Диэлектриком называют вещество. Мир современных материалов - общие сведения о диэлектриках

21.09.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

В 1729 г. английский физик Стефан Грей обнаружил, что электрический заряд может перемещаться по одним телам и не перемещаться по другим. Например, по металлической проволоке электричество в его опытах распространялось, а по шелковой нити нет. С тех пор все вещества стали делиться на проводники и непроводники электричества. Последние были названы Фарадеем диэлектриками.

Введённый Фарадеем в 1837 г. термин «диэлектрики» образован от двух слов - греческого «диа» (что значит «через») и английского electric (электрический).

Диэлектриком называют вещество, которое не проводит электрический ток, следовательно в это веществе отсутствуют свободные заряженные частицы ( т.е. таких заряженных частиц, которые способны свободно перемещаться по всему объёму тела) . Такими частицами могли бы быть электроны, но в идеальном диэлектрике все электроны связаны с ядром атома, т.е. принадлежат отдельным атомам, и свободно перемещаться по телу не могут. Чтобы нарушить эту связь, нужны сильные воздействующие факторы.

Диэлектрики обладают способностью пропускать через себя электростатическое поле. Проникая через диэлектрики электростатическое поле ослабевает, но всё-таки не до нуля, как это происходит в металлах.

Диэлектриками могут быть вещества в трёх агрегатных состояниях: газообразном (азот, водород), жидком (чистая вода), твёрдом (янтарь, фарфор, кварц).

Всякая молекула представляет собой систему с суммарным зарядом, равным нулю. Поведение молекулы во внешнем электрическом поле эквивалентно диполю. Положительный заряд такого диполя равен суммарному заряду ядер, помещён в «центр тяжести» положительных зарядов; отрицательный заряд равен суммарному заряду электронов и помещён в «центр тяжести» отрицательных зарядов.

Все диэлектрики делятся на три группы: полярные, неполярные и кристаллические.

    Кристаллические диэлектрики имеют ионную структуру, - это слабополярные диэлектрики. К ним относятся NaCl, KCl.

При помещении диэлектрика в электрическое поле в его объёме и на поверхности появляются макроскопические заряды. Указанные заряды возникают в результате поляризации диэлектриков.

Поляризацией диэлектрика называется процесс ориентации диполей, т.е. смещение положительных и отрицательных зарядов внутри диэлектрика в противоположные стороны.

Трём группам диэлектриков соответствует три вида поляризации.

Дипольная (ориентационная) поляризация. Приотсутствии внешнего поля дипольные моменты полярных молекул вследствие теплового движения ориентированы в пространстве хаотично и их результирующий момент равен нулю (рис.12.22, а) . Если такой диэлектрик поместить во внешнее поле (рис.12.22, б) , то силы этого поля будут стремится повернуть диполи вдоль поля и возникает отличный от нуля результирующий момент. Эта ориентация дипольных моментов молекул по полю тем сильнее, чем больше напряжённость электрического поля и ниже температура.

Электронная поляризация . Если неполярную молекулу поместить во внешнее электрическое поле Е 0 , то под действием электрического поля происходит деформация её электронных орбит и молекулы диэлектрика превращаются в диполи, сразу ориентированные вдоль внешнего поля (ядра молекулы при этом смещаются по полю, а электронная оболочка вытягивается против поля и молекула приобретает дипольный момент

(рис. 12.23).

Ионная поляризация . Если кристаллический диэлектрик (NaCl) имеющий кристаллическую решётку, в узлах которой правильно чередуются положительные и отрицательные ионы, поместить во внешнее электрическое поле Е 0 , то произойдёт смещение положительных ионов решётки вдоль направления поля, а отрицательных ионов – в противоположную сторону. В результате диэлектрик поляризуется.

Такого рода поляризация называется ионной. Степень ионной поляризации зависит от свойств диэлектрика и от напряжённости поля.

Диэлектрики. Классификация

Диэлектриками называются материалы, в которых длительно могут существовать электростатические поля и основным свойством которых является способность к поляризации.

