Ароматическая связь присутствует в молекуле. Ароматические углеводороды: все о них. Физико-химические критерии ароматичности

30.10.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Ксилол и др.), нафталин и его производные и др.

Бензольные ароматические углеводороды - преимущественно жидкости, частью твердые тела с характерным ароматическим запахом. Применяются как , а также как исходные продукты в получении , красителей и др. Пары их в высоких концентрациях обладают наркотическим и отчасти судорожным действием.

При остром отравлении наблюдаются , возбуждение, подобно алкогольному, затем постепенное угнетение, изредка ; смерть наступает от остановки дыхания. Для хронических отравлений характерны тяжелые поражения системы крови и , сопровождающиеся снижением содержания в крови , лейкоцитов и , расстройства функции нервной системы, поражения печени и органов внутренней секреции. Наиболее тяжелые хронические отравления вызывает бензол (см.). При действии паров или пыли ароматических углеводородов наблюдается помутнение хрусталика. Раздражающее действие производных бензола на кожу возрастает по мере увеличения числа метильных групп, особенно выражено оно у мезитилена (триметилбензол). Замещение водорода в боковой цепи на ( , ) усиливает раздражающее действие ароматических углеводородов на дыхательные пути и слизистые оболочки . Токсические свойства ароматических амино- и нитросоединений (см.) связаны с их способностью превращать оксигемоглобин в метгемоглобин.

Нафталин и его производные могут вызывать поражение нервной системы, желудочно-кишечного тракта, почек, раздражение верхних дыхательных путей и кожи. Соединениям многоядерных ароматических углеводородов с конденсированными кольцами присуща канцерогенная активность. Опухоли обычно возникают в местах непосредственного контакта с этими ароматическими углеводородами, но изредка и в отдаленных органах (мочевой пузырь).

Лечение отравлений. В легких случаях острого отравления ароматическими углеводородами необходимо вывести пострадавшего из производственной обстановки, лечения обычно не требуется (при явлениях возбуждения назначают , валериановые капли, рекомендуется покой). В тяжелых случаях при ослаблении дыхания прибегают к ; пострадавшему дают вдыхать кислород или карбоген. При расстройствах кровообращения - 10% раствор кофеин-бензоат натрия под кожу и внутрь вместе с ацетилсалициловой кислотой или . противопоказан. При рвоте - внутривенное 20 мл 40% раствора . При раздражении слизистых оболочек - содовые , промывание глаз 2% раствором . При выраженных изменениях крови рекомендуется применение стимуляторов [ , тезан, (витамин Вс), цианокобаламин ()].

Ароматические углеводороды - углеводороды, в составе которых имеется циклическая группировка. Группу ароматических углеводородов составляют бензол и его производные, ароматические соединения с двумя бензольными кольцами (дифенил и его производные), углеводороды с конденсированными кольцами (инден, нафталин и его производные), многоядерные углеводороды с конденсированными кольцами и их гетероциклические аналоги.

Бензольные ароматические углеводороды - преимущественно жидкости, частью твердые тела с характерным ароматическим запахом. Применяются как растворители, а также как исходные продукты в синтезе пластмасс, синтетического каучука, красителей, лаков, инсектицидов, фармацевтических препаратов и в качестве высокоактивных компонентов моторного топлива. Бензол, толуол, ксилол получают в процессе перегонки каменного угля, а также из нефти. Многоядерные ароматические углеводороды содержатся в продуктах естественного происхождения (нефть, нефтяные битумы и др.), а также образуются при процессах термической переработки органического сырья (сухая перегонка, крекингование, коксование и полукоксование).

