорганизмов. Пищевая промышленность. Химическая промышленность. Металлургия. Сельское хозяйство. Охрана природы Хлебопечение, Виноделие,

Сыроварение, получение молочно-кислых продуктов, уксуса, кормовых белков. Производство антибиотиков, витаминов, гормонов, аминокислот, синтетических вакцин, получение метана как топлива. Выщелачивание некоторых металлов из бедных руд (медь, уран, золото, серебро). Производство силоса и азотфиксаторов, биологическая защита растений. Очистка сточных вод. Ликвидация разлива нефти.

Биотехнология – производство необходимых человеку продуктов и материалов с помощью биологических объектов и процессов. (Появление термина “биотехнология” в 1970-х гг. связано с успехами молекулярной генетики.)

Методы биотехнологии: 1) Клеточная инженери я – метод получения новых клеток и тканей на искусственной питательной среде. В основе метода лежит высокая способность живых культур к регенерации. 1-ый метод – Культивирование. Метод основан на способности клеток растений и животных делиться при помещении их в питательную среду, где содержатся все необходимые для жизнедеятельности вещества.. Например: Культура клеток женьшеня нарабатывает ценные для человека вещества, выращенные клетки кожи используют для лечения ожогов.

2-ой метод – Реконструкция (метод “ in vitro ”– в пробирке). Помещая клетки растений в определенные питательные среды, размножают редкие и ценные виды. Это позволяет создавать безвирусные культуры редких растений. 3-ий метод – Клонирование. Метод пересадки ядер соматических клеток в яйцеклетки позволяет получать генетической копии одного организма.

2) Хромосомная инженерия 1-ый метод– Метод гаплоидов. Метод основан на выращивании гаплоидных растений с последующим удвоением хромосом. Всего за 2–3 года получают полностью гомозиготные растения вместо 6–8 лет инбридинга. 2-ой метод-Метод полиплоидов. Получение полиплоидных растений в результате кратного увеличения хромосом 3-ий метод -замена некоторых хромосом в геноме одного организма на сестринские из генома другого организма этого же или близкого вида.

3) Генная инженерия – основана на выделении (или на искусственном синтезе) нужного вида из генома одного организма и введении его в геном другого организма, зачастую далекому по происхождению (впервые процесс был проведен в 1969 году). Например: Излюбленный объект генных инженеров – кишечная палочка. С помощью нее получают соматотропин (гормон роста), интерферон (белок, который культивирование помогает справиться со многими вирусными инфекциями), инсулин (гормон поджелудочной железы) Растения и животные, геном которых изменен с помощью подобных операций, называют трансгенными.

В 1983 в США, Бельгии и Германии впервые получены трансгенные растения. Сейчас – 17 стран выращивают трансгенные растения, которые имеют необходимые для человека сроки созревания, их плоды обладают способностью к длительному хранению и не теряют товарный вид при транспортировке.

Уже получены трансгенные свиньи, овцы и кролики в геном которых были введены гены различного происхождения – вирусов, микроорганизмов, грибов, человека; получены трансгенные растения с генами животных, микроорганизмов, вирусов и искусственно созданными генами. Большая часть трансгенных культур выращивается в США.

Например: Китай – табак, рис, соя, томаты, быстрорастущие сорта, которые могут расти на засоленных почвах. США – хлопчатник, кукуруза, картофель – устойчивы к вредителям, так как эти растения вырабатывают энтомоксин

Генетики работают над получением растений-вакцин, т.е. растений содержащих готовые антитела на различные заболевания или вещества, препятствующие развитию болезни. Например: картофель вырабатывает антитела холеры (Россия). Красный помидор содержит в 3,5 раза больше ликонина (красный пигмент). Ликонин, обладая окислительными свойствами, снижает вероятность раковых заболеваний (США).

IV. Этические аспекты развития некоторых исследований в биотехнологии. – Клонирование человека. – Создание генетически модифицированных штаммов вирусов и бактерий. Клони́рование челове́ка - прогнозируемая методология, заключающаяся в создании эмбриона и последующем выращивании из эмбриона людей, имеющих генотип того или иного индивида, ныне существующего или ранее существовавшего.

Выполнила: преподаватель химии, биологии ГБПОУ ЧТПрИС Дубровина Л.В.