При нормальных условиях (температура близкая к комнатной, давление порядка атмосферного, уровень радиационного воздействия близок по интенсивности к солнечному) диэлектрики обладают высокими значениями удельного электрического сопротивления (ρ>10 8 Ом·м) и шириной запрещенной зоны порядка 3-8 эВ. При этом электрические заряды прочно связаны с атомами, молекулами или ионами и в электрическом поле они могут лишь смещаться, что приводит к разделению центров положительного и отрицательного зарядов.

Диэлектрики содержат и свободные заряды, которые перемещаясь в электрическом поле, обусловливают электропроводность. Однако количество таких свободных зарядов в диэлектрике невелико, поэтому ток мал.

Диэлектрики классифицируют по разным признакам.

1 По функциям, которые диэлектрические материалы выполняют в приборах и устройствах, а также по воздействию, оказываемому на них внешними факторами, они подразделяются на электроизоляционные и конденсаторные материалы (линейные или пассивные) и активные диэлектрики (нелинейные или управляемые).

2 По агрегатному состоянию - на газообразные, жидкие и твердые.

В газообразных - молекулы или атомы находятся на значительном расстоянии друг от друга и слабо взаимодействуют между собой, плотность газов низка, они не имеют собственного объема и подразделяются на:

Неполярные (воздух и входящие в его состав газы: водород, кислород, азот; благородные газы: гелий, аргон и др.), у которых в отсутствии внешнего электрического поля центры положительного и отрицательного зарядов совпадают;

Полярные (СО, Н 2 О, HCl, HF, H 2 S и др.), у которых центры разноименных зарядов не совпадают, т.е. существуют постоянные диполи.

В жидких - молекулы и атомы расположены ближе чем в газах, и они имеют собственный объем, а их свойства слабо зависят от внешнего давления. К электроизоляционным и конденсаторным материалам относятся нефтяные масла (трансформаторное, кабельное и конденсаторное) и синтетические фтор-, хлор- и кремнийорганические жидкости.

3 По химическому составу на: органические, неорганические и элементоорганические.

Органические - представляют собой соединения углерода с водородом, азотом, кислородом и другими элементами; элементоорганические - те, в молекулы которых входят атомы кремния, магния, алюминия, титана и других элементов; неорганические, не содержат в своем составе углерода и представляют собой, в основном, неорганические химические соединения и твердые растворы на их основе.

Также возможна классификация по наличию или отсутствию дальнего порядка (аморфные и кристаллические), по количеству фаз (однофазные и многофазные), по области применения (низкочастотные и высокочастотные) и др.

Из многообразия электрических свойств диэлектриков, определяющих их техническое применение, основными являются: электропроводность, поляризация, диэлектрические потери, электрическая прочность и электрическое старение.

При воздействии электрического поля в диэлектрике возникает ряд процессов: смещение связанных зарядов (поляризация), направленное движение зарядов (электропроводность), рассеивание энергии поля, вызывающее нагрев диэлектрика (диэлектрические потери) и, наконец, при достаточно высоких напряженностях поля диэлектрик теряет свои диэлектрические свойства (пробой).

1.2 Основные электрические свойства и характеристики диэлектриков

1.2.1 Поляризация и электрическое поле в диэлектрике

В диэлектрике положительно и отрицательно заряженные частицы прочно связаны друг с другом. Поэтому, при внесении диэлектрика в электрическое поле наблюдается лишь смещение связанных зарядов относительно друг друга на небольшие расстояния в направлении действующих на них сил. Это явление называется поляризацией.

Электрическая поляризация – это состояние вещества, при котором электрический момент некоторого объема этого вещества отличен от нуля.

Свойства диэлектриков, в которых поляризация возникает лишь пол влиянием электрического поля и исчезает после его снятия, не зависит от напряженности приложенного поля. Поэтому такие диэлектрики и называются линейными (пассивными).

