Оглушение миокарда. Что значит «спящий» или гибернирующий миокард? Типовые нарушения липидного обмена при МС

02.07.2020
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Октябрь 31, 2017 Нет комментариев

Несмотря на достигнутые успехи в профилактике и лечении ишемической болезни сердца, данная форма патологии по-прежнему представляет собой одну из наиболее актуальных проблем современной кардиологии. Традиционные представления об ИБС оказались не всегда достаточными для современной научной и практической кардиологии. К настоящему времени установлено, что клиническая картина ИБС характеризуется гораздо большим (по сравнению с классическим представлением) количеством ишемических синдромов.

Общеизвестно, что в условиях ишемии жизнеспособность миокарда обеспечивается прежде всего его защитно-приспособительными, адаптационными механизмами к гипоксии. В 1996 г. по предложению P.W. Hochachka в данной форме адаптации было выделено две фазы в зависимости от длительности ишемической «атаки»: фаза «кратковременной защитной реакции» и фаза «выживания».

В период «кратковременной защитной реакции» с патофизиологической точки зрения метаболизм кардиомиоцитов переключается на анаэробный гликолиз, в результате чего происходит уменьшение синтеза и, как следствие, развитие дефицита макроэргических фосфатов в миокарде. В дальнейшем при продолжающейся ишемии миокарда развивается согласно предлагаемому понятию «фаза выживания» благодаря приспособительным процессам, получившим названия «оглушенность» {сын., англ.«Stunning» – станинг), «гибернация», «прекондиционированис» (сын/.«метаболическая адаптация») и т.д. (всего примерно 10), которые (по предложению L.H, Opie, 1996) были объединены понятием «новые ишемические синдромы». В настоящее время эти синдромы привлекают внимание кардиологов прежде всего в аспекте лечебной стратегии больных в постишемическом периоде после развития острой коронарной недостаточности.

Станинг

Станинг («оглушенность» миокарда) - это обратимое изменение миокарда, наступающее после кратковременной ишемии и характеризующееся отсроченным (от нескольких часов до нескольких дней) восстановлением функции сердца после нормализации кровотока в зоне выраженной ишемии. В экспериментальных условиях и клинических наблюдениях установлено, что «оглушение» миокарда обычно развивается после продолжительной (более 20 мин) окклюзии субэпикардиальных ветвей коронарных артерий. Снижение сократимости левого желудочка зафиксировано также после кратковременных пятиминутных (это продолжительность обычного ангинозного приступа) эпизодов локальной ишемии. Патогенетическую основу станинга составляет постишемическая дисфункция миокарда. Развитие «оглушенности» миокарда наблюдали на этапе острой фазы инфаркта миокарда после лизиса тромба в коронарном сосуде, после проведения баллонной ангиопластики с целью восстановления кровообращения при длительном коронарном спазме и коронарной окклюзии, а также в участках миокарда, кровоснабжаемых частично стенозированной артерией, и после эпизода субэндокарди-альной ишемии во время чрезмерной физической нагрузки. К настоящему времени механизм «оглушения» миокарда представлен двумя гипотезами: кальциевой и свободно-радикальной. Согласно «кальциевой» гипотезе в развитии «оглушеннсти» имеют значение следующие факторы:

Снижение контрактильного ответа кардиомиоцитов на ионы кальция (преполагают, что это связано с повреждением сократительного белка миозина);

Перегрузка цитоплазмы кардиомиоцитов кальцием (считается, что это является результатом гиперэкспрессии генов кальиийсвязываюших протеинов, т. е. кальмодулина);

Кальцийзависимая активация протеинкиназы и других катаболических ферментов;

Разобщение процессов возбуждения и сокращения кардиомиоцитов (по-видимому, это следствие нарушения функции саркоплазматического ретикулума кардиомиоцитов).

Предполагают, что в развитии данного синдрома существенное значение имеет повышенное образование активных форм кислорода: супероксида анион-радикала, перекиси водорода, гидроксильного радикала. Установлено, что интенсивность их образования прямо пропорциональна тяжести предшествовавшей ишемии миокарда. Пока эти предположения не получили убедительного практического подтверждения при проведении соответетвующих им лечебных мероприятий. «Оглушенность» миокарда представлял серьезную проблему для пациентов с исходно низкой сократимостью миокарда, синдромом малого выброса, при подготовке к операции на сердце или в раннем послеоперационном периоде.

«Гибернация миокарда»

«Гибернация миокарда». Гибернирующий, т.е. «спящий», участок миокарда представлен кардиомиоцитами, сохранившими свою жизнедеятельность в условиях ишемии ценою снижения сократительной активности. Выявление гибернирующего миокарда базируется на обнаружении участков нарушенной сократимости левого желудочка в зоне гипоперфузии. Жизнеспособность гибернирующего миокарда доказывают пробой с добутамином (кардиотоническое средство; стимулятор-адренорецепторов миокарда, обладает сильным инотропным действием): в низких дозах добутамин восстанавливает сократимость «спящего» миокарда и не влияет на необратимо измененные участки сердечной мышцы.

Гибернация возникает при повторяющемся станинге или в условиях персистирующей абсолютной коронарной недостаточности. Данный синдром считают патогенетической основой хронической ишемической дисфункции миокарда (в покое). Состояние гибернации со временем исчезает (частично или полностью) после восстановления коронарного кровотока.

Каковы механизмы развития гибернации? Общеизвестно, что ишемия характеризуется развитием гипоксии, а патогенетическую основу любого ее варианта составляет энергетическая необеспеченность жизненных процессов. О нормальном энергетическом балансе можно говорить лишь в том случае, когда актуальное, т.е. фактическое, количество энергии, которым располагает данная структура больше или, по крайней мере, равно сумме: а) энергии, необходимой для пластических процессов, обеспечивающих сохранение структуры и обновление ее элементов, и б) энергии, расходуемой на выполнение ее внешней работы, т.е. специфической функции.

Кроме энергодефицита, гипоксия характеризуется достаточно однотипными метаболическими, функциональными и структурными изменениями, которые в равной мере могут иметь как защитно-приспособительное, так и патогенное значение. Гипоксия прежде всего является сигналом для активации имеющихся или формирования новых механизмов адаптации - приспособительных, компенсаторных, восстановительных, защитных, направленных на уменьшение или ликвидацию энергодефицига. В

отличие от приспособительных и компенсаторных реакций, которые в силу своего прямого биологического назначения имеют активный характер и основаны на усиления физиологических функций, защитная реакция основана на возможно большем снижении жизнедеятельности структуры с переходом на более низкий гомеостатический уровень. Примерами защитных реакций могут служить, например, феномен зимней спячки, физиологический гипобиоз (торпидная фаза травматического шока) и прочие виды безопасного уменьшения жизнедеятельности. Гибернирующий («спящий») миокард также является представителем защитных реакций, т.к. для него характерна минимизация работы сердечной мышцы с уменьшением потребления макроэртиче-ских фосфатов и частичным переходом на анаэробный гликолиз в условиях хронического дефицита коронарного кровоснабжения. Результатом такой реакции является приведение в соответствие (т.е. в состояние сбалансированности) потребности миокарда в источниках энергии (т.е. в субстратах окисления) и возможности их получения по коронарным сосудам. Сбалансированность образования и использование макроэргическх соединений необходимы в первую очередь для поддержания неспецифических процессов в клетках, т.е. процессов, обеспечивающих их жизнеспособность в условиях коронарной недостаточности. Однако возникающий при этом дефицит энергии приводит к снижению насосной функции сердца. Снижение специфической функции - это признак развития I стадии гипоксии (стадия функциональных изменений). При прогрессировании гипоксии формируется стадия структурных изменений.

В отличие от острой, кратковременной ишемии миокарда, при которой происходит быстрое спонтанное восстановление его насосной функции в постишемическом периоде, при хронической, продолжительной ишемии создаются условия для формирования необратимой дисфункции миокарда.

Достижения последних лет в области исследования механизмов развития гибернации миокарда связаны с исследованием НIF-la (гипоксией индуцируемый фактор 1 альфа; этот фактор был представлен выше в г лаве 8, раздел «Ремоделирование кровеносных сосудов»). Результаты этих исследований свидетельствуют о ключевой роли этого фактора в формировании срочных и долговременных механизмов адаптации к гипоксии на клеточном, тканевом, органном и организменном уровнях. Известно, что время жизни И I F-la. при обычном содержании кислорода во вдыхаемом воздухе составляет около 10 мин. и внутриклеточный уровень HIF-la в нормоксических условиях очень низок (в присутствии кислорода действует энзим FIH - фактор, ингибирующий HIF).

Тем не менее некоторое количество HIF-la было обнаружено в ядерном экстракте самых различных тканей экспериментальных животных. При этом наиболее высокое базовое содержание HIF-la было выявлено в миокарде и коре головного мозга. К настоящему времени появились веские доказательства важной роли HIF-la в формировании нарушений миокарда, вызванных ишемией. При этих изменениях исследовали HIF-la, активные формы кислорода, NO и цитокины в качестве наиболее вероятных биологически активных молекул развития гибернации миокарда. Оказалось, что все они действительно прямо или опосредованно влияют на механизмы развития данного синдрома.

При этом установлено, что индукция срочной адаптации (фазы «кратковременной защитной реакции») детерминирована HIF-la, а свободнорадикальные процессы, цитокины и N0 не только не участвуют в инициации синдрома гибернации, но и не взаимодействуют в этот период с HIF-la. Вместе с тем, все эти факторы влияют на сформирование фазы «выживания» (долгосрочной адаптации к гипоксии). Имеются сведения о том, что под действием ряда ростовых (факторов – эндотелиального фактора роста, фактор роста фибробластов 2 (FGF-2) и др. в миокарде, находящемся в состоянии гибернации, стимулируется ангиогенез и гипертрофия жизнеспособных миофибрилл.

В «гибернирующем миокарде» также может развиваться воспалительный ответ, характеризующийся повышением продукции факторов хемотаксиса мононуклеаров, аккумуляцией лейкоцитов и макрофагов, способных вызывать альтерацию миокардиальной ткани и фибропластический процесс. На этом фоне повышаются активность интерстициальных фибробластов и экспрессия эмбриональной изоформы тяжелых цепей гладкомышечного миозина. Кроме того, воспалительные механизмы при гибернации миокарда опосредуются ФНО-а и индуцируемой синтазой окиси азота iNOS, которые в случае превышения определенного порогового уровня могут привести к необратимым изменениям в клетках и их гибели. Возможно, что часть клеток при гибернации подвергается дегенеративным изменениям, а также программированной гибели в результате гипоперфузии миокарда.