Слайд 2

Население планеты

В 1980 г. на Земле насчитывалось 4,5 млрд. человек, от которых ежегодно рождается 80 млн. детей. В настоящее время на планете - 6 млрд. человек. 10 млрд. человек Земля не прокормит, и встанет вопрос о регуляции численности населения! Чтобы этого не произошло, нужно удовлетворять возрастающие потребности людей в продуктах питания

Слайд 3

Нужны принципиально новые технологии производства. К счастью такая многоотраслевая наука недавно появилась - это биотехнология /

Слайд 4

Википедия

Биотехнология - наука об использовании живых организмов, их биологических особенностей и процессов жизнедеятельности в производстве необходимых человеку веществ

Слайд 5

Бактерии - наша последняя надежда на выживание.

Деление – быстрое размножение Потрясающая выживаемость Простота генетической организации

Слайд 6

Направления развития

Выращивание бактерий, низших грибов, дрожжей на спец. питательных средах для производства ферментов, белков, антибиотиков, кислот лимонной и уксусной. Продукцию используют для получения пищевых добавок, корма для скота, лекарств (более 150 видов продукции, в том числе лизина)

Слайд 7

-Клеточная инженерия

Из отдельной клетки можно вырастить целый организм

Слайд 8

Методы селекции микроорганизмов

Традиционные методы- экспериментальный мутагенез и отбор по продуктивности. Новейший метод - генная инженерия В генной инженерии используют два способа: - выделение нужного гена из генома одного организма и внедрение его в геном бактерий; - синтез искусственным путем гена и внедрение его в геном бактерий

Слайд 9

Трансгенные организмы.

Трансгенные организмы - животные, растения, микроорганизмы, вирусы, генетическая программа которых изменена с использованием методов генной инженерии.

Слайд 10

Механизм процесса

С помощью генной инженерии ученые выделяют ген какого-нибудь организма и «встраивают» его в ДНК других растений или животных (производят транспортировку гена, т.е. трансгенизацию) с целью изменения свойств или параметров последних

Слайд 11

Трансгенные организмы

  • Слайд 12

    Заманчивые перспективы

    При трансгенизации направленность развития организмов, их изменчивость и отбор будут определяться человеком и его интересами.

    Слайд 13

    Человек – творец?

    Но нужно, несомненно, проявлять максимальную осторожность при создании и, особенно, при использовании генетически модифицированных организмов.

    Слайд 14

    Клонирование

    Клони́рование (англ. cloning от др.-греч. κλών - «веточка, побег, отпрыск») - в самом общем значении - точное воспроизведение какого-либо объекта N раз. Объекты, полученные в результате клонирования, называются клоном. Причём как каждый по отдельности, так и весь ряд.

    Слайд 15

    Клонирование животных

    Зачем сейчас клонируют животных? Во-первых, можно было бы воспроизводить ценные с той или иной точки зрения особи, например чемпионов пород крупного рогатого скота, овец, свиней, скаковых лошадей, собак и т.п. Во-вторых, превращение обычных животных в трансгенных сложно и дорого: клонирование позволило бы получать их копии.

    Слайд 16

    Клонирование человека

    Клони́рование челове́ка - действие, заключающееся в формировании и выращивании принципиально новых человеческих существ, точно воспроизводящих не только внешне, но и на генетическом уровне того или иного индивида, ныне существующего или ранее существовавшего

    Описание презентации по отдельным слайдам:

    1 слайд

    Описание слайда:

    2 слайд

    Описание слайда:

    Биотехнология занимает 2-е место по инвестиционной привлекательности после информационных технологий. Биотехнология (БТ) - дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии.

    3 слайд

    Описание слайда:

    4 слайд

    Описание слайда:

    Биотехнология Сельское хозяйство Медицина Биокатализ Добыча полезных ископаемых Нанобио- технологии - химическая промышленность; - полупродукты для фарминдустрии. - новые ЛС и вакцины; - диагностикумы (включая микрочипы); - генодиагностика; - генотерапия; - индивидуальная медицина; - регенеративная медицина (стволовые клетки). - добыча металлов (гидрометаллургия); - добыча нефти (вторичная). - новые материалы; - биосенсоры; - биокомпьютеры. - биодеградация поллютантов; - замена хим. удобрений и пестицидов на биолог.; биодеградируемые пластики; - замена нефти на биомассу; - сокращение выброса CO2. Охрана окружающей среды - генно-инженерные растения и животные; - биопестициды, биоудобрения; - кормовые аминокислоты, антибиотики, витамины, ферменты. зеленая белая зеленая красная

    5 слайд

    Описание слайда:

    Периоды развития бт I - Эмпирический период. II - Научно-практический период (этиологический). III - Биотехнический период. IV - Генотехнический период.