Пары ароматических углеводородов в высоких концентрациях обладают наркотическим и отчасти судорожным действием. При остром отравлении смерть наступает от остановки дыхания. Опасность острых отравлений при применении ароматических углеводородов велика, особенно при работе в замкнутых пространствах. Еще более опасны хронические отравления, которые характеризуются тяжелыми поражениями крови и кроветворных органов. Отдельные ароматические углеводороды действуют неодинаково. Наиболее тяжелые хронические отравления вызывает бензол (см.). При отравлении производными бензола происходят повреждения печени, расстройства функции нервной системы, органов внутренней секреции, особенно надпочечников, обмена витамина С. Раздражающее действие гомологов бензола на кожу возрастает по мере увеличения числа метильных групп - от бензола до триметилбензола (мезитилена). Ароматические углеводороды с четырьмя метильными группами оказывают слабое раздражающее действие. Вещества с разветвленными боковыми цепями и ненасыщенными цепями обладают большим раздражающим действием, с удлиненными цепями - меньшим.

Очень велики токсические свойства ароматических амино- и нитросоединений, что прежде всего связано с их способностью превращать оксигемоглобин в метгемоглобин с возникновением гипоксемии и гипоксии. Некоторые нитросоединения (тринитротолуол) являются типичными ядами печени. Ароматические аминосоединения, особенно двухъядерные (β-нафтиламин, бензидин, дианизидин), могут вызывать злокачественные и доброкачественные опухоли мочевого пузыря. При замещении водорода галогеном в бензольном кольце ароматические углеводороды приобретают наркотические и раздражающие свойства. При замещении водорода галогеном в боковой цепи образуются продукты, очень сильно раздражающие дыхательные пути и слизистые оболочки глаз. Токсичность их повышается с увеличением числа атомов галогена в молекуле. Нафталин и его производные поражают нервную систему, желудочно-кишечный тракт, почки и вызывают раздражение верхних дыхательных путей и кожи. Для действия всех ароматических углеводородов характерны изменения крови (гемолиз эритроцитов, появление телец Гейнца, анемия). При действии паров и пыли ароматических углеводородов наблюдается помутнение хрусталика. Возникновение катаракты связывают со снижением содержания цистеина в организме при детоксикации яда. Соединениям многоядерных ароматических углеводородов с конденсированными кольцами присуща канцерогенная активность, которую ряд авторов ставит в прямую зависимость от содержания в ароматических углеводородах 3-4-бензпирена. Опухоли обычно возникают при непосредственном контакте с этими ароматическими углеводородами, изредка и в отдаленных органах.

Действующие санитарные нормы проектирования промышленных предприятий (СН 245-63) допускают содержание бензола в воздухе рабочих помещений в концентрации не свыше 20 мг/м 3 , толуола - 50 мг/м 3 , ксилола - 50 мг/м 3 , нафталина- 20 мг/м 3 . Присутствие канцерогенных соединений в воздухе рабочих помещений не допускается. При работе с ароматическими углеводородами необходимо соблюдать меры защиты, регламентированные указанными нормами, а также санитарными правилами и инструкциями для отдельных отраслей промышленности. Для предупреждения хронических отравлений важное значение имеет проведение предварительных и периодических (один раз в год) медицинских осмотров работающих с ароматическими углеводородами. Для диагностических целей используют определение в моче продуктов окисления ароматических углеводородов. Ряд авторов предлагает определение в биосубстратах бензола, а также продуктов окисления толуола (бензойная и гиппуровая кислоты) в качестве «экспозиционной пробы» для суждения о концентрации продуктов в воздухе рабочих помещений. Важным является определение в моче содержания органических сульфатов.

В случае легких острых отравлений лечения обычно не требуется (при явлениях возбуждения назначают бромиды, валериановые капли, рекомендуется покой). В тяжелых случаях прибегают к искусственному дыханию, назначению кислорода или карбогена. При расстройствах кровообращения вводят кофеин под кожу и per os вместе с ацетилсалициловой кислотой или амидопирином. Адреналин противопоказан. При рвоте - внутривенное вливание 20 г 40% раствора глюкозы. При раздражении слизистых оболочек - содовые ингаляции; промывание глаз 2% раствором питьевой соды.