Гибернация является основой хронической ишемической дисфункции миокарда, которая исчезает «в покое» полностью или частично после восстановления коронарного кровотока. Длительная и выраженная ишемия гибернирующего миокарда приводит к апоптотической гибели кардиомиоцитов и их некрозу. Вместе с тем, известно, что при продолжительной ишемии возможно развитие обратимой дисфункции миокарда. В настоящее время «золотым стандартом» лечения больных с хронической дисфункцией левого желудочка, обусловленной гибернацией миокарда,является его реваскуляризация. Хирургическая реваскуляризация «спящего» миокарда (баллонная ангиопластика коронарной артерии, аортокоронарное шунтирование) левого желудочка улучшает его насосную функцию

Ишемическое прекондиционирование

Еще одна приспособительная реакция сердечной мышцы получила название «синдром ишемического прекондиционирования миокарда» (син.: феномен «ишемической подготовки», феномен «прерывистой ишемии», синдром «метаболической адаптации», синдром «ишемического премирования»). Ишемическое прекондиционирование сердечной мышцы заключается в формировании повышенной резистентности кардиомиоцитов к повреждающему действию длительной ишемии после предварительных неоднократных кратковременных эпизодов ишемии (точнее «ишемии-реперфузии») миокарда.

Данный синдром был обнаружен R. Lange, которыей в своем экспериментальном исследовании на животных установили, что после повторных коротких эпизодов ишемии исчерпание АТФ происходит в меньшей степени, чем в случае однократного эпизода ишемии. К настоящему времени благодаря многочисленным экспериментам на животных и клиническим исследованиям установлено, что ишемическое прекондиционирование миокарда может оказывать благоприятное влияние на развитие постишемического инфаркта миокарда: способствовать ограничению его размера, снижению вероятности возникновения аритмий, уменьшению реперфузионного повреждения миокарда.

Каким же образом ишемическое прекондиииолироианис повыишает устойчивость миокарда к гипоксии, т.е. выполняет свою «тренерскую» функцию? Выяснилось, что индукция данного синдрома происходит при активации аденозинового рецептора А1 (аденозином или каким-либо сто агонистом), а ингибирование этого рецептора предотвращает запуск ишемического прекондиционирования. Таким образом был обнаружен один из основных молекулярных индукторов данного феномена - аденозин.

Вскоре были установлены еще два таких же фактора - брадикииин и опиоиды. Выяснилось, что во время кратковременного ишемического эпизода кардиомиоциты начинают выделять аденозин и брадикииин, что и свою очередь вызывает активацию универсального внутриклеточного мессенджера - протеинкиназы С. Под воздействием данного фермента открываются АТФ-зависимые калиевые каналы гладкомышечных клеток сосудов и кардиомиоцитов, закрытые в норме.

Вследствие этого происходит защитное укорочение сердечных потенциалов действия. Такой эффект имеет энергосберегающее значение, и при возникновении в ближайшее время повторной ишемии миокарда отмечают снижение не только его метаболической активности, но и скорости распада АТФ, а также замедление гликогенолиза и уменьшение скорости нарастания внутриклеточного ацидоза. Благодаря всему этому миокард лучше переносит ишемию, в том числе более длительный и выраженный вариант ее развития.

Возможность развития и выраженность ишемического пре кондиционирования зависят от многочисленных факторов - пола и возраста пациента, характера преморбидных заболеваний, приема некоторых лекарственных средств и т.д. Наиболее неблагоприятными для ишемического прекондиционирования факторами считают пожилой возраст и сахарный диабет. На переносимость повторяющейся ишемической «атаки» влияют наличие не только некроза миокарда, но и его оглушенность (т. е. постишемическая дисфункция острого характера - состояние миокарда после продолжительной выраженной ишемии и последующей успешной реперфузии) и гибернирование (т.е. персистирующая дисфункция миокарда в результате хронической гипоперфузии - «спящий» миокард).

Гибернация миокарда оставляет сохранными основные протективные функции кардиомиоцитов, в том числе способность к ишемическому прекондиционированию. Кроме того, существует гипотеза о том, что хроническая ишемия, так же как и острая гипоксия, способна запускать кардиопротективные механизмы. Предполагают, что это происходит за счет угнетения апоптоза или частично - за счет активации ишемического прекондиционирования.

В заключение отметим, что большая часть информации об ишемическом прекондиционировании получена при экспериментальных исследованиях на животных. Разумеется, наряду с этим имеется определенная клиническая информация, которая активно пополняется новыми данными. Однако широкое внедрение в клиническую практику экспериментальных данных невозможно без весомых доказательств, основывающихся на результатах рандомизированных клинических исследований. Использование способности миокарда к ишемическому прекондиционированию весьма заманчиво и очевидно перспективно для практической реализации.

Для широкого внедрения такой лечебной стратегии в кардиологию абсолютно необходимы дополнительные исследования данного феномена: разработка адекватных эффективных схем предварительных «тренирующих» эпизодов ишемии, т.е. их интенсивности, кратности и интервалов, изучение микроциркуляции (эффективность кровообращения в конечном итоге зависит от сосояния обменных сосудов); исследование возможности развития феномена «по-reflow» при восстановении кровообращения; выявление и оценка эндотелиальной дисфункции сосудов в постишемическом периоде и т. д.

19039 0

ИБС - несоответствие коронарного кровотока метаболическим нуждам миокарда, т.е. объему потребления миокардом кислорода (ПМО 2). (Рис. 1).

Рис. 1. Диаграмма баланса доставляемой и потребляемой энергии и факторов, определяющих их уровни

Эквивалентом работоспособности сердца как насоса является уровень ПМО 2 , доставка которого обеспечивается коронарным кровотоком (Qкор). Величина коронарного кровотока регулируется тоническим состоянием коронарных сосудов и разницей давления в восходящем отделе аорты и полости левого желудочка, которое соответствует внутримиокардиальному давлению (напряжению):

Р 1 - давление в восходящем отделе аорты,

Р 2 - давление в левом желудочка (внутримиокардиальное напряжение),

R кор - сопротивление коронарных сосудов.

Энергетическое обеспечение насосной функции сердца в широком диапазоне его деятельности - от состояния покоя до уровня максимальной нагрузки происходит за счет коронарного резерва. Коронарный резерв - способность коронарного сосудистого русла во много раз увеличивать коронарный кровоток адекватно уровню ПМО 2 , за счет дилатации коронарных сосудов. (Рис.2).

Величина коронарного резерва (I) в зависимости от давления в коронарных сосудах заключена между прямой, соответствующей коронарному кровотоку при максимально дилатированных сосудах (А, Б), и кривой величины коронарного кровотока при нормальном сосудистом тонусе (область ауторегуляции). В обычных условиях при интактных коронарных артериях сердце находится в ситуации «суперперфузии», т.е. доставка О 2 несколько превышает уровень ПМО 2 .

Рис. 2. Диаграмма коронарного резерва и его динамика в зависимости от различных патологических состояний ССС.

Из диаграммы видно, что коронарный резерв может меняться в сторону увеличения или уменьшения в зависимости от физиологических условий или патологии со стороны коронарных сосудов, крови, массы миокарда. У человека в покое коронарный кровоток в сердечной мышце составляет величину 80-100 мл/100г/мин и при этом поглощается О 2 около 10мл/100г/мин.

При поражении коронарных артерий атеросклерозом или в результате воспалительных изменений сосудистой стенки, способность последних к максимальной дилатации (расширению) резко снижена, что влечет за собой снижение коронарного резерва.

И наоборот, при увеличении массы миокарда (гипертрофия левого желудочка - АГ, гипертрофическая кардиомиопатия) или снижении уровня гемоглобина, носителя О 2 , для адекватного обеспечения ПМО 2 , необходимо увеличение коронарного кровотока в области ауторегуляции (перемещение кривой ауторегуляции вверх), что ведет к уменьшению коронарного резерва (II), особенно при атеросклеротическом поражении коронарных сосудов (Б - снижение прямой, характеризующей дилатационную способность). В общих чертах диаграмма коронарного резерва дает представление о механизмах, обеспечивающих соответствие между меняющимися уровнями ПМО 2 в зависмости от интенсивности сердечной деятельности и величиной доставки О 2 .

Острая коронарная недостаточность - остро возникшее несоответствие между доставкой О 2 , определяемое величиной коронарного кровотока, и уровнем ПМО 2 . (Рис. 3).

Это несоответствие может быть следствием различных причин:

1 - резкое падение коронарного кровотока в результате тромбообразования, спазма (полной или частичной окклзии) коронрных артерий на фоне нормальной величины ПМО 2 ;

2 - экстермальное повышение ПМО 2 , превышающее величину коронарного резерва;

3 - ограниченность коронарного резерва при физиологическом повышении уровня ПМО 2 ;

4 - разнонаправленность изменений величины коронарного кровотока (уменьшение) и уровня ПМО 2 (увеличение).

Рис. 3. Диаграмма соотношений величин потребления миокардом кислорода (ПМО 2) и объемом коронарного кровотока (Q)

По началу развития острой корорнарной недостаточности можно выделить факторы, влияющие на уровень ПМО 2 , и на величину коронарного кровотока; по этиологии - коронарогенные, миокардиальные, экстракардиальный факторы.

Безусловно, подобное деление носит условный характер, так как в условиях целостного организма в той или иной степени имеет место участие всех факторов.

Исследования на животных продемонстрировали, что ишемизированный или гипертрофированный миокард более чувствителен, чем миокард здорового сердца, даже к незначительному снижению уровня гемоглобина. Этот негативный эффект анемии на работу сердца был также отмечен и при проведении исследований у пациентов. Одновременно, снижение уровня гемоглобина сопровождается уменьшением оксигенации крови в легком, что также способствует уменьшению доставки кислорода к миокарду.

Клинические наблюдения указывают, что при сниженном коронарном резерве может формироваться ишемическая, хроническая дисфункции миокарда (систолодиастолическая) даже на фоне нормального объема коронарного кровотока в покое.

Совсем недавно в число общепринятых клинических форм ИБС входили:

1 - стенокардия покоя и напряжения,

2 - нестабильная стенокардия,

3 - острый коронарный синдром (прединфарктное состояние),

4 - инфаркт миокарда; которые с позиций сегодняшнего понимания патологических процессов при ишемической атаке не могут объяснить ряд состояний, с которыми сталкиваются в клинике врачи общей практики, кардиологи и, в особенности, кардиохирурги.

В настоящее время, на основании данных полученных при патофизиологических исследованиях в эксперименте и клинических наблюдениях, с позиций клеточных - субклеточных и молекулярных механизмов функционирования кардиомиоцитов, сформулировано современное понимание «новых ишемических синдромов» - «оглушенный миокард» («Муосаdil Stunning»), «гибернирующий - уснувший миокард» («Муосаdil Hybernatin»), «прекондиционирование» («Preconditioning»), «прекондиционирование - второе окно защиты» («Second Window Of Protection - SWOP»).