    6 слайд

    Описание слайда:

    I - Эмпирический период (Около 6000 лет до н.э. - середина ХIХ в.) Характеризуется интуитивным использованием биотехнологических приемов и способов: хлебопечение, виноделие, пивоварение, получение кисломолочных продуктов, сыров, квашенной капусты, силосование кормов для скота и пр.; выделка кожи, получение натуральных красителей; получение натуральных волокон: льна, шелка, шерсти, хлопка; В фармации и медицине: гирудотерапия, апитерапия; профилактика натуральной оспы содержимым пустул телят, больных коровьей оспой.

    7 слайд

    Описание слайда:

    II – Научно-практический период (1856-1933 гг.) Установление видовой индивидуальности микроорганизмов. Выделение микроорганизмов в чистых культурах и выращивание на питательных средах. Воспроизведение природных процессов (брожения, окисления и пр.). Производство биомассы пищевых прессованных дрожжей. Получение бактериальных метаболитов (ацетон, бутанол, лимонная и молочная кислоты). Создание систем микробиологической очистки сточных вод. Л. Пастер – основоположник научной микробиологии. Первая жидкая питательная среда (1859 год). А.де Бари – основоположник физиологической микологии и микрофитопатологии. Д.И. Ивановский – обнаружение вируса мозаичной болезни табака (1892 год) Введение в современную биотехнологию доцент С.Н.Суслина, РУДН

    8 слайд

    Описание слайда:

    III – Биотехнический период (1933-1972 гг.) Начало промышленной биотехнологии. Внедрение в производство крупномасштабного герметизированного оборудования для ферментации в стерильных условиях. Методические подходы к оценке и интерпретации получаемых результатов при глубинном культивировании грибов. Становление и развитие производства антибиотиков (период Второй мировой войны). «Методы изучения обмена веществ у плесневых грибов» (А. Клюйвер, Л.Х.Ц. Перкин) – начало биотехнического периода. Введение в современную биотехнологию доцент С.Н.Суслина, РУДН

    9 слайд

    Описание слайда:

    1936 - были решены основные задачи по созданию и внедрению в практику необходимого оборудования, в том числе главного из них - биореактора; 1938 - А. Тизелиус разработал теорию электрофореза; 1942 - М. Дельбрюк и Т. Андерсон впервые «увидели» вирусы с помощью электронного микроскопа; 1943 - пенициллин произведен в промышленных масштабах; 1949 - Дж. Ледерберг открыл процесс конъюгации у Е.colly; 1950 - Ж. Моно разработал теоретические основы непрерывного управляемого культивирования м/о; 1951 - М. Тейлер разработал вакцину против желтой лихорадки; 1952 - У. Хейс описал плазмиду как внехромосомный фактор наследственности; 1953 - Ф. Крик и Дж. Уотсон расшифровали структуру ДНК. 1959 - японские ученые открыли плазмиды антибиотикоустойчивости у дизентерийной бактерии; 1960 - С. Очоа и А. Корнберг выделили белки, которые могут «сшивать» или «склеивать» нуклеотиды в полимерные цепочки, синтезируя тем самым макромолекулы ДНК. Один из таких ферментов был выделен из кишечной палочки и назван ДНК-полимераза; 1961 - М. Ниренберг прочитал первые три буквы генетического кода для фенилаланина; 1962 - X. Корана синтезировал химическим способом функциональный ген; 1970 - выделен фермент рестриктаза (рестриктирующая эндонуклеаза). Значимые открытия, которые нашли свое отражение в биотехническом периоде

    10 слайд

    Описание слайда:

    IV –генотехнический период с 1972г. 1972 - первая рекомбинантная молекула ДНК (П. Берг, США). 1975 - Г. Келлер и Ц. Мильштейн опубликовали статью, в которой описали метод получения моноклональных антител; 1981 - разрешен к применению в США первый диагностический набор моноклональных антител; 1982 - поступил в продажу человеческий инсулин, продуцируемый клетками кишечной палочки; разрешена к применению в Европейских странах вакцина для животных, полученная по технологии рекомбинантных ДНК; разработаны генно-инженерные интерфероны, фактор некротизации опухоли, ИЛ-2, соматотропный гормон человека и др; 1986 - К. Мюллис разработал метод ПЦР; 1988 - начало широкомасштабного производства оборудования и диагностических наборов для ПЦР; 1997 - клонировано первое млекопитающее (овечка Долли) из дифференцированной соматической клетки.