Циклические сопряженные системы представляют большой интерес как группа соединений с повышенной термодинамической устойчивостью по сравнению с сопряженными открытыми системами. Эти соединения обладают и другими особыми свойствами, совокупность которых объединяют общим понятием ароматичность. К ним относятся способность таких формально ненасыщенных соединений вступать в реакции замещения, а не присоединения, устойчивость к действию окислителей и температуры.

Типичными представителями ароматических систем являются арены и их производные. Особенности электронного строения ароматических углеводородов наглядно проявляются в атомно-орбитальной модели молекулы бензола. Каркас бензола образуют шесть sp 2 -гибридизованных атомов углерода. Все σ-связи (C-C и C-H) лежат в одной плоскости. Шесть негибридизованных р-АО расположены перпендикулярно плоскости молекулы и параллельно друг другу (рис. 3, а). Каждая р -АО в равной степени может перекрываться с двумя соседними р -АО. В результате такого перекрывания возникает единая делокализованная π-система, наибольшая электронная плотность в которой находится над и под плоскостью σ-скелета и охватывает все атомы углерода цикла (см. рис. 3, б). π-Электронная плотность равномерно распределена по всей циклической системе, что обозначается кружком или пунктиром внутри цикла (см. рис. 3, в). Все связи между атомами углерода в бензольном кольце имеют одинаковую длину (0,139 нм), промежуточную между длинами одинарной и двойной связей.

На основании квантовомеханических расчетов установлено, что для образования таких стабильных молекул плоская циклическая система должна содержать (4n + 2) π-электронов, где n = 1, 2, 3 и т. д . (правило Хюккеля , 1931). С учетом этих данных можно конкретизировать понятие «ароматичность».

Ароматические системы (молекулы) – системы, отвечающие критериям ароматичности :

1) наличие плоского σ-скелета, состоящего из sp 2 -гибридизованных атомов;

2) делокализация электронов, приводящая к образованию единого π-электрон-ного облака, охватывающего все атомы цикла (циклов);

3) соответствие правилу Э. Хюккеля, т.е. электронное облако должно насчитывать 4n+2 π-электронов, где n=1,2,3,4… (обычно цифра указывает на количество циклов в молекуле);

4) высокая степень термодинамической устойчивости (высокая энергия сопряжения).

Рис. 3. Атомно-орбитальная модель молекулы бензола (атомы водорода опущены; объяснение в тексте)

Устойчивость сопряженных систем. Образование сопряженной и особенно ароматической системы - энергетически выгодный процесс, так как при этом увеличивается степень перекрывания орбиталей и происходит делокализация (рассредоточение) р -электронов. В связи с этим сопряженные и ароматические системы обладают повышенной термодинамической устойчивостью. Они содержат меньший запас внутренней энергии и в основном состоянии занимают более низкий энергетический уровень по сравнению с несопряженными системами. По разнице этих уровней можно количественно оценить термодинамическую устойчивость сопряженного соединения, т. е. его энергию сопряжения (энергию делокализации). Для бутадиена-1,3 она невелика и составляет около 15 кДж/моль. С увеличением длины сопряженной цепи энергия сопряжения и соответственно термодинамическая устойчивость соединений возрастают. Энергия сопряжения для бензола гораздо больше и составляет 150 кДж/моль.

Примеры небензоидных ароматических соединений:

Пиридин по электронному строению напоминает бензол. Все атомы углерода и атом азота находятся в состоянии sp 2 -гибридизации, и все σ-связи (C-C, C-N и C-H) лежат в одной плоскости (рис. 4, а). Из трех гибридных орбиталей атома азота две участвуют в образовании

Рис. 4. Пиридиновый атом азота (а), (б) и сопряженная система в молекуле пиридина (в) (связи С-Н для упрощения рисунка опущены)

σ-связей с атомами углерода (показаны только оси этих орбиталей), а третья орбиталь содержит неподеленную пару электронов и в образовании связи не участвует. Атом азота с такой электронной конфигурацией называют пиридиновым.