Впервые, термин «новые ишемические синдромы», объединяющий выше описанные состояния миокарда после различных эпизодов ишемии, отображающих адаптивные-дезадаптивные изменения метаболизма и сократительного состояния кардиомиоцитов, предложил южноафриканский кардиолог L.H. Opie в 1996 году на рабочей встрече Международного Кардиологического Общества в Кейптауне, под эгидой Совета по молекулярной и клеточной кардиологии.

L.H. Opie подчеркивает, что - «у больных ИБС нередко клиническая картина заболевания характеризуется 9-10 клиническими синдромами, которые обусловлены гетерогенностью причин и разнообразием адаптационных механизмов.

Учитывая гетерогенность проявления ишемического эпизода, непредсказуемость развития и функционирования коллатерального кровообращения в миокарде, как первого этапа защиты миокарда, при остановки кровообращения в коронарном регионе, можно предположить невозможность существования даже двух одинаковых больных, у которых патофизиология и клиническое течение заболевания были бы абсолютно одинаковы. У одного и того же больного могут сочетаться и формироваться различные адаптивные механизмы «новых ишемических синдромов».

В 1996 году RW. Hochachka с коллегами высказали мысль, что жизнеспособность миокарда в условиях ишемии обеспечивается адаптацией к гипоксии, которую можно разделить на два этапа в зависимости от длительности ишемической «атаки» - кратковременную защитную реакцию и фазу «выживания».

С точки зрения современного понимания патофизиологических процессов это выглядит следующим образом. При переходе на анаэробный гликолиз, на этапе кратковременного периода адаптации, происходит истощение запасов макроэргических фосфатов (АТФ, КрФ) в миокарде, которые всегда не велики. Это сопровождается в первую очередь нарушением диастолической фазы расслабления кардиомиоцита и, как следствие, снижение сократительной функции миокарда в области ишемии.

В физиологических условиях 10% АТФ образуется при окислительном фосфорилировании в митохондриях за счет аэробного гликолиза (расщепление глюкозы до пирувата). Этого количества АТФ, образующегося в результате аэробного гликолиза, не хватает для обеспечения работы ионных кальциевых, натриевых и калиевых каналов сарколеммы и, в частности, кальциевого насоса саркоплазматического ретикулума (СПР).

Восполнение остального количества энергии для функционирования кардиомиоцита при нормальном кислородном обеспечении происходит за счет окисления свободных жирных кислот (СЖК), распад которых при окислительном фосфорилировании обеспечивает до 80% АТФ. Однако СЖК по сравнению с глюкозой - менее эффективный источник АТФ - «топлива» для сердца - насоса, так как при их окислении на выработку одного и того же количества АТФ требуется примерно на 10% больше кислорода. Выраженный дисбаланс между потребностью кислорода при окислении глюкозы и СЖК в сторону последних, приводит к тому, что при ишемии (резкое падение доставки кислорода) в митохондриях кардиомиоцитов накапливается большое количество недоокисленных активных форм ЖК, что еще больше усугубляет разобщение окислительного фосфорилирования. (Рис.4).

Недоокисленные активные формы ЖК, в частности - ацилкарнитин, ацилКоА, как метаболиты блокируют транспорт АТФ от места синтеза в митохондриях к месту их потребления внутри клетки. Кроме того, повышенная концентрация этих двух метаболитов в митохондриях оказывает разрушительное действие на мембрану последней, что еще больше ведет к дефициту энергии, необходимой для жизнедеятельности кардиомиоцита. Параллельно, в клетке на фоне анаэробного обмена происходит накопление избыточного количества протонов (Na + , Н +), т.е. происходит ее «закисление».

Далее Na + , Н + обмениваются на другие катионы (преимущественно на Са ++), следствием чего происходит перегрузка миоцитов Са ++ , участвующего в формировании контрактурного сокращения. Избыточное количество Са ++ , снижение функциональной способности кальциевого насоса СПР (дефицит энергии) приводят к нарушению диастолического расслабления кардиомиоцита и развитию контрактуры миокарда.

Таким образом, переход на анаэробный окислительный процесс сопровождается активированием ЖК (длинноцепочечный цетилкарнитин и ацилКоА), которые способствуют разобщению окислительного фосфорилирования, накоплению избыточного количества Са ++ в цитозоле, снижению сократительной способности миокарда и развитию контрактуры с «адиастолией». (Рис.5).

Рис. 4. Схема распределение баланса энергии в кардиомиоците при анаэробном обмене

Рис. 5. Схема перегрузки кардиомиоцитов Са при восстановлении коронарного кровотока.

Фаза выживания - это этап самосохранения миокарда в условиях длительной ишемии. К наиболее значимым приспособительным реакциям миокарда в ответ на ишемию относятся так называемы «новые ишемические синдромы»: гибернация, оглушенность, прекондициснирование, прекондиционирование - второе окно защиты.

Термин «оглушенность» миокарда впервые ввели G.R. Heidricx с соавторами в 1975 году; понятие «гибернация » в 1985 году описал S.H. Rahimatoola; «прекондиционирование » - СЕ. Murry с сотрудниками предложили в 1986 году, а «преондиционирозание - второе окно » - одновременно M.S. Marber с сотрудниками и Т. Kuzuya с соавторами в 1993 году.

Оглушенность (Stunning) миокарда - феномен постишемической дисфункция миокарда в виде нарушения процессов расслабления-сокращения, клинически выражающихся в виде угнетения насосной деятельности сердца, и сохраняющихся после восстановления коронарного кровотока в течении нескольких минут или дней.

В эксперименте на животных, короткий промежуток времени ишемической атаки (остановка кровотока) от 5 до 15 минут не приводит к развитию некроза миокарда, однако ишемия длящаяся не менее 5 минут (типичный ангинозный приступ) ведет к снижению сократительной функции на протяжении последующих 3-х часов, а ишемический приступ в течение 15 минут (без некроза сердечной мышцы) удлиняет период восстановления сократительной функции до 6 часов и более (Рис. 6).

Подобное состояние миокарда в ответ на ишемические эпизоды имеют место в 4 ситуациях:

1 - в пограничных слоях с некрозом сердечной мышцы;

2 - после временного повышения ПМО 2 в участках, кровоснабжаемых частично стенозированной коронарной артерией;

3 - после эпизодов субэндокардиальной ишемии во время чрезмерной физической нагрузки при наличии гипертрофии миокарда левого желудочка (нормальные коронарные артерии);

4 - ситуация - «ишемия-реперфузия» (гипоксия сердечной мышцы с последующей реоксигенацией).

Рис. 6. График восстановления сократительной способности миокарда в зависимости от длительности ишемии.

Длительность окклюзии коронарной артерии не менее 1 часа сопровождается «тяжелым повреждением (maimed) миокарда » или «хронической оглушенностью », что манифистируется восстановлением насосной функции сердца после 3-4 недель.

Типичным клиническим проявлением оглушенности миокарда - ощущение «тяжелого, каменного сердца», в основе которого лежит нарушение диастолы левого желудочка - «неэффективная диастола».

В настоящее время в формировании этого феномена главенствуют две теории патофизиологических процессов: А - образование избыточного количества свободных кислородных радикалов при реперфузии, с активацией перекисного окисления липидов; Б - неуправляемое вхождение Са ++ и его избыточное накопление в кардиомиоците, в результате повреждения сарколеммы перекисным окислением липидов после реперфузии.

Г.И. Сидоренко, суммируя результаты клинических наблюдений, выделяет 4 клинических варианта оглушенности миокарда в зависимости от первопричины нарушения соответствия ПМ0 2 к величине коронарного кровотока (Q ко p № ПМО 2): предсердная - посттахикардиомиопатическая, микроваскулярная и синдром не восстановленного кровотока - «по-reflow».

Предсердное оглушение возникает в период после кардиоверсии, посттахикардиомиопатия - состояние сопровождающееся снижением насосной функции сердца после восстановления нормосистолии; микроваскулярная дисфункция - это сниженная компетентность микроциркуляции за счет неэффективной (неполной) коронарной реканализации; синдром «по-reflow» - невосстановление кровотока на уровне микроцеркуляции (I стадия ДВС - тромботическая).

Механизм развития «оглушения» миокарда до конца не изучен: ведущими в патогенезе «Stunning» являются, по крайней мере, три фактора: образование избыточного количества АФК, постперфузионная кальцевая перегрузка кардиомиоцитов, снижение чувствительности миофибрилл к кальцию.

Показано, что приблизительно в 80% случаев формирования феномена «гибернации миокарда» обусловлено действием АФК, в 20% - кальциевой перегрузкой, которая реализуется через последовательное включение Na + /H + и Na + /Ca ++ обменников. Возможно участие АФК в формировании кальцевой перегрузки через повреждение белков, участвующих в внутриклеточной кинетике (транспорте) Са ++ . В свою очередь кальциевая перегрузка миоплазмы может активировать кальпины - ферменты, вызывающие протеолиз миофибрилл. Необходимость ресинтеза новых миофилламентов является одним из факторов определяющих длительность восстановления сократительной функции кардиомиоцитов.

Обратимые повреждения миокарда, вызванные накоплением в миокарде свободных радикалов, при состоянии оглушении миокарда проявляются либо в виде прямого воздействия свободных радикалов на миофибриллы с их повреждением, либо не прямым путем через активацию протеаз, с последующей деградацией белков миофибрилл.

Другой механизм нарушений сократительной функции кардиомиоцитов при оглушенном миокарде - накопление избыточного количества цитозольного Са - увеличение внутриклеточной концентрации ионизированного кальция (Са ++).

После восстановления кровотока, происходит избыточное, не регулируемое кальциевыми каналами поступление Са через поврежденную сарколемму. Дефицит макрофосфатной энергии не обеспечивает работу кальциевого насоса саркоплазматического ретикулума (СПР), который регулирует цитоплазматическую концентрацию Са. Недостаток АТФ в миофибриллах проявляется двояким образом: сохраняющиеся неразомкнувшиеся связующие мостики между актином и мозином (незавершенная диастола) уменьшают количество возможных мест взаимодействия, что в дальнейшем ограничивает взаимное перемещение миофиламентов в саркомере (сокращение).

Таким образом, избыточное количество цитозольного кальция способствует развитию незавершенной диастолы, развитию контрактуры миокарда.

Выживание клеток в течение некоторого периода ишемии возможно благодаря существованию рядя защитных механизмов, направленных прежде всего на ограничение расхода АТФ в миофибриллах. Эти механизмы реализуются через уменьшение входа Са ++ в кардиомиоцит и снижение чувствительности к нему сократительного аппарата.