    11 слайд

    Описание слайда:

    основные направления биотехнологии Биотехнология Клеточная инженерия Объекты биотехнологии Культивируемые ткани Клетки животных Клетки растений Микроорганизмы, созданные методами генной инженерии Промышленная биотехнология Генетическая инженерия Биотехнология обработки стоков и контроль загрязнения воды тяжелыми Me. Биоэнергетика. Пищевая биотехнология. Медицинская биотехнология. Биотехнология молочных продуктов. Сельскохозяйственная биотехнология. Биоэлектроника. Биогеотехнология.

    12 слайд

    Описание слайда:

    Биоэнергетика Сухое вещество - сгорание – тепло - механическая или электрическая энергия. Сырое вещество - получение биогаза (метана). Метановое «брожение», или биометаногенез был открыт в 1776 г. Вольтой, который установил наличие метана в болотном газе. Биогаз представляет собой смесь из 65% метана, 30% (СО2), 1% (Н2S) и незначительных количеств (N2), (O2), H2и (CO).

    13 слайд

    Описание слайда:

    Биотехнология обработки стоков и контроль загрязнения воды тяжелыми металлами Сточные воды обычно содержат сложную смесь нерастворимых и растворимых компонентов различной природы и концентрации. Бытовые отходы, как правило, содержат почвенную и кишечную микрофлору, включая патогенные микроорганизмы. Сточные воды сахарных, крахмальных, пивных и дрожжевых заводов, мясокомбинатов содержат в больших количествах углеводы, белки и жиры, являющиеся источниками питательных веществ и энергии. Стоки химических и металлургических производств могут содержать значительное количество токсических и даже взрывчатых веществ. Серьезное загрязнение возникает при попадании в окружающую среду соединений тяжелых металлов, таких как железо, медь, олово и др. Цель очистки сточных вод - удаление растворимых и нерастворимых компонентов, элиминирование патогенных микроорганизмов и проведение детоксикации таким образом, чтобы компоненты стоков не вредили человеку, не загрязняли водоемы.

    14 слайд

    Описание слайда:

    Бактерии рода Pseudomonas практически всеядны. Например, P. putida могут утилизировать нафталин, толуол, алканы, камфару и др. соединения. Выделены чистые культуры микроорганизмов, способные разлагать специфические фенольные соединения, компоненты нефти в загрязненных водах и т.д. Микроорганизмы рода Pseudomonas могут утилизировать и необычные химические соединения - инсектициды, гербициды и другие ксенобиотики. Биологические методы также применимы для очистки сточных вод нефтяной промышленности. Для этого применяют аэрируемые системы биоочистки с активным илом, содержащим адаптированное к компонентам нефти микробное сообщество. В институте прикладной биохимии и машиностроения разработан отечественный препарат - биодеградант нефти и нефтепродуктов. Он позволяет утилизировать как сырую нефть, так и различные нефтепродукты: мазут, дизельное топливо, бензин, керосин, ароматические углеводороды. Биопрепарат работает при высоком уровне загрязнения до 20%, с высоким содержанием тяжёлых алифатических и ароматических углеводородов. Биотехнология обработки стоков и контроль загрязнения воды тяжелыми металлами

    15 слайд

    Описание слайда:

    Сельскохозяйственная биотехнология Биологическая азотфиксация - процесс перевода азота, содержащегося в атмосфере в виде химически инертного N2, в доступную для растений форму нитратов и аммония. Азот составляет 78% от общего объема атмосферного воздуха и абсолютно недоступен для растений в атамарном виде. Именно поэтому люди вынуждены вносить азотные удобрения для повышения продуктивности с/х культур. Фиксация атмосферного азота осуществляется бактериями, живущими в симбиозе с представителями семейства или свободноживущими азотфиксаторами (Azotobacter). Разработаны бактериальные препараты, улучшающие фосфорное питание растений. В последнее время все чаще появляются данные о мутагенном и канцерогенном действии химических пестицидов, которые плохо разрушаются и накапливаются в окружающей среде. Микробные инсектициды высоко специфичны и действуют только на определенные виды насекомых. Микробные пестициды подвержены биодеградации. М/о могут регулировать рост растений и животных, подавлять з-ния. Некоторые бактерии изменяют pH и соленость почвы, другие продуцируют соединения, связывающие Fe, третьи - вырабатывают регуляторы роста. Как правило, м/о инокулируют семена и или растения перед посадкой. В животноводстве используется диагностика, профилактика, лечение з-ний с использованием моноклональных Ат, генетическое улучшение пород животных. Биотехнология применяется для силосования кормов, позволяя повышать усвоение растительной биомассы, для утилизации отходов животноводческих ферм и др.