Поляризация в диэлектриках может возникать не только под влиянием электрического поля, но и под воздействием различных внешних факторов (механических усилий, света, температуры и др.), а в некоторых диэлектриках-сегнетоэлектриках возникает в определенном интервале температур самопроизвольно. Свойствами таких диэлектриков можно управлять с помощью внешнихвоздействий: напряженностью электрического поля Е (в сегнетоэлектриках), механическим усилием (в пьезоэлектриках) и т.д., причем зависимость эта не линейна. Так, у сегнетоэлектриков диэлектрическая проницаемость

ε = f (Е) , у материалов для варисторов электрическая проводимость γ = f (E). Эти аномальные по своему поведению в электромагнитном поле материалы называют нелинейными (активными).

Таким образом, приложение к диэлектрику внешнего электрического поля напряженностью Е может привести:

К смещению внутри диэлектрика электрических зарядов (положительные смещаются к “-“, а отрицательные – к”+”), в результате чего образуются диполи;

К ориентации уже имеющихся в материале постоянных диполей.

Два электрических заряда противоположного знака (±q), находящиеся на расстоянии l друг от друга образуют диполь с моментом m (рисунок 1.1)

Рисунок 1.1 – Диполь в электрическом поле

При этом дипольный момент каждого элементарного объема диэлектрика будет пропорционален напряженности электрического поля Е

где α- поляризуемость, характеризующая способность частицы диэлектрика (атома, иона, молекулы или другой структурной единицы) к поляризации.

1.2.2 Вектор поляризации, поляризованность

Основными количественными характеристиками степени поляризации диэлектриков являются поляризованность (или вектор поляризации) Ри диэлектрическая проницаемость ε. В отсутствие внешнего электрического поля дипольные моменты диэлектрика или равны нулю (неполярные молекулы) или распределены хаотических образом (полярные молекулы). В обоих случаях суммарный электрический момент диэлектрика равен нулю.

Под действием внешнего поля диэлектрик поляризуется, т.е. результирующий дипольный момент любого его объема становится отличным от нуля. Тогда вектор поляризации можно определить по формуле

,

где – χ = к э ·ε 0 – абсолютная диэлектрическая восприимчивость; к э - диэлектрическая восприимчивость, а ε 0 = 8,85·10 -12 Ф/м- электрическая постоянная.

Таким образом,

Пропорциональность между Р и Е в слабых полях наблюдается у линейных диэлектриков. Вектор поляризации может быть представлен в виде

,

где N- число элементарных дипольных моментов. Скалярная величина Р называется поляризованностью.

1.2.3 Диэлектрическая проницаемость

На рисунке 1.2 схематически изображены два плоских конденсатора, площадь электродов которых S, а расстояние между ними h. В конденсаторе (рисунок 1.2 а) между электродами вакуум, в конденсаторе (рисунок 1.2 б)- диэлектрик.

Рисунок 1.2

Если электрическое напряжение на электродах U= U 0 · exp (jωt) с угловой частотой ω = 2πf, то напряженность электрического поля Е = U/h. Электрический заряд, накопленный в конденсаторе с вакуумом, называется свободным зарядом Q 0 (на рисунке 1.2 а - квадраты) и определяется из выражения

,

где С 0 - емкость конденсатора с вакуумом.

В электрическом поле в частицах, из которых построен диэлектрик, связанные положительные и отрицательные заряды смещаются. В результате, как уже сказано выше, образуются электрические диполи с моментом m= q·l, где q- суммарный положительный (и численно равный ему отрицательный) заряд частицы, Кл; l- расстояние между центрами зарядов, плечо диполя, м.

Для компенсации поляризационных зарядов источником электрического напряжения создается дополнительный связанный заряд Q д и общий заряд конденсатора возрастает.

При этом полный заряд конденсатора с диэлектриком

,

где ε r - относительная диэлектрическая проницаемость.

Электрическая емкость конденсатора с вакуумом между электродами

.

Емкость этого конденсатора с диэлектриком между электродами

.

Из этих формул следует, что

,

где ε r и есть относительная диэлектрическая проницаемость.