В поддержании оглушенности миокарда принимают участие и микрососудистые нарушения, в большинстве случаев носящие вторичный характер, вследствие агрегции форменных элементов крови (тромбоциты, эритроциты, лейкоциты) на фоне контрактуры миокарда.

«Гибернация миокарда» - адаптационное снижение внутриклеточного энергетического метаболизма, путем угнетения сократительного состояния кардиомиоцита, в ответ на уменьшение коронарного кровотока.

Гибернация (Hybernatin) миокарда, по определению профессора S.Н. Rahimatoola (1999 г.) - быстро возникшее нарушение локальной сократимости левого желудочка в ответ на умеренное снижение коронарного кровотока. Для гибернирующего миокарда характерно хроническое снижение сократительной способности кардиомиоцитов при сохраненной их жизнеспособности. С точки зрения патофизиологических процессов адаптации к стрессорным ситуациям, «гибернирующий миокард» - «механизм саморегуляции, адаптирующий функциональную активность миокарда к условиям ишемии», т.е. своеобразная защитная реакция «страдающего сердца» на неадекватное уменьшение коронарного кровотока к уровню ПМО 2 . Этот термин, «гибернирующий (уснувший) миокард» S.H. Rahimatoola впервые предложил в 1984 году на Рабочей встрече по проблемам лечения ИБС в Национальном институте сердца, легких и крови США.

Авторы, используя сцинтиграфическую технику с таллием, выявили от 31 до 49% жизнеспособной ткани в участках с необратимо сниженной сократительной функцией миокарда левого желудочка. То есть в местах сниженного локального кровотока сохраняется относительно нормальная метаболическая активность - миокард жизнеспособен, но он не может обеспечить нормальную региональную фракцию выброса. При этом имеются клинические симптомы проявления ишемии, но которые не заканчиваются развитием некроза миоцитов. В клинике подобные ситуации могут иметь место при стабильной и нестабильной стенокардии, у пациентов с ХСН.

По данным Е.В. Carlson с сотрудниками, опубликованныхв 1989году, у пациентов перенесших эффективную коронароангиопластику, участки гибернации миокарда выявляются в 75% случаев среди больных с нестабильной стенокардией и в 28% наблюдений при стабильной стенокардии. Минимизация обменных и энергетических процессов в мышце сердца при сохранении жизнеспособности миоцитов позволила некоторым исследователям назвать эту ситуацию либо - «находчивым сердцем» (Smart Heart), либо - «самосохраняющееся сердце» (Self-preservation Heart) или «играющее сердце» (Playing Heart). Итальянские исследователи подобное состояние сердечной мышцы определили как «миокардиальная летаргия».

Механизмы гибернации мало изучены. В клинической практике, на фоне редуцированного коронарного резерва, постепенное развитие деструктивных изменений в гибернирующем миокарде является следствием кумулятивных сдвигов энергообмена в ответ на периодические инотропные стимуляции.

В условиях ограниченного кровотока, положительный инотропный ответ достигается за счет истощения метаболического статуса кардиомиоцита. Таким образом, постепенно накапливающиеся метаболические изменения могут стать причиной дезорганизации внутриклеточных структур сердечной мышцы.

Прекондиционирование (Preconditioning) - метаболическая адаптация к ишемии, после повторяющихся кратковременных эпизодов снижения коронарного кровотока, проявляющаяся повышенной устойчивостью мышцы сердца к последующей, более длительной ишемической атаке.

Прекондиционирование - это благоприятные изменения миокарда, вызываемые быстрыми адаптивными процессами во время кратковременного эпизода ишемической атаки на миокард с последующим быстрым восстановления кровотока (реперфузия), которые защищают миокард от ишемических изменений до следующего эпизода ишемия/реперфузия. Этот феномен, филогенетически обусловлен, и типичен для всех органов организма млекопитающихся.

В 1986 году в экспериментальных условиях на собаках СЕ. Murry с сотрудниками убедительно продемонстрировали, что повторные короткие эпизоды региональной ишемии миокарда адаптируют сердечную мышцу к следующим эпизодам ишемических атак, что документировано сохранностью внутриклеточного АТФ на достаточном уровне для функционирования кардиомиоцита, с отсутствием некротического повреждения клеток.

В других экспериментах было показано, что предварительные прерывистые 5-ти минутных эпизода окклюзии коронарной артерии с последующими 5-ти минутными интервалами реперфузии (ишемия/реперфузия) приводят к уменьшению размеров ишемического некроза сердечной мышца на 75% (по сравнению с контрольной группой собак, которым не проводился своеобразный 5-ти минутный тренинг - ишемия/ реперфузия) в ответ на остановку кровообращения в течение 40 минут.

Подобный капрдиопротективный эффект кратковременных эпизодов ишемия/реперфузия был определен как «ишемическое прекондиционирование», При этом было отмечено отсутствие развития феномена «реперфузионного синдрома». Позднее этот защитный феномен был идентифицирован R.A. Kloner и D. Yellon (1994 г) в клинической практике.

Ранее считалось, что кардиопротективный эффект ишемического прекондиционирования проявляется непосредственно после кратковременных эпизодов ишемия/реперфузия, а затем теряет свои защитные свойства через 1-2 часа. В 1994 году D. Yellon в соавторстве с G.F. Baxter показали, что феномен «постишемического прекондиционирования» может вновь развиться через 12-24 часа с длительностью до 72 часов, но в ослабленной форме. Подобная, отдаленная фаза толерантности к ишемическому повреждению миокарда была определена авторами как «второе окно защиты» S econd W indow O f P rotection - SWOP »), в отличие от раннего «классического ишемического прекондиционирования».

Клинические ситуации «классического ишемического прекондиционирования» - синдром «разминки» (Warm-up Phenomen) или «перехаживания» (Walk-Through-Angina), которые проявляются в постепенном уменьшении частоты и интенсивности ангинозных приступов в течение продолжающейся умеренной физической или бытовой нагрузки.

В основе феномена «расхаживания» лежит быстрая адаптация миокарда к нагрузке на фоне снижения отношения - Qкор/ПМО 2 после второго эпизода ишемии. Г.И. Сидоренко отмечает, что данный синдром наблюдается почти у 10% больных стенокардией, причем сегмент ST на стандартной ЭКГ, приподнятый во время первого приступа, снижается до изолинии, несмотря на продолжающуюся нагрузку. (Рис.7).

Аналогичная картина отмечается в ряде случаев при проведении нагрузочного тестирования, когда на высоте нагрузки появляется сте-нокардитическая боль и/или смещение сегмента ST, а при ее продолжении они исчезают. Подобные ситуации позволили сформулировать такие понятия как «первично спрятанная ангина» (First Holeangina) или «стенокардия первой нагрузки» (First - Effort-Angina).

Рис. 7. Эффект «Прекондиционирования» - исходная ЭКГ (а), спазм коронарной артерии на фоне умеренной нагрузки с подъемом ST на ЭКГ (б) и восстановление ЭКГ (в) на фоне продолжающейся умеренной нагрузки

Возможно, что ишемическое прекондиционирование лежит в основе того, что у пациентов с прединфарктной стенокардией отмечается тенденция к более благоприятному прогнозу по сравнению с теми больными, у которых ИМ развился на фоне предшествующего полного благополучия.

Показано, что предшествующие развитию инфаркта миокарда приступы стенокардии (прединфарктная стенокардия) могут оказывать защитное действие на миокард (уменьшение зоны поражения), если они возникали в течение 24-48 часов до развития ИМ. Подобные наблюдения в клиническое практике напоминают кардиопротективный эффект отдаленного ишемического прекондиционирования («второе окно защиты») в экспериментах на животных.

Феномен «отсутствие восстановления кровотока в интрамуральных к субэндокардиальных коронарных артериях» (no-reflow) - значительное снижение коронарного кровотока у больных ИБС на фоне поражения сосудов и реперфузии, не смотря на полное восстановление проходимости (реканализация) в эпикардиальных коронарных артериях.

Имеются сведения, что в клинической практике, предынфарктная стенокардия способна уменьшить феномен «no-reflow», защищая тем самым миокард от ишемии и реперфузии, вызванными микрососудистыми повреждениями в сердце. При этом уменьшается риск развития инфаркта миокарда или его размеров, улучшается восстановление насосной функции левого желудочка в случаях его повреждения, а также значительно снижается риск внутригоспитальной летальности.

Кардиопротективная роль прединфарктной стенокардии может объясняться рядом механизмов:

1 - защита позднего постишемического прекондиционирования;

2 - раскрытие коллатерального кровообращения;

3 - повышение чувствительности к тромболизису.

Влияние ишемического прекондиционирования на размеры ИМ и на степень сохранения его функционального состояния (насосной функции сердца) после перенесенного инфаркта миокарда зависит от многих факторов, в том числе от выраженности коллатерального коронарного кровотока, от продолжительности временного интервала между началом ишемии и лечения.

При проведении реваскуляризации миокарда с помощью аорто-коронарного шунтирования с использованием активации постишемического прекондиционирования (два цикла 3-х минутной тотальной ишемии сердца с помощью временного пережатия восходящего отдела аорты в условиях искусственного кровообращения, с последующими 2-х минутными периодами реперфузии, за 10 минут до глобальной ишемии миокарда) было отмечено уменьшение выраженности некротических повреждений миокарда.

В другом исследовании при активации постишемического прекондиционирования (пережате аорты на 1 минуту с последующей реперфузией в течение 5 минут перед остановкой сердца) приводило после АКШ к значительному повышению сердечного выброса (СИ) и уменьшению потребности в введении больным инотропных препаратов.

Формирование постишемического прекондиционирования обусловлено включением множества сложных механизмов адаптации, из которых в настоящее время более изучены два: А - снижение накопления кардиомиоцитами продуктов распада гликогена и адениновых нуклеотидов, таких как ионы Н+, NH3, лактат, неорганические фосфаты, аденозин; Б - повышение активности или синтеза ферментных систем, оказывающих кардиопротективныи эффект от ишемического повреждения.

В таблице 1 представлены наиболее изученные эндогенные и экзогенные медиаторы и механизмы реализации действия ишемического прекондиционирования. В 2002 году Y.R Wang с коллегами представили убедительные данные свидетельствующие о кардиопртективном действие в фазе позднего прекондиционирования повышение продукции N0 посредством стимулирования выработки ее синтазы (I nducible S yntase NO - iNOS ).

Известно, индуцированная изоформа NO синтазы содержится во многих клетках организма, в частности, в кардиомиоцитах, гладкомышечных клетках сосудов, макрофагах. Они мгновенно активируются под влиянием ряда провоспалительных факторов таких как цитокины IL-1B, IL-2, IFN-г, TNF-б и другие. В качестве эндогенных медиаторов запускающих активацию и синтез iNOS могут принимать участие аденозин, ацетилхолин, брадикинин, липополисахариды, опиоды, свободные радикалы, серотонин.