    16 слайд

    Описание слайда:

    Биогеотехнология Использование геохимической деятельности микроорганизмов в горнодобывающей промышленности. Выщелачивание бедных и отработанных руд, десульфирование каменного угля, борьба с метаном в угольных шахтах, повышение нефтеотдачи пластов и др. Биогеотехнология выщелачивания металлов - использование главным образом тионовых (окисляющих серу и серосодержащие соединения) бактерий для извлечения металлов из руд, рудных концентратов и горных пород. При переработке бедных и сложных руд тысячи и даже миллионы тонн ценных металлов теряются в виде отходов, шлаков, «хвостов». Происходят также выбросы вредных газов в атмосферу. Бактериально-химическое выщелачивание металлов уменьшает эти потери. Основу этого процесса составляет окисление содержащихся в рудах сульфидных минералов тионовыми бактериями. Окисляются сульфиды меди, железа, цинка, олова, кадмия и т. д. При этом металлы из нерастворимой сульфидной формы переходят в сульфаты, хорошо растворимые в воде. Из сульфатных растворов металлы извлекаются путем осаждения, экстракции, сорбции. Основным видом м/о используемым для биогеотехнологической добычи металлов, является вид тионовых бактерий Thiobacillus ferrooxidans. Биогеотехнология стихийно зародилась еще в XVI в. По-видимому, 1922 г. следует считать официальной датой рождения биогеотехнологии. Thiobacillus ferrooxidans октрыты в 1947 г. Колмером и Кинкелемю Введение в современную биотехнологию доцент С.Н.Суслина, РУДН

    17 слайд

    Описание слайда:

    Биогеотехнология Биогеотехнология обессеривания углей - использование тионовых бактерий для удаления серосодержащих соединений из углей. Общее содержание серы в углях может достигать 10-12 %. При сжигании углей содержащаяся в них сера превращается в сернистый газ, который поступает в атмосферу, где из него образуется серная кислота. Из атмосферы серная кислота выпадает на поверхность земли в виде сернокислотных дождей. По имеющимся данным, в некоторых странах Западной Европы в год на 1га земли с дождями выпадает до 300 кг серной кислоты. Кроме этого, высокосернистые угли плохо коксуются и поэтому не могут быть использованы в цветной металлургии. Первые опыты по направленному удалению серы из угля с использованием микроорганизмов были выполнены в 1959 г. в нашей стране 3. М. Зарубиной, Н. Н. Ляликовой и Е. И. Шмук. В результате этих опытов за 30 суток с участием бактерий Th. ferrooxidans из угля было удалено 23-30 % серы. Позднее несколько работ по микробиологическому обессериванию угля было опубликовано американскими исследователями. Им удалось с помощью тионовых бактерий снизить содержание пиритной серы в каменном угле за четверо суток почти на 50 %.

    18 слайд

    Описание слайда:

    Биоэлектроника В области электроники биотехнология может быть использована для создания улучшенных типов биосенсоров и биочипов. Биотехнология делает возможным создание устройств, в которых белки являются основой молекул, действующих как полупроводники. Для индикации загрязнений различного происхождения в последнее время стали использовать не химические реагенты, а биосенсоры – ферментные электроды, а также иммобилизованные клетки микроорганизмов. Биоселективные датчики создают также путем нанесения на поверхность ионоселективных электродов целых клеток м/о или тканей. Например, Neurospora europea – для определения NH3, Trichosporon brassiacae – для определения уксусной кислоты. В качестве сенсоров используют также моноклональные Ат, обладающие исключительно высокой избирательностью. Лидерами в производстве биодатчиков и биочипов являются японские компании, такие как Hitachi, Sharp, Sony.