За счет электрона, находящегося на негибридизованной р-орбитали (см. рис. 4, б), атом азота участвует в образовании единого электронного облака ср -электронами пяти атомов углерода (см. рис. 4, в). Таким образом, пиридин является π,π-сопряженной системой и удовлетворяет критериям ароматичности.

В результате большей электроотрицательности по сравнению с атомом углерода пиридиновый атом азота понижает электронную плотность на атомах углерода ароматического кольца, поэтому системы с пиридиновым атомом азота называют π-недостаточными. Кроме пиридина, примером таких систем служит пиримидин, содержащий два пиридиновых атома азота.

Пиррол также относится к ароматическим соединениям. Атомы углерода и азота в нем, как и в пиридине, находятся в состоянии sp2-гибридизации. Однако в отличие от пиридина атом азота в пирроле имеет иную электронную конфигурацию (рис. 5, а, б).

Рис. 5. Пиррольный атом азота (а), распределение электронов по орбиталям (б) и сопряженная система в молекуле пиррола (в) (связи С-Н для упрощения рисунка опущены)

На негибридизованной р -орбитали атома азота находится неподеленная пара электронов. Она участвует в сопряжении с р -электрона- ми четырех атомов углерода с образованием единого шестиэлектронного облака (см. рис. 5, в). Три sp 2 -гибридные орбитали образуют три σ-связи - две с атомами углерода, одну с атомом водорода. Атом азота в таком электронном состоянии получил название пиррольного.

Шестиэлектронное облако в пирроле благодаря р,п -сопряжению делокализовано на пяти атомах цикла, поэтому пиррол представляет собой π-избыточную систему.

В фуране и тиофене ароматический секстет также включает неподеленную пару электронов негибридизованной p-АО кислорода или серы соответственно. В имидазоле и пиразоле два атома азота вносят разный вклад в образование делокализованного электронного облака: пиррольный атом азота поставляет пару π-электронов, а пиридиновый - один p-электрон.

Ароматичностью обладает также пурин, представляющий собой конденсированную систему двух гетероциклов - пиримидина и имидазола.

Делокализованное электронное облако в пурине включает 8 π-электронов двойных связей и неподеленную пару электронов атома N=9. Общее число электронов в сопряжении, равное десяти, соответствует формуле Хюккеля (4n + 2, где п = 2).

Гетероциклические ароматические соединения обладают высокой термодинамической устойчивостью. Неудивительно, что именно они служат структурными единицами важнейших биополимеров - нуклеиновых кислот.

АРОМАТИЧНОСТЬ – сочетание определенных свойств, присущих большой группе соединений, называемых, соответственно, ароматическими.

Термин «ароматичность» ввел в 1865 Ф.Кекуле , установивший строение бензола и предложивший для него формулу:

Название «ароматический» связано с тем, что среди производных бензола существуют соединения с приятным запахом (например, нитробензол имеет запах миндаля).

Кекуле обратил внимание на то, что двойные связи в бензоле и в его производных заметно отличаются по свойствам от двойных связей в большинстве ненасыщенных соединений. Для бензола оказались крайне затруднены реакции присоединения (например, галогенов) по двойным связям, которые в случае ненасыщенных соединений проходят достаточно легко.

Кроме того, обнаружилось, что орто -дихлорбензол (атомы хлора находятся у двух соседних атомов углерода) не имеет изомеров, которые можно было ожидать на основе предложенной для него структурной формулы, где два атома хлора расположены либо у простой, либо у двойной связи:

В результате Кекуле предложил назвать связи в бензоле осциллирующими, то есть колеблющимися. Со временем это предположение получило дальнейшее развитие, и было усовершенствовано.

Наиболее характерны для бензола реакции замещения атомов водорода. Изучение химии бензола показало, что замена атома водорода на какую-либо группу определенным и, главное, предсказуемым образом влияет на реакционную способность остальных атомов водорода.

Если в бензольное ядро ввести группу, оттягивающую электроны от ядра (например, метильную), то последующее галогенирование приводит к замещению в орто- и пара- положении. При введении электроноподающей группы (например, карбоксильной) галоген направляется в мета -положение:

Долгое время ароматичностью считали набор указанных химических свойств, но постепенно были найдены более точные признаки, основанные на особенностях строения ароматических соединений.