Восстановление коронарного кровотока (реперфузия) сопровождается «вымыванием» из ишемиизированной области миокарда продуктов анаэробного энергетического обмена, сдерживающих сократительную активность кардиомиоцитов, а «нахлынувшее» поступление кислорода вызывает внутри клетки своеобразный «взрыв» образования активных форм кислорода - вторичных свободных радикалов (гидроксильного - НО ‑ , липоксильного - LO ‑).

Реперфузионное снятие ингибирования активации сокращения путем «вымывания» аденозина, К + , Н + сопровождается быстрым восстановлением сократительной функции миокарда, с использованием имеющихся запасов КрФ и АТФ. Степень дальнейшего восстановления зависит от состояния митохондрий, обеспечивающих синтез фосфатных макроэргов путем окислительного фосфорилирования. Возобновление аэробного ресинтеза АТФ и его темп определяются степенью сохранности электронно-транспортной цепи и ферментов цикла

Таблица 1. Эндогенные медиаторы механизмов ишемического прекондиционирования

Эндогенные медиаторы прекондиционирования

Медиаторы

Механизмы действия

Аденозин

Через аденозин А и киназу тирозина

Ацетилхолин

Активация протеиновой киназы

Опиоиды (Морфий)

Активация S-опиоидного рецептора

Норадреналин

Активация - a - адренергический рецептор

Серотонин

Вазодилатирующий эффект?

Активация К-АТФ-чувствительных каналов

Цитокины IL-1B, IL-2

Путем экспрессии стимуляции iNOS

Антиоксиданты - влияние на реактивные виды О 2

Путем экспрессии стимуляции iNOS

Внешние стимулы

Липополисахариды (бактериальный эндотоксин)

Способствует продукции Heat Shok Protein 70i (hsp 70i) влияющий на миокард.

Монофосфолипид (MLA)

Индукция гена iNOS

Фармакологические вещества

Повышение экспрессии C-jun c-tos mRNA каталаз и mn - содержащей дисмутазы

Активаторы К+-каналов: димакаин, кромакалин, никорандил

Являются прямыми «открывателями АТФ-чувствительных К + -каналов

Кребса в митохондриях. При наличии повреждений митохондрий, а следовательно и части цепи окислительного фосфорилирования, скорость синтеза АТФ может отставать от потребностей сократительного аппарата и восстановление сократительной функции будет неполноценным.

Задача - первоночальное восстановление энергозапасов миокарда - была предметом изучения на протяжении двух последних десятилетий, которые показали, что не АТФ, а КрФ является основным энергетическим субстратом определяющим уровень сократительной функции, потребление и восстановление которого имеют место в первую очередь после реперфузии.

Например, в «гибернирующем миокарде» (на фоне сниженного функционального состояния) уровень АТФ снижен умеренно. В отличие от АТФ уровень КрФ может быть восстановлен гораздо быстрее, потому что необходимый для его синтеза креатин покидает клетку медленнее, чем аденозин, составляющий основу АТФ. Однако, восстановление сократительной функции кардиомиоцита в результате быстрого увеличения внутриклеточной концентрации КрФ лимитируется молекулами АТФ, участвующих в регуляции ионного транспорта кардиомиоцитов.

В настоящее время, на основании данных различноуровневых исследований сформулирована гипотеза о механизмах защитного действия классического ишемического преондиционирования, суть которой связывают с модификациями внутриклеточного обмена - сохранение достаточно высокого уровня АТФ за счет ограничения утилизации макроэргических фосфатов.

Запуск ишемического прекондиционирования осуществляется взаимодействием эндогенных факторов (триггеры) с их специфическими рецепторами.

Триггеры - биологические активные вещества, выделяющиеся из кардиомиоцитов при ишемических эпизодах и реперфузии (аденозин, брадикинин, простаноиды, катехоламины, эндорфины, NО, АФК и др.), реализуют свои эффекты разными путями внутриклеточной сигнализации (Рис. 8, 9).

Рис. 8. Энергообмен при коротком приступе ишемии (А) и пути внутриклеточной сигнализации, активируемые аденозином, при ишемическом прекондиционировании (Б): ФлС - фосфолипаза, ДАГ - диацилглицерин, Ф - фосфат, ПкС - протепинкиназа, ИФЗ - инозитол трифосфат

Рис. 9. Пути внутриклеточной сигнализации, активируемые брадикинином, при ишемическом прекондиционировании: NO - закись азота, ФДЭ - фосфодиэстераза, ГТФ - гуанезинтрифосфат, цГМФ - циклический гуанезинмонофосфат, цАМФ - циклический аденозинмонофосфат

Гипотеза участия триггерной системы в запуске ишемического прекондиционирования обоснована на следующих фактах, выявленных в экспериментах:

  • Внутриклеточная концентрация триггеров возрастает при ишемии;
  • Его введение в коронарное русло или неишемизированный миокард вызывает защитное действие схожее с ишемическим прекондиционированием;
  • Введение ингибиторов триггера блокирует кардиопротективное действие ишемического прекондиционирования.

Исходя из сущности действия факторов - естественных ограничителей сократительной функции миокарда при остановленном коронарном кровотоке, можно предположить, что сохранение их влияния после реперфузии должно сопровождаться более полным восстановлением насосной деятельности сердца.

Изложенное выше показывает, что для уменьшения повреждения миокарда при постишемической реперфузии необходимо обеспечить восстановление энергетических запасов до первоночального уровня и предотвратить избыточное образование АФК.

Различные модификации реперфузионных растоворов с антогонистами кальция (препараты Магния), повышенной концентрацией калия, с добавлением метаболитов, способствующих ускоренному синтезу адениннуклеотидов, способны улучшить восстановление насосной функции сердца после ишемии.

Для решения другой задачи - уменьшить избыточное образование АФК - возможно использование реперфузионных растворов с антигипоксантами и антиоксидантами (Актовегин).

Наконец, третий подход состоит в мобилизации собственных защитных механизмов, активизирующихся при ишемических эпизодах (основа эффекта «прекондиционирования), когда серия периодов кратковременной ишемии (болевой синдром не более 5 минут) сочетается с периодами восстановления кровотока - купирование болевого синдрома органическими нитратами сублингвально.

В недавно проведенных исследованиях обнаружено существование «второго окна защиты» или позднего ишемического прекондиционирования.

В отличие от классического ишемического прекондиционирования, защитные эффекты которого проявляются сразу же после краковременных эпизодов ишемия/реперфузия, позднее ишемическое прекондиционирование обнаруживается через сутки и более с пролонгированным и менее интенсивным ответом. Механизмы этой формы ишемического прекондиционирования обусловлены включением экспрессии генов синтеза «heat shock» белков и клеточной iNO-синтазы.

Имеются мнения, что защитное действие «второго окна» прекондиционирования опосредуется именно через увеличение образования первичных АФК, в частности - NО, во время длительной ишемии, которое блокируется скевенджерами кислородных радикалов макрофагов (рецепторы-чистильщики) и ингибиторами iNO-синтазы.

В механизмы развития защитного эффекта ишемического прекондиционирования вовлечено множество различных факторов, но, согласно последним сведениям, ведущую роль играют митохондриальные Са ++ - активируемые К + - каналы реализуемые через их влияние на изменения электронно-транспортные цепи митохондрий. Имеются многочисленные доказательства, что фармакологическое открытие АФТ-зависимых К + -каналов полностью воспроизводят защитный эффект ишемического прекондиционирования.

Митохондриальные АТФ-зависимые К + -каналы более чувстительны, чем аналогичные каналы сарколеммы, к открывающим и закрывающим сигналам

Полагают, что энергосберегающий эффект ишемического прекондиционирования обусловлен снижением активности протонной митохондриальной F0 F1 АТФазы, дефосфорилирующей основное количество АТФ при ишемии. Активность этого фермента ингибируется белком IF1, который синтезируется в ответ на ишемию с увеличением его сродства к АТФазе при ацидозе. Другими причинами могут быть снижение активности ферментов, катализирующих АТФ-зависимые метаболические реакции, меньшее использолвание АТФ миофибриллярной АТФазой в результате «Stunning», снижение активности сарколеммальной Na + , К + - АТФазы, Са ++ - АТФазы саркоплазматического ретикулума.

Следствием меньшей утилизации и деградации макроэргических фосфатов (КрФ, АТФ) при длительной ишемии является снижение внутриклеточного ацидоза, так как основным источником Н + является распад АТФ. При ишемическом прекондиционировании регистрируется меньшее накопление недоокисленных продуктов гликолиза (пируватов, фосфоглицератов, лактатов и др.), что способствует сохранению осмолярности плазмы на допустимом уровне и предупреждает внутриклеточный отек кардиомиоцитов.

Показано, что в течение короткого времени классического прекондиционирования не происходит активации генов, ответственных за ресинтез внутриклеточных белков кардиомиоцитов. В то же время образование «Heat shock» белков, iNO-синтазы, супероксиддисмутазы и некоторых ключевых ферментов энергетического обмена служат неотъемлемыми условиями проявления кардиопротекторных эффектов «второго окна».

Предполагают, что, помимо образования белков, механизмы действия «второго окна» прекондиционирования включают также генерацию свободных радикалов кислорода и пероксинитрита - продукта взаимодействия NО и О 2 - (ОNОО -). Это подтверждается тем, что предварительное введение скевенджеров свободных радикалов перед эпизодами короткой ишемии блокируют защитные эффекты отсроченного прекондиционирования.

Новой стратегией в фармакологической защите сердца от ишемических и реперфузионных повреждений является использование ингибиторов Na + /H + - переносчика в сарколемме. В нормальных условиях сарколеммальный Na + /H + - обменник не активирован. При ишемии в ответ на быстро развивающийся внутриклеточный ацидоз и, возможно, на другие стимулирующие факторы его активность повышается.

Это приводит к возрастанию внутриклеточной концентрации ионов Na + , которому также способствует ингибирование Na + /K + - АТФазы - основного механизма выведения Na ++ из миоцита. В свою очередь с накоплением ионов Na + увеличивается вход ионов Са ++ внутрь клетки через Na + /Ca ++ - обменник, что способствует «Са ++ - перегрузке». (Рис. 5).

Ингибиторы Na + /H + - обмена оказывают свое кардиозащитное действие при ишемии, частично блокируя эту последовательность ионного обмена при ишемии. Ишемическое прекондиционирование способно блокировать Na + /H + -обменник на длительный период ишемии, уменьшая перегрузку ишемизированных кардиомиоцитов ионами Na + и Са ++ на стадии ранней реперфузии. К настоящему времени синтезировано несколько групп ингибиторов, обладающих исключительно высоким сродством к Na + /H + - транспортеру и низким - к Na + /Ca ++ - обменнику и Na + /HCО 3 ? - симпортеру.