Емкость плоского конденсатора

,

где ε 0 = 8,85·10 -12 Ф/м- электрическая постоянная, а произведение ε 0 ·ε r = ε- абсолютная диэлектрическая проницаемость.

1.2.4 Электропроводность диэлектриков

Свойство вещества проводить под действием неизменяющегося во времени электрического поля неизменяющийся во времени электрический ток называется электропроводностью.

Используемые диэлектрики содержат в своем объеме небольшое количество свободных зарядов, которые перемещаются в электрическом поле. Этот ток называется сквозным током утечки. В диэлектриках свободными зарядами, которые перемещаются в электрическом поле, могут быть ионы (положительные и отрицательные), электроны и электронные вакансии (дырки), поляроны. Ширина запрещенной зоны в диэлектриках 3…7 эВ, энергию, достаточную для перехода в зону проводимости электроны могут приобрести в результате нагревания диэлектрика или при ионизирующем облучении. В сильных полях возможна инжекция зарядов (электронов, дырок) в диэлектрик из металлических электродов; возможно образование свободных зарядов (ионов и электронов) в результате ударной ионизации, когда энергия свободных зарядов достаточна для ионизации атомов при соударении.

Для твердых диэлектриков характерной является ионная электропроводность. При нагревании или освещении, действии радиации, сильного электрического поля сначала ионизируются содержащиеся в таких диэлектриках дефекты и примеси. Образовавшиеся таким образом ионы определяют низкотемпературную примесную область электропроводности диэлектрика.

При более интенсивном воздействии на диэлектрик ионизируются основные частицы материала. Удельная проводимость в этом случае изменяется с ростом температуры с большей скоростью, так как число ионов, образовавшихся при ионизации основных частиц, больше, чем при ионизации дефектов и примесей. Энергия активации основных частиц больше, эта область электропроводности называется высокотемпературной собственной.

Поверхностная электропроводность диэлектриков определяется способностью поверхности материала адсорбировать загрязняющие компоненты, в частности, влагу, содержащуюся в окружающей атмосфере. Хорошо увлажняются полярные диэлектрики, их называют гидрофильными, в отличие от гидрофобных, которые не смачиваются водой. Гидрофобными являются неполярные диэлектрики. Тонкий слой влаги на поверхности снижает поверхностное сопротивление.

Таким образом, в диэлектрике, находящемся в постоянном электрическом поле, протекает электрический ток, состоящий из тока поляризации или смещения, и тока сквозной электропроводности или тока утечки.

Токи поляризации обусловлены смещением связанных зарядов при установлении поляризации. При постоянном напряжении они возникают лишь в момент включения и выключения напряжения и затем затухает. Токи смещения при электронной и ионной поляризации весьма кратковременны (10 -13 -10 -15 с) и называются мгновенными токами смещения. У большинства диэлектриков время существования поляризационных токов составляет доли секунды, но у некоторых может достигать несколько дестков секунд, что происходит при замедленных видах поляризации. Токи, возникающие при установлении замедленных видов поляризации, называются токами абсорбции (Iабс). Их надо учитывать при измерении сопротивления диэлектриков. Считается, что процесс установления всех видов поляризации заканчивается через 1 мин. После подачи постоянного напряжения. При постоянном напряжении I абс протекает лишь в моменты включения и выключения напряжения, при переменном – в течение всего времени. При переменном напряжении активная проводимость определяется не только током утечки (как при постоянном напряжении), но и активными составляющими поляризационных токов.

Ток утечки может быть измерен через 1 мин. После включения напряжения, когда процесс поляризации закончится и токи смещения исчезнут. Именно ток утечки, или сквозной ток I ск, и определяет электропроводность диэлектрика (рисунок 1.3).

Количественной мерой электропроводности служит удельная проводимость γ, являющаяся коэффициентом пропорциональности между плотностью тока j и напряженностью E (закон Ома)

Плотность тока численно равна заряду, проходящему через единицу сечения в единицу времени

,

где n 0 - концентрация свободных носителей заряда, q - величина заряда, V - скорость дрейфа, т.е. направленного движения заряда в поле Е.