Электронное строение бензола и родственных ему соединений в современном понимании выглядит следующим образом. В образовании двойных связей участвуют р -электроны атомов углерода, орбитали (область наиболее вероятного расположения электрона в пространстве) этих электронов имеют форму объемных восьмерок. В случае бензола орбитали взаимоперекрываются, образуя кольцевые орбитали, на которых располагаются все р -электроны молекулы:

В результате появляется единая замкнутая электронная оболочка, система приобретает высокую стабильность. Фиксированные простые и двойные связи в бензоле отсутствуют, все связи С–С усреднены и эквивалентны, поэтому чаще для обозначения ароматичности используют кольцевой символ, помещенный внутри цикла:

В образовавшихся циклических орбиталях возникает кольцевой ток, который может быть обнаружен специальными измерениями, дополнительно указывающими на ароматичность соединения.

Ароматичностью обладают плоские циклические молекулы, при этом количество электронов (m ), объединенных в единую циклическую систему, должно соответствовать правилу Хюккеля:

m = 4n + 2 (n = 0, 1, 2, 3...), n – число натурального ряда

Ниже показаны первые три представителя этого ряда ароматических молекул, соответствующие правилу Хюккеля: катион циклопропена , бензол и нафталин.

Расширение понятия «ароматичность» позволило применить этот термин к соединениям небензольного типа, но обладающим в то же время набором структурных и химических признаков, характерных для производных бензола.

В некоторых соединениях, где в состав цикла входят атомы O, S или N, например, в фуране, тиофене, пирроле так же, как в бензоле, существует устойчивая – в соответствии с правилом Хюккеля – шестиэлектронная замкнутая система. Четыре р- электрона (отмечены на рисунке синим цветом) предоставляют двойные связи цикла, а два s- электрона (отмечены красным цветом) дают атомы кислорода, серы или азота, имеющие неподеленную пару электронов.

Михаил Левицкий

Химия — очень увлекательная наука. Она изучает все вещества, которые существуют в природе, а их огромное множество. Они разделяются на неорганические и органические. В этой статье мы рассмотрим ароматические углеводороды, которые относятся к последней группе.

Что это такое?

Это органические вещества, которые имеют в своем составе одно или несколько бензольных ядер — устойчивых структур из шести атомов углерода, соединенных в многоугольник. Данные химические соединения обладают специфическим запахом, что можно понять из их названия. Углеводороды этой группы относятся к циклическим, в отличие от алканов, алкинов и др.

Ароматические углеводороды. Бензол

Это самое простое химическое соедиение из данной группы веществ. В состав его молекул входят шесть атомов углерода и столько же гидрогена. Все остальные ароматические углеводороды являются производными бензола и могут быть получены с его использованием. Это вещество при нормальных условиях находится в жидком состоянии, оно бесцветное, обладает специфическим сладковатым запахом, в воде не растворяется. Закипать оно начинает при температуре +80 градусов по Цельсию, а замерзать — при +5.

Химические свойства бензола и других ароматических углеводородов

Первое, на что нужно обратить внимание, — галогенирование и нитрование.

Реакции замещения

Первая из них — галогенирование. В этом случае, чтобы химическое взаимодействие могло осуществиться, нужно использовать катализатор, а именно трихлорид железа. Таким образом, если добавить к бензолу (С 6 Н 6) хлор (Cl 2), то мы получим хлорбензол (С 6 Н 5 Cl) и хлороводород (HCl), который выделится в виде прозрачного газа с резким запахом. То есть вследствие этой реакции один атом водорода замещается атомом хлора. То же самое может произойти и при добавлении к бензолу других галогенов (йода, брома и т. д.). Вторая реакция замещения — нитрование — проходит по похожему принципу. Здесь в роли катализатора выступает концентрированный раствор серной кислоты. Для проведения такого рода химической реакции к бензолу необходимо добавить нитратную кислоту (HNO 3), тоже концентрированную, в результате чего образуются нитробензол (C 6 H 5 NO 2) и вода. В этом случае атом гидрогена замещается группой из атома нитрогена и двух оксигена.