Методами ядерно-магнитного резонанса и флюоресцентных красителей было показано, что блокирование Na + /H + - переносчика сопровождается снижением частоты реперфузионных аритмий и поддержкой ионного гемостаза в ишемизированном миокарде. Одновременно зарегестрировано уменьшение образования и выхода в интерстиций неорганических фосфатов - продуктов деградации АТФ, лучшее сохранение внутриклеточного фонда макроэргических фосфатов, меньшее накопление Са ++ в матриксе митохондрий и снижение повреждений ультраструктуры кардиомиоцитов.

В настоящее время ингибирование Na + /H + - переносчика стало методом защиты сердца, который все чаще применяется в клинике, к ним относятся 4-изопропил-3-метилсульфонил-бензоилгуанидин-метансульфоната (Крипорида, НОЕ 642).

В клинической практике защитное действие ишемического прекондиционирования документируется нефармакологическим уменьшением подъема сегмента ST на ЭКГ при продолжающей тестовой нагрузке.

Таким образом, ишемия миокарда - не соответствие доставки кислорода крови з миокард потребностям аэробного синтеза аденозинтрифосфата в митохондриях для обеспечения нормальной функции сердца при данной частоте сердечных сокращений, преднагрузке, постнагрузке и сократительном состоянии сердечной мышцы. При дефиците кислорода активизируется анаэробный путь синтеза АТФ через расщепление запасов гликогена с накоплением лактата, снижением внутриклеточного уровня рН и перегрузкой кардиомиоцитов ионами кальция, манифистируемое диастоло - систолической дисфункцией.

Периоды ишемических эпизодов сопровождаются последовательно этапами метаболической адаптации - реализация различных путей внутриклеточного метаболизма («ишемическое прекондиционирование»), функциональной адаптации - снижение сократительной функции миокарда соответственно уровню энергофосфатов («гибернация миокарда») с последующей биологической реабилитацией - восстановление сократительной функции («оглушенность миокарда») или гибелью миокардиальных клеток (апоптоз) (Рис. 10).


Рис. 10.

Инфаркт миокарда. А.М. Шилов

Оглушенным миокардом называется длительное нарушение сократительной функции сердца, вызываемое ишемией миокарда. Вопреки общепринятому мнению, ишемия миокарда не всегда заканчивается его некрозом, а функция кардиомиоцитов может впоследствии полностью восстановиться.

Гибернирующий спящий миокард – это продолжительная по времени дисфункция миокарда, возникающая на фоне хронической ишемии при сосудистом поражении. Спящий миокард отличается от оглушенного тем, что оглушенность развивается вследствие воздействия тяжелой кратковременной ишемии, а в спящее состояние он впадает при длительном (хроническом) воздействии ишемии.

Причины

Оглушенный миокард может появиться после тромболизиса или при инфаркте миокарда (если кровоток при инфаркте быстро восстановится, то некроза ткани не будет), при коронаспазме, при нестабильной стенокардии. Также, оглушение миокарда может произойти в процессе ангиопластики или коронарного шунтирования.

Спящим миокард может стать при выраженном стенозе коронарных артерий (при этой патологии кровоток снижается при физической нагрузке, а впоследствии и в покое). Сердце пытается приспособить миокард к новому обмену веществ, что провоцирует гибернирование (на дни или месяцы) миокарда, при котором основная функция сердца изменяется в соответствии с новыми условиями (скоростью кровотока).

Поскольку кровоток снижен, его хватает только для сохранения жизни клеток, но не для нормального сокращения миокарда, поэтому достигается новое равновесие, благодаря которому клетки не повреждаются, а сердце начинает сокращаться менее интенсивно. Если гибернирующей станет большая часть миокарда, то это может стать причиной развития сердечной недостаточности.

Признаки и симптомы

Основным признаком оглушенного или спящего миокарда является появление одышки, которая возникает вследствие повышенного наполнения левого желудочка сердца. У одной пятой части больных (у 20%) стабильной стенокардией обнаруживается гибернация миокарда. В случае нестабильной стенокардии гибернация обнаруживается у большинства больных (у 75%). К гибернации миокарда предрасполагает инфаркт, сердечная недостаточность, дисфункция левого желудочка, ишемическая кардиомиопатия.

Особенности оглушенного миокарда

У оглушенного миокарда можно наблюдать такие особенности:

  • коронарный кровоток – нормальный;
  • миокард жизнеспособен, хотя его сократительная функция нарушена;
  • метаболизм миокарда нормальный или даже усиленный;
  • продолжительность оглушения длится от нескольких часов до нескольких дней, затем сократительная функция миокарда самопроизвольно восстанавливается.

Формы и особенности гибернирующего миокарда

Выделяют три формы гибернации миокарда: острую; подострую; хроническую. При острой форме функция миокарда восстанавливается быстро. При подострой форме нормальная сократительная функция сердца восстанавливается только через несколько месяцев после нормализации кровотока. При хронической форме гибернации на восстановление сократительной функции миокарда может пойти год или больше.

При гибернации выявляются особенности в метаболизме сердца, свидетельствующие о том, что спящее состояние миокарда – это состояние при котором значительно экономится энергия.

К гибернации миокарда приводят такие процессы:

  • сокращается содержание АТФ и креатинфосфата в клетках миокарда (уже в первые минуты развития ишемии);
  • затем в клетках начинается анаэробный метаболизм и происходит накопление молочной кислоты (в течение часа);
  • когда анаэробный метаболизм заканчивается, происходит восстановление уровня креатинфосфата, а уровень АТФ перестает снижаться.

Диагностика

При спящем миокарде участки нарушения сократимости можно обнаружить при помощи сцинтиграфии, контрастной эхокардиографии, магнитно-резонансной томографии, позитронно-эмиссионной томографии. Все эти методы позволяют оценить жизнеспособность миокарда и наличие сократительного резерва.

Диагностировать оглушение миокарда можно только ретроспективно: если ранее сократимость миокарда после ишемии была снижена, а затем вернулась в норму.

Лечение

При оглушенном миокарде специальное лечение не проводится, поскольку кровоток нормальный (восстановление функции миокарда при этом происходит спонтанно). При лечении спящего миокарда применяются как консервативные, так и хирургические методы.

Основная задача состоит в восстановлении функции левого желудочка сердца, которую можно улучшить нитратами. Если гибернация миокарда развилась из-за стеноза коронарной артерии, то проводится ангиопластика или реваскуляризация.

Гибернация и станинг характеризуются сохранным инотропным резервом. При краткосрочной гибернации использование инотропного резерва сопровождается и уменьшением возможности метаболического восстановления; при станинге нет метаболических нарушений. При гибернации при длителной стимуляции может наступть некроз, при станинге некроз не развивается. Гибернация и прерывистый станинг - разные по природе явления, но их клинические характеристики зачастую неразличимы. Прежде всего они проявляются ишемической дисфункцией и могут наблюдаться у одного больного и даже в одной области миокарда. В этих двух процессах играют роль многие сходные моменты: аденозин, факторы роста и пр. При неоднократных кратковременных эпизодах ишемии (безболевой или болевой) и реперфузии развивающийся станинг очень напоминает гибернацию. Гибернация может быть следствием повторных эпизодов станинга - через повторные эпизоды дисбаланса между потребностью и доставкой кислорода.

"Оглушенный" миокард (станинг). Это обратимое изменение миокарда, наступающее после кратковременной ишемии, которое не приводит к потере кардиомиоцитов, но сопровождается замедленным восстановлением сердечной функции (от часов до дней) после восстановления кровотока. Это - постишемическая дисфункция миокарда, которая существует после реперфузии, несмотря на отсутствие необратимого повреждения и восстановления кровотока до нормального или близкого к норме.

Одним из первых опытов, показывающих, что нарушение локальной сократимости миокарда не всегда ассоциировано с некрозом, был проведен Heindrickx с соавт. в 1975 году. В эксперименте было показано, что локальная пятиминутная ишемия миокарда приводит к снижению локальной сократимости, сохраняющемуся до 3-х часов. При большей экспозиции окклюзии коронарной артерии (15 минут) на полное восстановление сократимости требовалось 6 и более часов. Вывод данного исследования заключался в том, что короткая ишемия не приводит к некрозу. Длительное восстановление сократимости авторы ошибочно связали с незначительным снижением субэндокардиального кровотока по сравнению с субэпикардиальным. В 1982 г. Braunwald и Kloner объяснили феномен задержки восстановления сократимости с позиции состояния «оглушенности» миокарда. Опытным путем было показано, что полноценное восстановление сократимости «оглушенного» миокарда наблюдалось при ишемии продолжительностью всего 15–20 минут. В 1995 году было описано состояние «хронического оглушения» или феномен «тяжелого повреждения (maimed)» миокарда, которое характеризуется замедленным и неполноценным восстановлением локальной сократимости после длительной окклюзии в отличие от типичного обратимого состояния «оглушенности», возникающего при менее продолжительной окклюзии. Описаны также случаи «оглушения» миокарда неишемического генеза: после эпизодов желудочковой тахикардии при восстановлении синусового ритма. По определению Bolli R., «оглушенность» миокарда – это нарушение механической функции миокарда, сохраняющееся после восстановления перфузии, несмотря на отсутствие необратимых изменений и полное или почти полное восстановление кровотока. Это: а) временное, полностью обратимое нарушение при условии, что имеется достаточно времени для восстановления, б) это мягкое, сублетальное повреждение, в) при этом сохраняется нормальный или почти нормальный кровоток, но имеется «несоответствие» кровотока и функции, то есть нормальный кровоток и сниженная функция. «Оглушенный» миокард отличает нормальный внешний вид при электронной микроскопии. Характерной особенностью «оглушения» миокарда является диастолическая дисфункция. Патогенез «оглушенности» миокарда окончательно не ясен. «Кальциевая» теория предполагает дисфункцию саркоплазматического ретикулума, перегрузку клеток кальцием и снижение контрактильного ответа на ионы кальция. «Свободнорадикальная» теория свидетельствует о кардиодепрессорном влиянии свободных радикалов кислорода. Кроме того, чрезмерное образование свободных радикалов может приводить к внутриклеточной перегрузке кальцием. Эти две теории не противоречат друг другу и могут представлять разные звенья одного и того же патогенетического механизма. В любом случае механизм повреждений, обусловливающих развитие «оглушенности», имеет два этапа: а) ишемическое повреждение и б) реперфузионное повреждение. Было показано, что интенсивность образования радикалов прямо пропорциональна тяжести ишемии. Таким образом, данное состояние миокарда отличает негомогенность: от легких вариантов до эпизодов «тяжелого повреждения», что зависит прежде всего от тяжести ишемии и исходного состояния миокарда.