В случае ионной электропроводности

,

где N 0 - полная концентрация ионов в веществе; w- энергия активации, определяющая вероятность перехода иона ьв свободное состояние при температуреТ; к= 1,38·10 -23 Дж/К – постоянная Больцмана.

Из этого следует, что

,

где b - подвижность носителей заряда, т.е. средняя дрейфовая скорость при единичной напряженности поля. В системе СИ подвижность b имеет размерность м 2 /В·с.

При обычных условиях главным видом носителей зарядов в диэлектриках являются ионы, что объясняется их более низкой энергией активации в сравнении с другими носителями заряда. Так, например, сравним велечины энергий активации (ω) заряженных частиц каменной соли (NaCl) – ионов Na + , Сl - и электронов: ω Na = 0,85 эВ; ω С l = 3 эВ; ω эл = 6 эВ.

Рисунок 1.3 – Изменение тока текущего через диэлектрик, во времени после включения его под постоянное напряжение

Носителями тока в каменной соли служат ионы натрия, так как для их перевода в свободное состояние затрачивается наименьшая энергия (для перевода электронов в свободное состояние требуется энергия в 7 раз больше). Помимо собственных ионов, электропроводность диэлектрика обуславливают и слабо связанные ионы примесей. В неполярных диэлектриках с ковалентной связью при низких температурах это единственные носители тока. Судить о виде носителей (собственные или примесные ионы) можно на основании рис. 1.3. Снижение I c к (кривая 1) свидетельствует о том, что электропроводность диэлектрика была обусловлена ионами примесей, количество которых из-за электрической очистки уменьшилось. Рост I ск (кривая 2) указывает, что носителями тока являются собственные ионы самого диэлектрика, количество которых возрастает из-за необратимого процесса старения. Таким образом, ионная (или электролитическая) проводимость есть результат образования ионов либо за счет диссоциации молекул самого диэлектрика, либо за счет диссоциации молекул примесей под действием теплового движения, электрического поля и др. Этот вид проводимости наиболее часто проявляется в диэлектриках. В этом случае прохождение тока через диэлектрик сопровождается явлением электролиза.

В диэлектриках возможны также электронная и молионная виды проводимости. При электронной основными носителями являются свободные электроны. Этот вид проводимости наблюдается в газообразных диэлектриках, в твердых диэлектриках при высоких температурах и значительных напряженностях поля, а также в тонких слоях.

Молионная или электрофоретическая проводимость появляется в диэлектриках, в которых носителями зарядов служат заряженные группы молекул – молионы. Такой вид проводимости часто имеет место в жидких диэлектриках. При этом наблюдается явление электрофореза – переноса массы вещества к электроду.

1.2.5 Поляризация диэлектриков

Состояние электрической поляризации в диэлектриках возникает за счет различных процессов или механизмов, определяемых структурой вещества.

Принято различать упругую (быструю, нерелаксационную) и неупругую (медленную, релаксационную) поляризации. Упругая поляризация завершается мгновенно за время t, намного меньшее полупериода приложенного напряжения. Поэтому процесс быстрой поляризации создает в диэлектрике только реактивный ток, при этом процесс поляризации обратим и протекает без рассеивания энергии, т.е. без нагрева диэлектрика. К таким быстрым поляризациям относятся электронная, завершающаяся за время 10 -16 …10 -13 с, и ионная упругая, завершающаяся за время 10 -14 …10 -13 с, поляризации.

1.2.5.1 Упругие поляризации

Электронная поляризация. Электронная поляризация представляет собой упругое смещение и деформацию электронных оболочек атомов или ионов, в результате чего центры тяжести зарядов электронного облака и ядра атома (иона) не совпадают в пространстве (рисунок 1.4) и возникает дипольный момент. Смещение электронов происходит на малые расстояния (10 -13 м) в пределах своих атомов и молекул. Электронная поляризация наблюдается у всех диэлектриков, в любом агрегатном состоянии, в переменном поле она происходит во всем диапазоне частот вплоть до 10 15 Гц, а при более высоких частотах исчезает.