    19 слайд

    Описание слайда:

    Медицинская биотехнология Вакцины и сыворотки. Антибиотики. Ферменты и антиферменты. Гормоны и их антагонисты. Витамины. Аминокислоты. Кровезаменители. Алкалоиды. Иммуномодуляторы. Биорадиопротекторы. Иммунные диагностикумы и биосенсоры. Биогеотехнология стихийно зародилась еще в XVI в. По-видимому, 1922 г. следует считать официальной датой рождения биогеотехнологии. Thiobacillus ferrooxidans октрыты в 1947 г. Колмером и Кинкелемю Введение в современную биотехнологию доцент С.Н.Суслина, РУДН

    20 слайд

    Описание слайда:

    Ключевые биомедицинские технологии Производство вторичных метаболитов - НМС не требующиеся для роста в чистой культуре: а/б, алкалоиды, гормоны роста растений и токсины. Протеиновая технология – применение трансгенных микроорганизмов для синтеза чужеродных для продуцентов белков (инсулин, интерферон). Гибридомная технология –получение моноклональных Ат к антигенам бактерий, вирусов, животных и растительных клеток, чистых ферментов и белков. Инженерная энзимология – осуществление биотрансформации веществ с использованием каталитических функций ферментов в чистом виде или в составе ПФС (клеток) в т.ч. иммобилизованных.

    21 слайд

    Описание слайда:

    Биотехнология ВОЗМОЖНОСТИ Точная и ранняя диагностика, профилактика и лечение инфекционных и генетических заболеваний; Повышение урожайности сельхоз. культур путем создания растений устойчивых к вредителям, болезням и неблагоприятным условиям окружающей среды; Создание микроорганизмов продуцирующих различные БАВ (антибиотики, полимеры, аминокислоты, ферменты); Создание пород сельхоз животных с улучшенными наследуемыми признаками; Переработка токсичных отходов – загрязнителей окружающей среды. ПРОБЛЕМЫ Влияние генноинженерных организмов на другие организмы или окружающую среду; Уменьшение природного генетического разнообразия при создании рекомбинантных организмов; Изменение генетической природы человека с помощью генноинженерных методов; Нарушение права человека на неприкосновенность частной жизни при применении новых диагностических методов; Доступность лечения только богатым с целью получения прибыли; Помехи свободному обмену мыслями между учеными в борьбе за приоритеты

    22 слайд

    Описание слайда:




    Сегодня биотехнологии человек широко применяет: так созданы бактерии, которые используют при очистке сточных вод; бактерии, которые разлагают нефть при нефтяных разливах; биотехнологии широко применяют в медицине: созданы и создаются антибиотики различного спектра действия; синтезируются различные гормоны: н-р гормон роста; инсулин.




    Генная инженерия - это искусственный перенос нужных генов от одного вида живых организмов (бактерий, животных, растений) в другой вид, для создания организма с необходимыми свойствами. Удобными объектами генной инженерии чаще всего являются микроорганизмы (бактерии).















    СПИСОК КОМПАНИЙ, КОТОРЫЕ ИСПОЛЬЗУЮТ В ПРОДУКЦИИ ГМО Coca-Cola (Кока-Кола) Nestle (Нестле) - всем известно, но особенно детское питание!!! Kelloggs (Келлогс) - готовые завтраки и кукурузные хлопья Heinz Foods (Хайенц Фудс) - соусы, кетчупы Unilever (Юнилевер) - детское питание!!! Майонезы, соусы Hersheys (Хёршис) - шоколад, безалкогольные напитки McDonalds (Макдональдс) PepsiCo (Пепси-Кола) Danon (Данон) - кисломолочные продукты Cadbury (Кэдбери) - шоколад. Similac (Симилак) - детское питание Mars (Марс) - Марс, Сникерс, Твикс. Кроме того, если вы видите на этикетке Е101, 270, 320, 570 и прочие, то знайте, что перед вами ГМО.



    Аргументы «за» ГМО: 1. Решение продовольственной проблемы. 2. Развитие ГМ-технологий востребовано медициной, где их достижения давно и успешно применяются. 3. Риски от потребления пищевых продуктов из ГМО минимальны (чужеродный белок разлагается как обычный) 4. Появление у сельскохозяйственных растений свойств, обеспечивающих защиту от порчи и вредителей, снижает потребность в применении сельхозхимии, вред которой доказан. 5.ГМ-технологии по своим результатам не отличаются от мутаций, постоянно происходящих в живой природе, а от технологии классической селекции – и по своей структуре, но являются более щадящими для усовершенствуемого растения. 6. ГМО позволяют создавать биотопливо, что приводит к энергосбережению.