Реакции присоединения

Это второй тип химических взаимодействий, в которые способны вступать ароматические углеводороды. Они также существуют двух видов: галогенирование и гидрирование. Первая происходит только при наличии солнечной энергии, которая выступает в роли катализатора. Для проведения этой реакции к бензолу также необходимо добавить хлор, но в большем количестве, чем для замещения. На одну молекулу бензола должно приходиться три хлора. В результате получим гексахлорциклогексан (С 6 Н 6 Cl 6), то есть к имеющимся атомам присоединится еще и шесть хлора.

Гидрирование происходит только в присутствии никеля. Для этого необходимо смешать бензол и гидроген (Н 2). Пропорции те же, что и в предыдущей реакции. Вследствие этого образуется циклогексан (С 6 Н 12). Все остальные ароматические углеводороды также могут вступать в такого типа реакции. Они происходят по такому же принципу, как и в случае с бензолом, только с образованием уже более сложных веществ.

Получение химических веществ этой группы

Начнем все так же с бензола. Его можно получить с помощью такого реагента, как ацетилен (С 2 Н 2). Из трех молекул данного вещества под воздействием высокой температуры и катализатора образуется одна молекула нужного химического соединения.

Также бензол и некоторые другие ароматические углеводороды можно добыть из каменноугольной смолы, которая образуется во время производства металлургического кокса. К получаемым таким способом можно отнести толуол, о-ксилол, м-ксилол, фенантрен, нафталин, антрацен, флуорен, хризен, дифенил и другие. Кроме того, вещества этой группы часто добывают из продуктов переработки нефти.

Как выглядят разнообразные химические соединения этого класса?

Стирол представляет собой бесцветную жидкость с приятным запахом, малорастворимую в воде, температура кипения составляет +145 градусов по Цельсию. Нафталин — кристаллическое вещество, также мало растворяется в воде, плавится при температуре +80 градусов, а закипает при +217. Антрацен в нормальных условиях также представлен в виде кристаллов, однако уже не бесцветных, а имеющих желтую окраску. Это вещество не растворяется ни в воде, ни в органических растворителях. Температура плавления — +216 градусов по шкале Цельсия, кипения — +342. Фенантрен выглядит как блестящие кристалы, которые растворяются только в органических растворителях. Температура плавления — +101 градус, кипения — +340 градусов. Флуорен, как понятно из названия, способен к флуоресценции. Это, как и многие другие вещества данной группы, — бесцветные кристаллы, нерастворимые в воде. Температура плавления — +116, закипания — +294.

Применение ароматических углеводородов

Бензол используется при производстве красителей в качестве сырья. Также он применяется при получении взрывчатки, пестицидов, некоторых лекарств. Стирол используют в производстве полистирола (пенопласта) с помощью полимеризации исходного вещества. Последний широко применяют в строительстве: в качестве тепло- и звукоизолирующего, электроизоляционного материала. Нафталин, как и бензол, участвует в производстве пестицидов, красителей, лекарств. Кроме того, он используется в химической промышленности для получения многих органических соединений. Антрацен также применяют в изготовлении красителей. Флуорен играет роль стабилизатора полимеров. Фенантрен, как и предыдущее вещество и многие другие ароматические углеводороды, — один из компонентов красителей. Толуол широко применяют в химической промышленности для добывания органических веществ, а также для получения взрывчатки.

Характеристика и использование веществ, добываемых с помощью ароматических углеводородов

К таким в первую очередь можно отнести продукты рассмотренных химических реакций бензола. Хлорбензол, к примеру, является органическим растворителем, также используется в производстве фенола, пестицидов, органических веществ. Нитробензол является компонентом полировальных средств для металла, применяется при изготовлении некоторых краситлей и ароматизаторов, может играть роль растворителя и окислителя. Гексахлорциклогексан используется в качестве яда для борьбы с насекомыми-вредителями, а также в химической промышленности. Циклогексан применяют в производстве лакокрасочных изделий, при получении многих органических соединений, в фарамацевтической отрасли промышленности.