Рисунок 1.4 Рисунок 1.5 Рисунок 1.6

Диэлектрики, у которых имеет место только электронная поляризация, называются неполярными диэлектриками. В молекулах неполярных диэлектриков центры положительного и отрицательного зарядов совпадают, поэтому такие молекулы неполярны. Неполярными диэлектриками являются газы (гелий, водород, азот, метан), жидкости (бензол, четыреххлористый углерод) и твердые материалы (алмаз, полиэтилен, фторопласт-4, парафин).

Диэлектрическая проницаемость уменьшается с ростом температуры из-за теплового расширения диэлектрика и уменьшения числа частиц в единице объема (рисунок 1.7, кривая 1). Кривая зависимости диэлектрической проницаемости от температуры подобна кривой изменения плотности.

Значение диэлектрической проницаемости газообразных диэлектриков мало отличается от 1, а для неполярных жидких и твердых диэлектриков не превышает 2,5. Диэлектрическая проницаемость неполярных диэлектриков не изменяется с ростом частоты приложенного напряжения до 10 12 ... 10 13 Гц.

Изменение ε при изменении температуры характеризуется температурным коэффициентом диэлектрической проницаемости

.

Ионная упругая поляризация. Ионная поляризация происходит в кристаллических диэлектриках, построенных из положительных и отрицательных ионов: в галоидо-щелочных кристаллах, слюде, керамике и др. В электрическом поле в таких диэлектриках происходит смещение электронных оболочек в каждом ионе – электронная поляризация. Смещаются друг относительно друга подрешетки из положительных и отрицательных ионов, т.е. происходит упругая ионная поляризация (рисунок 1.5). Это смещение приводит к появлению дополнительного электрического момента, увеличивающего поляризованность, а, следовательно, и диэлектрическую проницаемость.

Ионная поляризация не зависит от частоты приложенного напряжения до 10 12 – 10 13 Гц, так как время установления поляризации ничтожно мало по сравнению с периодом изменения этого поля. Диэлектрическая проницаемость ионных кристаллов с ростом температуры увеличивается, так как тепловое расширение приводит к ослаблению сил связи между ионами, и поэтому к увеличению их смещения в электрическом поле (рисунок 1.7, кривая 2).

Рисунок 1.7

1.2.5.2 Неупругие поляризации (релаксационные)

Дипольно-релаксационная поляризация. Дипольная поляризация наблюдается в полярных газообразных и жидких диэлектриках. Полярные диэлектрики построены из полярных молекул, в которых центры положительного и отрицательного зарядов не совпадают. Полярная молекула имеет собственный электрический момент (дипольный момент). Из полярных молекул состоят газообразные аммиак NH 3 , пары воды и спиртов. Полярными жидкостями являются вода, хлорбензол C 6 H 5 Cl, нитробензол C 6 H 5 NO 2 . В электрическом поле в таких молекулах смещаются электронные оболочки атомов – происходит электронная поляризация, также происходит и дипольная поляризация (дипольные моменты молекул ориентируются по полю). В твердых полярных диэлектриках процесс дипольной поляризации состоит в деформации участков – звеньев, сегментов молекул или ориентация отдельных полярных групп молекул (рисунок 1.6).

Дипольно-релаксационная поляризация сводится к повороту (ориентации) в направлении электрического поля частиц полярного диэлектрика, имеющих постоянный дипольный момент. Такими частицами являются полярные молекулы (в полярных газах и жидкостях) и полярные радикалы (группы атомов и ионов в твёрдых полярных диэлектриках). Схематически этот процесс поляризации изображён на рисунке 1.8, на примере полярной молекулы.