    Аргументы «против» ГМО: Угроза организму человека – аллергические заболевания, нарушения обмена веществ, появление желудочной микрофлоры, стойкой к антибиотикам, канцерогенный и мутагенный эффекты. Угроза окружающей среде – появление вегетирующих сорняков, загрязнение исследовательских участков и др. Глобальные риски – активизация критических вирусов, экономическая безопасность.



    Клонирование – создание многочисленных генетических копий одного индивида с помощью бесполого размножения. Впервые успешный эксперимент по клонированию был осуществлен в конце 60-х гг. 20 века в Оксфордском университете Гёрдоном на лягушке, ученый доказал, что информации, содержащейся в ядре любой клетки достаточно для развития полноценного организма. В 1996 г. В Шотландии клонировали овцу Долли из клетки эпителия молочной железы. (рис. 94, стр.187).


    Существуют этические аспекты развития биотехнологии! Активное внедрение биотехнологий в медицину и генетику человека привело к появлению специальной науки-биоэтики. Биоэтика- наука об этичном отношении ко всему живому, в том числе и к человеку. В 1996 г. Совет Европы принял Конвенцию о правах человека при использовании геномных технологий в медицине. Всякое изменение генома человека может производиться только лишь на соматических клетках.


    Перспективы будущего. Сегодня уже известны примеры вживления в организм человека микрочипов, клонирование человеческих органов находится в стадии разработки, кроме того существуют специальные костюмы которые помогают парализованным людям передвигаться, но пока они находятся на стадии тестирования. Помимо технологий для человеческого тела, специалисты биотехнологий разрабатывают возможности увеличения количества белка в растениях, что позволит в будущем отказаться от мяса. В медицине разрабатываются вакцины против известных болезней, кроме того исследуется область омоложения клеточного уровня человека, что позволит замедлить старение. В промышленном секторе биотехнологии используются для получения биотоплива и биогаза, что снизит загрязнение окружающей среды и сократит размеры использования природных ресурсов.


    Что такое биотехнология животных? На настоящий момент биотехнологии приобретают все более важную роль в повышении доходности животноводства. Внедрение результатов биотехнологических исследований в животноводство происходит в первую очередь в следующих областях деятельности: 1. Улучшение здоровья животных с помощью биотехнологии; 2. Новые достижения в лечении людей с помощью биотехнологических исследований на животных; 3. Улучшение качества продуктов животноводства с помощью биотехнологии; 4. Достижения биотехнологии в охране окружающей среды и сохранении биологического разнообразия. Биотехнология животных включает в себя работу с различными животными (скотом, домашней птицей, рыбой, насекомыми, домашними животными и лабораторными животными) и исследовательскими приемами – геномикой, генной инженерией и клонированием.геномикойгенной инженерией и клонированием


    Биотехнология для улучшения здоровья животных На сегодняшний день, по оценкам специалистов, рынок биотехнологических ветеринарных средств составляет 2,8 миллиардов долларов США. Ожидается, что в 2005 году эта цифра возрастет до 5,1 миллиардов. На июль 2003 года на фармакологическом рынке было зарегистрировано 111 биотехнологических ветеринарных продуктов, в том числе убитых бактериальных и вирусных вакцин. Ежегодно ветеринарная промышленность инвестирует в исследования и разработку новых препаратов более 400 миллионов долларов США.


    Примеры диагностики и лечения животных – биотехнология позволяет фермерам немедленно диагностировать с помощью тестов на основе ДНК-типирования и определения наличия антител следующие инфекционные заболевания: бруцеллез, псевдобешенство, понос, ящур, лейкоз птиц, коровье бешенство и трихинеллез; – в скором времени ветеринары получат в свое распоряжение биотехнологические средства для лечения различных заболеваний, в том числе ящура, свиной лихорадки и коровьего бешенства; – новые биологические вакцины используются для защиты животных от широкого спектра заболеваний, включая ящур, понос, бруцеллез, легочные инфекции свиней (плевропневмонию, пневмонический пастереллез, энзоотическую пневмонию), геморрагическую септицемию, птичью холеру, псевдочуму домашней птицы, бешенство и инфекционные заболевания выращиваемой в искусственных условиях рыбы; коровье бешенство