"Оглушенный" миокард (станинг) представляет собой клиническую проблему в следующих случаях.

1. Когда выраженность и распространенность дисфункции левого желудочка ассоциируется с синдромом малого сердечного выброса.

2. У пациентов высокго риска - низкая исходно ФВ ЛЖ, длительный период ИК, повторное или экстренное коронарное шунтирование, нестабильная стенокардия, поражение ствола ЛКА, сопутствующая операция замены клапана.

3. После операции на сердце, когда постишемическая дисфункция миокарда может затрагивать как левый так и правый желудочек и более серьезно влиять на выживаемость.

4. При трансплантации сердца.

5. После тромболизиса у больных с инфарктом миокарда.

Станинг наблюдается при транслюминальной балонной ангиопластике, нестабильной стенокардии и ее наивысшей стадии - стенокардии покоя, вариантной стенокардии Принцметала, после инфаркта миокарда с ранней реперфузией. Как правило, этот процесс обратим в течение 24-48 часов. В эксперименте после окклюзии ПМЖВ на 15 минут имеется парадоксальное истончение в систолу всех слоев миокарда. При реперфузии восстановление сократимости более медленное в субэндокарде. К 24 часам восстанавливается сократимость в наружном и среднем слоях. Только к 48 часам наступает восстановление сократимости внутреннего слоя.

Гибернация. В 1980 году Rahimtoola S.Н. описал синдром, характеризующийся обратимым нарушением локальной сократимости миокарда в состоянии покоя, которое появляется под действием длительной безболевой ишемии. Но в то время общепринятым было мнение о невозможности существования миокарда со сниженной перфузией, поэтому нарушение сократимости миокарда однозначно связывали с некрозом. По определению Rahimtoola S.Н., гибернация миокарда – это нарушение локальной сократимости миокарда и функции левого желудочка (ЛЖ), возникающее под действием выраженного и продолжительного снижения коронарного кровотока. Настоящее определение подразумевает, что гибернация представляет: а) обратимое хроническое состояние при условии дальнейшего восстановления кровотока или снижения потребности миокарда в кислороде (в случае хронической перегрузки ЛЖ), б) она характерна для жизнеспособного миокарда, обладающего остаточной сократимостью и коронарным резервом. Иными словами, отличительной чертой этого состояния является «соответствие» между сниженным кровотоком и сниженной функцией.

Для объяснения механизмов гибернации предложены две лидирующие гипотезы. Согласно первой, выдвинутой Rahimtoola S.Н., гипоперфузия на начальном этапе приводит к снижению сократительной функции миокарда с уменьшением потребления кислорода (быстрая реакция), позднее присоединяется механизм активизации длительных защитных механизмов, заключающихся в адаптации к гипоперфузии на уровне клетки (медленная реакция). Другая теория предполагает развитие феномена гибернации на фоне повторяющихся эпизодов ишемии/реперфузии с образованием участков «оглушенного» миокарда. Множество таких участков и дают в сумме «гибернирующий» миокард и хроническое нарушение функции пораженного желудочка. Гибернация встречается у 40–50% больных ИБС с фракцией выброса ЛЖ менее 30%, у 75% больных с нестабильной стенокардией и только у 28% больных со стабильной стенокардией. Гибернация может носить острый, подострый и хронический характер. То есть и это состояние миокарда, как и в случае «оглушения», отличает негомогенность. При острой гибернации восстановление происходит быстро и гистологические изменения отсутствуют. При хронической гибернации клетки приобретают признаки, характерные для дисфункциональной атрофии (уменьшение миофибрилл) и «эмбриональной» ткани (накопление гликогена с деградацией миофибрилл). Такой миокард требует значительного времени для восстановления в отличие от «острых» форм, описанных Ferrari с соавт., когда функция миокарда восстанавливается сразу на операционном столе.

Гибернация - это хроническая ишемия миокарда, при которой кровоснабжение его не столь мало, чтобы вызвать некроз ткани, но достаточно для развития хронической региональной левожелудочковой дисфункции. То есть, гибернация это хроническая ишемическая дисфункция. Это дисфункция левого желудочка в покое, вызванная его длительной гипоперфузией, и частично или полностью исчезающая после улучшения коронарного кровотока или снижения потребности миокарда в кислороде. Патофизиология и патогенез гибернации еще полностью не раскрыт. Этот термин может описывать разные явления. Определение его может быть таково - продолженная (по крайней мере несколько часов) сократительная дисфункция миокарда, сохранившего жизнеспособность, которая связана с редуцированным коронарным кровотоком. Этот феномен обеспечивает адаптацию сердца к низкому коронарному кровотоку, когда он восстанавливается и функция нормализуется. Гибернация после корригирования её коронарной реваскуляризацией при отсутствии стенокардии диагностируется по наличию редуцированной перфузии. Гибернация может продолжаться месяцы и годы. Хроническая асинергия может сниматься введением нитроглицерна, адреналина, индукцией упражнений, постэкстрасистолическим потенциированием, коронарной реваскуляризацией. Гибернированный миокард идентифицируется по гипо- или акинетической зоне миокарда, в которой сниженный кровоток регистрируется сканированием при помощи позитронно-эмиссионной томографии. Стресс-проба с добутамином также во многих случаях дает возможность в клинической практике подтвердить гибернацию миокарда, что особенно важно при отборе пациентов на реваскуляризацию миокарда. Некоторые авторы говорят о большей диагностической ценности пробы с радиоактивным талием, чем добутаминовый тест.

Клиническое значение гибернированного, "спящего" миокарда, определяющее активное лечение сводится к следующим положениям.

1. Высокая частота выявления гибернации при всех формах ИБС.

2. Отрицательное влияние на прогноз больных ИБС с дисфункцией левого желудочка.

3. Хотя гибернация и считается приспособительной реакцией, предохроняющей миокард от дальнейшего повреждения, она не является стабильным состоянием и, при неблагоприятных условиях (ухудшение перфузии миокарда, повышение потребности в кислороде) возможно усугубление ишемии вплоть до развития некроза.

4. Локальная дисфункция, обусловленная гибернацией, может играть существенную роль в нарушении сокращения желудочков.

5. Обратимость дисфункции, обусловленной гибернацией, при восстановлении кровотока в миокарде или снижении его потребности в кислороде определяется сохранением жизнеспособности кардиомиоцитов при этом состоянии.

Феномен невозобновления кровотока – «no-reflow» , впервые описанный в эксперименте в 1966 г., можно определить, как неадекватность перфузии миокарда без ангиографических проявлений механического препятствия прохождения сосудов. В практической кардиологии данный феномен стал выявляться при проведении интервенционного лечения ИБС. В механизме развития предполагают участие следующих факторов: увеличение объема клеток эндотелия с сужением и/или окклюзией микрососудов, нарушение реологии крови (образование микротромбов, локальная гиперпротеинемия, краевое стояние лейкоцитов), интрамуральное сдавление микрососудов с усугублением ишемии. Существенным фактором развития данного феномена является выраженность постишемического повреждения миоцитов, нарушение образования макроэргических соединений с последующим снижением сократительной функции миокарда. Важно учесть то, что это явление объясняет в большей степени реакцию коронарных сосудов и в меньшей степени – самого миокарда (хотя трудно отделить одно от другого). Одним из вариантов исхода феномена no-reflow является «оглушение» и/или гибернация миокарда.

Ишемическое прекондиционирование или феномен прерывистой ишемии . Термин предложен в 1986 году. Это понятие введено в результате работ, выполненных в эксперименте. Суть его в том, что предварителное кратковременное ишемическое воздействие на миокард приводит к защитной реакции при повторных ишемических воздействиях.

Короткий период ишемии делает миокард более резистентным к последующей длительной коронарной окклюзии, что выражается в уменьшении размера инфаркта миокарда. Таким образом ишемическое прекондиционирование (ИП) - классический защитный механизм. ИП предохраняет от ишемии, замедляет некроз, но не предотвращает смерть. Ишемическая метаболическая адаптация была открыта Murry с соавт., как повышение резистентности миокарда к ишемическому воздействию в результате повторяюшихся кратковременных эпизодов сублетальной ишемии, чередующихся с реперфузией. Было показано, что данная адаптация способствует поддержанию уровня макроэргических соединений и задерживает появление некроза при последующей летальной ишемии, что приводит к уменьшению зоны инфаркта на 75% по сравнению с контролем. Данный феномен появляется сразу, но исчезает через 1–2 часа. В 1993 году было открыто явление «второго окна» ишемической метаболической адаптации, которое характеризовалось замедленной, менее мощной, но более длительной (до 72 часов) фазой защиты, возникающей через 12–24 часа после адаптационного воздействия. Полагают, что механизм ишемической адаптации запускается после ишемии под действием аденозина и связан с изменением активности митохондриальных АТФ-зависимых калиевых каналов. Не совсем ясно, как функция этих каналов связана с феноменом прекондиционирования. Предполагается, что эти процессы направлены на поддержание уровня макроэргических соединений с сохранением объема митохондрий. Явление прекондиционирования объясняет такой клинический феномен, как «разминка», заключающийся в постепенном уменьшении нагрузочных болей в течение дня или после физической нагрузки. В эксперименте с повторными нагрузочными тестами и при провокации ишемии при проведении управляемой тахикардии (электростимуляция) показано уменьшение депрессии ST с улучшением клинической симптоматики, что может свидетельствовать о том, что в основе «разминки» лежит быстрая метаболическая адаптация. Есть клинический данные, свидетельствующие о том, что нестабильная стенокардия является более благоприятным фактором для исхода последующего инфаркта миокарда, чем ее отсутствие. Определение времени между последним приступом стенокардии и инфарктом показало, что стенокардия «была эффективна» в том случае, если инфаркт миокарда развился в период 24–48 часов после последнего приступа, что соответствует замедленной фазе защитной реакции миокарда. Сейчас активно разрабатываются фармакологические агенты, вызывающие состояние прекондиционирования или потенцирующие защитный эффект первой ишемии. Показано, что периодическое введение ненаркотизированным кроликам селективного агониста аденозиновых А1 рецепторов поддерживало состояние адаптации 10 дней и привело к уменьшению зоны последующих инфарктов на 50%. Существует и другой вариант ишемического прекондиционирования: после частичной (а не полной) окклюзии без последующего условия реперфузии. Варианты «неишемического» прекондиционирования могут развиться также при: а) введении стимуляторов b-адренорецепторов, б) опиоидов, влияющих на активность опиоидных дельта-рецепторов, и в) после электростимуляции. Таким образом, имеет место быть как разноплановость факторов, вызывающих данный феномен, так и двуфазность: быстрая (или классическая) и медленная фазы метаболической адаптации к ишемии. Кроме того, в классическом варианте присутствуют две стадии: ишемия и реперфузия. Описан же только процесс адаптации к ишемии. Возможно, существует и явление адаптации к реперфузии. Но литературных данных на сей счет пока нет.