Рисунок 8

В электрическом поле на заряды диполя будут действовать силы, равные по величине, но противоположно направленные (рисунок 1.8, а). Разложим каждую силу на 2 составляющие: вдоль и перпендикулярно оси диполя. Силы, действующие в направлении оси диполя, компенсируют друг друга, а силы, действующие перпендикулярно оси, вызывают вращающий момент М, который разворачивает полярную молекулу в электрическом поле

Так как мы рассматриваем изолированную полярную молекулу, то никаких препятствий для разворота её вдоль поля нет, и направление электрического момента её совпадает с направлением поля (рисунок 1.8, б). В реальном же диэлектрике полярные молекулы связаны друг с другом внутренними силами и в то же время находятся в непрерывном хаотическом движении, которое препятствует ориентации их вдоль поля. Поэтому полярные молекулы разворачиваются в диэлектрике на углы 0 < Θ < π. Поворот полярных частиц в направлении поля происходит замедленно 10 -12 -10 -2 , связан с затратами энергии и сопровождается её рассеиванием.

Если на полярный диэлектрик поле не воздействует, то в любой момент времени проекция электрического момента всех молекул на любое направление равна нулю. При воздействии электрического поля проекция электрического момента всех молекул на направление поля становится отличной от нуля, и диэлектрик приобретает поляризованность. После снятия электрического поля ориентация частиц постепенно ослабевает, система из неравновесного состояния, вызванного воздействием поля, переходит к более равновесному состоянию (рисунок 1.9). При этом поляризованность во времени изменяется в соответствии с формулой

,

где Р 0 - начальная поляризованность ориентированных частиц; τ- время, прошедшее после снятия поля; τ 0 - постоянная времени (время релаксации).

Рисунок 1.9 – Изменение поляризованности во времени

Время релаксации – это промежуток времени, в течение которого поляризованность (упорядоченность) ориентированных полем диполей, после снятия поля, из-за теплового хаотического движения уменьшается в 2,7 раза от первоначального значения. При этом 37% диполей ещё сохраняет поляризованность. Время релаксации поляризации экспоненциально убывает с температурой

,

где τ 0 *- время релаксации при абсолютной температуре Т→∞.

При повышении температуры поляризованность частиц при дипольно-релаксационной поляризации, а следовательно, и диэлектрическая проницаемость, обусловленная ею, вследствие ослабления молекулярных сил (вязкость диэлектрика экспоненциально уменьшается), вначале растёт, достигает максимума, а затем, при достаточно высоких температурах, падает в связи с возрастающим дезориентирующим влиянием теплового движения (рисунок 1.10).

При воздействии на полярный диэлектрик переменного поля до тех пор, пока полярные частицы успевают следовать за изменением поля, частота не влияет на величину диэлектрической проницаемости. Начиная с некоторой критической частоты f р (частоты релаксации), полярные частицы, являющиеся инерционными, не успевают следовать за изменением поля, дипольно-релаксационная поляризация прекращается, и диэлектрическая проницаемость резко падает до величины, обусловленной электронной поляризацией (рисунок 1.11). Частота релаксации зависит от природы и структуры диэлектрика. При повышении температуры частота релаксации растёт из-за уменьшения молекулярных сил и вязкости.

Рисунок 1.10 Рисунок 1.11

Ионно-релаксационная поляризация. Этот вид поляризации наблюдается в ионных диэлектриках неорганического происхождения с неплотной упаковкой,например, в неорганических стёклах с рыхлой структурой и низким показателем преломления, и состоит в дополнительных (наряду с хаотическим тепловым движением) перебросах слабо связанных ионов под воздействием внешнего электрического поля на расстояния, превышающие постоянную решётки. Эти перебросы ионов, совершаемые из одного равновесного состояния в другое, необратимы и сопровождаются заметным рассеиванием энергии.

Время установления ионно-релаксационной поляризации велико, колеблется в широких пределах у разных диэлектриков – от 10 -6 с до 1 минуты.