    Примеры диагностики и лечения животных – активная работа ведется над созданием вакцины против африканского заболевания скота, получившего название лихорадки Восточного побережья. В случае успеха эта вакцина станет первым препаратом для борьбы с простейшими и одновременно первым шагом на пути к разработке противомалярийной вакцины; – молекулярные методы идентификации патогенов, такие как геномная дактилоскопия, позволяют наблюдать за распространением заболевания внутри стада и от популяции к популяции и идентифицировать источник инфекции; – генетический анализ патогенеза заболеваний животных ведет к улучшению понимания факторов, вызывающих заболевания не только животных, но и человека, и подходов к контролю над ними;геномная дактилоскопия


    Примеры диагностики и лечения животных – улучшенные с помощью биотехнологии сорта кормовых растений обеспечивают повышение питательности кормов за счет дополнительного содержания в них аминокислот и гормонов, приводящих к ускорению роста животных и повышению их продуктивности. Биотехнологические приемы позволяют повысить усвояемость грубых кормов. Ученые работают над новыми сортами растений с целью создания съедобных вакцин для сельскохозяйственных животных. В ближайшем будущем фермеры получат возможность кормить свиней генетически модифицированной люцерной, стимулирующей специфический иммунитет к опасной кишечной инфекции. – новые ДНК-тесты позволяют выявлять свиней, страдающих генетически обусловленным свиным стресс- синдромом, характеризующимся дрожанием и гибелью животных при воздействии стрессовых факторов; – передающиеся по наследству неблагоприятные признаки скота могут быть идентифицированы с помощью ДНК-тестов, в настоящее время использующихся в национальных селекционных программах в Японии. С их помощью можно выявить дефект адгезии лейкоцитов, характеризующийся повторяющимися бактериальными инфекциями, задержкой роста и гибелью в течение первого года жизни; недостаточность фактора свертываемости крови XIII; наследственные формы анемии и задержку роста крупного рогатого скота.


    Руководители животноводческих хозяйств непосредственно заинтересованы в повышении продуктивности сельскохозяйственных животных. Их конечной целью является повышение количества продукции (молока, яиц, мяса, шерсти) без увеличения затрат на содержание поголовья. Увеличение мышечной массы с одновременным снижением количества жира в организме мясных животных с незапамятных времен является целью селекционеров. Повышение продуктивности скота Именно с нее началась селекция и постепенное уменьшение свиней.


    1 способ повышение продуктивности скота Биотехнология помогает улучшить продуктивность скота с помощью различных вариантов селекционного разведения. Для начала отбираются особи, обладающие желаемыми характеристиками, после чего, вместо традиционного скрещивания, производится забор спермы и яйцеклеток и последующее экстракорпоральное оплодотворение. Через несколько дней развивающийся эмбрион имплантируется в матку суррогатной матери соответствующего вида, но необязательно той же породы.


    2 способ повышение продуктивности скота В 2003 году был официально зарегистрирован первый проверенный с помощью метода полиморфизма одного нуклеотида (SNP – single nucleotide polymorphisms) геном крупного рогатого скота мясного направления. SNP-метод используется для идентификации генных кластеров, ответственных за формирование того или иного признака, например, за поджарость животного. После чего с помощью методов традиционной селекции выводятся породы, в данном случае, отличающиеся повышенной мускулистостью. Во всем мире ведется активная работа по секвенированию геномов различных животных и насекомых. В октябре 2004 года было объявлено об успешном завершении проекта по секвенированию коровьего генома (Bovine Genome Sequencing Project). В декабре 2004 года было также успешно завершено секвенирование генома курицы. генома курицы


    3 способ повышение продуктивности скота Для повышения продуктивности животных нужен полноценный корм. Микробиологическая промышленность выпускает кормовой белок на базе различных микроорганизмов бактерий, грибов, дрожжей, водорослей. Богатая белками биомасса одноклеточных организмов с высокой эффективностью усваивается сельскохозяйственными животными. Так, 1 т кормовых дрожжей позволяет получить 0,4- 0,6 т свинины, до 1,5 т мяса птиц, 2530 тыс. яиц и сэкономить 57 т зерна (Р. С. Рычков, 1982). Это имеет большое народнохозяйственное значение, поскольку 80% площадей сельскохозяйственных угодий в мире отводятся для производства корма скоту и птице. Производство кормового белка на основе одноклеточных процесс, не требующий посевных площадей, не зависящий от климатических и погодных условий. Он может быть осуществлен в непрерывном и автоматизированном режиме.

  • Последние материалы сайта