В эксперименте показано, что ИП уменьшает постишемические дисритмии, дисфункцию автономных нервов, нарушения микроциркуляции. Один из механизмов защиты - понижение скорости энергетического метаболизма. Замедляется утилизация АТФ и развитие интра- и эктрацеллюлярного ацидоза (экперимент на свиньях). В эксперименте показано, что если в момент исследования истощение АТФ находится на уровне необратимости, то ресинтез очень медленный. Повторные реокклюзии имеют отрицательный куммулятивный эффект, вплоть до полного истощения и клеточной смерти. Однако короткие окклюзии коронарной артерии, даже 40 раз, не дают куммулятивного эффекта истощения АТФ, не вызывают клеточной смерти и продуцируют значительную массу аденозина только в первые 2 окклюзии. Без прекондиционирования продукция аденозина при длительной ишемии высокая. Сделан вывод, что повторные окклюзии имеют защитное действие на пул АТФ и предотващают клеточную смерть. В последние годы данные полученные в эксперименте доказаны и на людях при исследованиях на открытом сердце во время операции АКШ. Перемежающееся пережатие коронарной артерии перед длительной окклюзией артерии во время операции на открытом сердце даёт лучшую защиту макроэргов, чем без предшествующей короткой ишемии. При коронарной ангиопластике у больных ИБС ангинальные боли и продукция лактата при повторной окклюзии баллоном уменьшаются, без каких-либо изменений региональной перфузии миокарда. Это говорит о том, что ИП имеется и у человека. То есть стенокардия может предохранить миокард от последующего инфаркта. Причиной сохранения макроэргов при ИП считается уменьшение силы сокращения в результате развития станинга, ингибирование митохондриальной АТФ-азы, снижение адренергической стимуляции метаболизма и снижения сокращения миокарда. Предполагаемый генез этих изменений следующий. Выделение аденозина из ишемизированных миоцитов приводит к активации ингибированного G-протеина, который подавляет экзоцитоз норадреналина и действует на миоциты, активирует бета-рецепторы и протеинкиназу. В этой проблеме ещё много неясного. Несомненно, что исследования во время операции на открытом сердце у больных ИБС с изучением всех глубинных метаболических процессов современными клеточно-молекулярными методами, перспективное направление. В одном из последних литературных обзоров определяются следующие механизмы ИП:

1. Энергосберегающий эффект, снижение сократимости миокарда, поддержание уровня АТФ, увеличение синтеза гликогена, снижение внутриклеточного ацидоза.

2. Высвобождение эндогенных защитных субстанций (аденозин, оксид азота, норадреналин и пр.) с последующим вовлечением фосфолипаз, G-протеина, протеинкиназы и фосфорилирование белков.

3. Снижение выделения повреждающих веществ, в частности норадреналина.

4. Открытие АТФ-зависимых каналов.

5. Образование свободных радикалов кислорода.

6. Стимуляция синтеза защитных стрессорных белков и/или ферментов.

7. Комбинация перечисленных факторов.

Учение о ИП определило и конкретизировало то, что было известно клиницистам - есть определённый контингент пациентов, которые длительно страдают стенокардией, имеют частые приступы, но живут долго, особенно при современном адекватном лечении.

Если после возникновения циркуляторной гипоксии сердца в его по­раженном недостатком кислорода участке продолжает оставаться высо­ким отношение потребности клеток сердца в кислороде к доставке 0 2 кардиомиоцитам, то связанные с гипоксией патологические изменения могут прогрессировать вплоть до цитолиза.

Циркуляторная гипоксия сердца индуцирует на органном уровне защитную реакцию гибернирую- щего миокарда (гибернации сердца).

Гибернация (лат. ЫЬетиБ - зимний, холодный) - искусственно вы­званное состояние замедленной жизнедеятельности организма, напоми­нающее зимнюю спячку животных (естественная гибернация).

Под гибернирующим миокардом понимают состояние сердца, кото­рое характеризует угнетение насосной функции в условиях покоя без ци­толиза кардиомиоцитов, причина которого - снижение объемной скоро­сти кровотока по венечным артериям. Гибернация резко ограничивает возможности сердца реагировать ростом выброса крови в аорту левым желудочком за единицу времени в ответ на рост потребности организма в кислороде (физическая нагрузка, лихорадка, гипертиреоз и др.). Состоя­ние гибернирующего миокарда - это результат защитной реакции, на­правленной на снижение высокого соотношения между силой сокраще­ний гипоксичного участка сердечной мышцы и его кровоснабжением, то есть отношения потребности кардиомиоцитов в свободной энергии к уровню улавливания клетками сердца свободной энергии при аэробном биологическом окислении. Таким образом, гибернация задерживает цито­лиз клеток сердца, обусловленный гипоэргозом.

В ответ на снижение объемной скорости кровотока в два раза проис­ходит снижение вызываемого систолическим сокращением утолщения

стенок соответствующего сегмента на 50 %. Так проявляет себя гиберна­ция сердца как причина угнетения насосной функции левого желудочка. Кроме того, о гибернации свидетельствует возвращение на исходный уровень концентрации протонов, креатинфосфата и напряжения углеки­слого газа в венозной крови, оттекающей от сердца, через 1-3 ч после возникновения его циркуляторной гипоксии, приводящей к инфаркту.

Гипокинезия и акинезия сегментов стенки левого желудочка, вы­званная гибернацией сердца, еще не говорят о необратимых изменени­ях кардиомиоцитов, в которых при гистопатологическом исследовании не находят признаков характерной для начальных стадий гипоксиче- ского гипоэргоза дегенерации. Гибернация сохраняет кардиомиоциты таким образом, что возобновление кровотока в течение недели после возникновения ишемии (аорто-коронарное шунтирование, чрезкожная эндоваскулярная пластика венечной артерии) подвергает обратному развитию гипо- и акинезию сегментов стенки желудочков. По мере ис­чезновения гипокинезии и акинезии сегментов восстанавливается син­хронность их систолического сокращения, растет фракция изгнания левого желудочка, и восстанавливается способность сердца реагиро­вать ростом выброса крови в аорту в ответ на увеличение потребностей органов и тканей.

Можно считать, что в настоящее время не существует широко дос­тупных достоверных способов определения жизнеспособности (гибер­нации) сердечных клеток в асинхронно сокращающихся сегментах стен­ки левого желудочка. Лишь комбинация ангиографии, эхокардиографии, сцинтиграфии и компьютерной томографии сердца при кумуляции в кардиомиоцитах и элиминации из них радионуклидов позволяет полу­чить достоверную информацию о степени жизнеспособности гиберни- рующего миокарда.

Станнинг (англ. stunning - оглушение, ошеломление) миокарда - это состояние вследствие снижения насосной функции сердца в результате его циркуляторной гипоксии, которое не подвергается обратному разви­тию, несмотря на восстановление объемной скорости кровотока в испы­тавших циркуляторную гипоксию сегментах стенок сердечных камер.

Выраженность и длительность станнинга находятся в прямой связи со степенью и длительностью циркуляторной гипоксии участка сердечной мышцы. До сих пор неясно, представляет ли собой станнинг сугубо пато­логическое состояние миокарда или следствие защитной реакции гибер­нации. Существенным отличием станнинга от гибернации выступает то, что восстановление доставки клеткам сердца кислорода и энергопласти­ческих субстратов не устраняет угнетения насосной функции сердца. Предположительно в основе развития станнинга лежат образование сво­бодных кислородных радикалов, нарушения миграции кальция через кле­точные мембраны и низкая эффективность улавливания кардиомиоцита- ми свободной энергии при биологическом окислении.

Станнинг миокарда может развиться после тромболитической тера­пии, когда внутривенное введение стрептокиназы ведет к лизису тром­ба в области стеноза венечной артерии, или после операции аорто­коронарного шунтирования. Состояние станнинга миокарда может длиться дни или месяцы. В этих случаях использование средств с по­ложительным инотропным действием оправдано лишь в том случае, если угнетение насосной функции желудочка может стать звеном тан$- тогенеза.

В экспериментах у целого ряда видов млекопитающих было показано, что краткие периоды острой циркуляторной гипоксии (ишемии) сердца (ишемическое прекондиционирование миокарда) значительно повышают его устойчивость к длительной ишемии со снижением зоны инфаркта на 80 % зоны его распространения у животных контрольной группы.

Ишемическое прекондиционирование - наиболее эффективный из из­вестных у млекопитающих естественных механизмов защиты клеток миокарда от ишемии В кардиопротективном эффекте ишемического прекондиционирования особая роль принадлежит Сп-белкам, локализо­ванным в плазматической мембране клеток сердца. Эти трансмембран­ные белки выступают медиаторами снижения активности аденилатцик- лазы, которая падает вследствие возбуждения рецепторов к аденозину А1 и мускариновых Мг-рецепторов. Возбуждение рецепторов этих двух типов через активацию вгбелков приводит к активации АТФ- зависимых калиевых каналов наружных клеточных мембран кардио- миоцитов, торможению их натриевого трансмембранного канала и бло­кирует перенос через мембраны клеток сердца кальция по его каналам Ь-типа. Каждый из этих эффектов активации Орбелков ведет к сниже­нию утилизации всеми клетками сердца свободной энергии в основном за счет меньшей работы клеток рабочего миокарда при сокращении. Предполагают, что активация в]-белков при ишемии происходит вслед­ствие связанного с гипоэргозом высвобождения клетками сердца боль­шого количества молекул аденозина.

Если сердце не подвергать ишемическому прекондиционированию, то ишемия служит причиной неуклонного снижения уровня активации 01- белков, то есть их дисфункции, связанной с гипоэргозом. В сердце экспе­риментальных животных после ишемического прекондиционирования возрастает чувствительность Орбелков к активации соответствующих ре­цепторов при ишемии. Устойчивая активация данных трансмембранных белков в зоне циркуляторной гипоксии сердца, которое прошло через не­сколько периодов кратковременной ишемии, не приводящей к цитолизу, предположительно лежит в основе кардиопротективного эффекта ишеми­ческого прекондиционирования.

Полагают, что данные, полученные при изучении ишемического пре­кондиционирования у экспериментальных животных, позволят экстрапо­лировать их результаты на практику лечения инфаркта миокарда у боль­ных. Это в известной мере подтверждает предварительное сообщение об эффективности блокатора распада аденозина акадезина в предупреждении интраоперационных инфарктов миокарда при аорто-коронарном шунти­ровании.

Последние материалы сайта