Заключение

Прочитав эту статью, можно сделать вывод, что все ароматические углеводороды имеют однотипную химическую структуру, что позволяет объединить их в один класс соединений. Кроме того, их физические и химические свойства также весьма похожи. Внешний вид, температуры кипения и плавления всех химических веществ данной группы не сильно отличаются. Свое применение многие ароматические углеводороды находят в одних и тех же отраслях промышленности. Вещества, которые можно получить вследствие реакций галогенирования, нитрования, гидрирования, также имеют схожие свойства и используются в похожих целях.

В органической химии хорошо известно и широко используется такое понятие, как ароматичность некоторых органических соединений. Термин «ароматичность» связан прежде всего с бензолом, его гомологами и многочисленными производными. Этот термин относится исключительно к структуре молекул этих веществ, их свойствам, но не имеет никакого отношения к их запаху. Правда, первые ароматические соединения имели, вероятно, приятный запах (некоторые натуральные эфиры, душистые смолы, например ладан и др.).

Ароматичность - общий признак некоторых циклических органических соединений, обладающих совокупностью особых свойств.

Наличие единой замкнутой системы π-электронов в молекуле - основной признак ароматичности.

Ароматические соединения подчиняются правилу Э. Хюккеля (1931):

Плоские моноциклические соединения, имеющие сопряженную систему π-электронов, могут быть ароматическими, если число этих электронов равно 4 n +2 (где n = 0,1,2,3, 4 и т.д., т.е. число π-электронов в молекуле может быть 2, 6, 10, 14, 18 и т.д.).

Эти особенности обусловливают все важнейшие физические и химические свойства ароматических соединений. Например, они вступают преимущественно в реакции замещения (в основном электрофильного), а не присоединения (несмотря на формальную ненасыщенность). Ароматические соединения обладают высокой устойчивостью, например к окислителям. Их молекулы имеют плоское строение. Если же это требование не выполняется, то в молекуле нарушается параллельность осей 2р-орбиталей, что приводит к устранению сопряжения и, как следствие, к нарушению выравненности π-электронной плотности в системе.

Номенклатура

Систематическое название всех ароматических углеводородов - арены , а бензола - бензен . Гомологи бензола рассматривают как замещенные бензола и цифрами указывают положение заместителей. Однако систематическая номенклатура допускает название «бензол», а для некоторых гомологов бензола - тривиальные названия: винилбензол (I) называют стиролом , метилбензол (II) - толуолом, диметилбензол (III) - ксилолом, изопропилбензол (IV) - кумолом, метоксибензол (V) - анизолом и т.д.:

Ароматические радикалы имеют общее название - арилы (Аr). Радикал С 6 Н 5 - называют фенилом (от старого названия бензола - «фен»).

Изомерия.

Общая формула гомологов бензола С n Н 2 n -6 . Все шесть атомов водорода в молекуле бензола одинаковы и при замещении одного из них на один и тот же радикал образуется одно и то же соединение. Поэтому однозамещенный бензол изомеров не имеет. Например, существует только один метилбензол:

При замещении двух атомов водорода на метальные группы образуются три изомера - ксилолы , которые отличаются друг от друга расположением заместителей в кольце:


орто -диметилбензол, мета -диметилбензол, пара -диметилбензол,

или 1,2-диметилбензол или 1,3-диметилбензол или 1,4-диметилбензол

(о -ксилол) (м -ксилол) (п -ксилол)

Вместо буквенного обозначения (орто-, мета-, пара -, или сокращенно: о-,м-, п-) можно пользоваться цифровым: 1,2-, 1,3-, 1,4-. Изомеры могут отличаться характером заместителей:


пропилбензол изопропилбензол

Последние материалы сайта