В таких диэлектриках возможно несколько релаксаторов-ионов с различной массой, имеющих из-за этого разные периоды релаксации. Поэтому с ростом частоты электрического поля диэлектрическая проницаемость, обусловленная ионно-релаксационной поляризацией, постепенно уменьшается. При повышении температуры диэлектрическая проницаемость растёт из-за увеличения числа ионов, участвующих в этом виде поляризации.

Электронно-релаксационная поляризация. Этот вид поляризации возникает в некоторых диэлектриках с плотной структурой и высоким показателем преломления (например, в двуокиси титана, загрязнённой примесями). Возникает она из-за наличия в них слабо связанных электронов. В отсутствие электрического поля под влиянием теплового движения эти электроны совершают равновероятные перемещения вблизи дефекта, с которым они связаны, и не создают электрического момента. При наложении же электрического поля большинство таких электронов перемещается против поля на расстояние порядка одного или нескольких междуатомных расстояний. Это приводит к возникновению электрического момента в объёме диэлектрика и его поляризации. Так как эта поляризация устанавливается в течение некоторого времени, она называется электронно-релаксационной.

Спонтанная поляризация. Сегнетоэлектрики. Эта поляризация, возникающая самопроизвольно в определённом интервале температур, лежащих ниже температуры Θ к, называемой точкой Кюри. Выше точки Кюри наблюдается лишь электронная, ионная и ионно-релаксационная поляризация. Характерные для сегнетоэлектриков свойства впервые были обнаружены у сегнетовой соли, поэтому сегнетоэлектриками стали называть вещества, свойства которых подобны свойствам сегнетовой соли.

В сегнетоэлектриках даже в отсутствии электрического поля наблюдается самопроизвольное смещение частиц – ионов в ионных кристаллах или полярных радикалов молекул, которое приводит к несовпадению положительного и отрицательного зарядов в объеме диэлектрика, то есть поляризации. Такая поляризация называется спонтанной (самопроизвольной). В диэлектрике образуются области - домены. В каждом домене частицы, обусловливающие самопроизвольную поляризацию, смещены в одном направлении. В этом же направлении ориентирован и вектор спонтанной поляризованности (P s) домена. В соседних доменах направление P s может быть противоположным или перпендикулярным (рисунок 1.12, а), (механизм поляризации на примере титаната бария будет рассмотрен ниже в разделе 2 свойства активных диэлектриков).

В электрическом поле в сегнетоэлектриках происходят упругие электронная поляризация и ионная поляризация, а также неупругая доменная. В процессе доменной поляризации векторы Р s доменов ориентируются по направлению электрического поля (рисунок 1.12, б). Переориентацией направлений Р s доменов объясняются характерные для сегнетоэлектриков нелинейные свойства: диэлектрический гистерезис и зависимость их диэлектрической проницаемости от напряженности электрического поля (рисунок 1.12, в,г). Поляризованность кристалла с ростом напряженности электрического поля увеличивается благодаря ориентации Р s доменов и достигает поляризованности насыщения. С уменьшением напряженности при Е = 0 наблюдается остаточная поляризованность, так как сохраняется ориентация доменов. Уменьшить поляризованность до нуля можно приложив к образцу электрическое поле напряженностью Е с, которое называется коэрцитивной силой.

Для сегнетоэлектриков характерны: большая диэлектрическая проницаемость (до нескольких тысяч) и ее сильная зависимость от температуры (рисунок 1.12, д). Увеличение температуры приводит к ослаблению сил, препятствующих ориентации доменов. Поляризованность диэлектрика, вызванная доменной поляризацией, увеличивается, а диэлектрическая проницаемость достигает максимального значения при температуре точки Кюри. Спонтанная поляризованность при температуре Кюри исчезает, сегнетоэлектрик теряет свои сегнетоэлектрические свойства и переходит в параэлектрическое состояние, при котором сохраняется нелинейная зависимость диэлектрической проницаемости от напряженности электрического поля.

Рисунок 1.12

Миграционная поляризация. При миграционной поляризации происходит смещение свободных зарядов (положительных и отрицательных ионов и электронов) и их закрепление на дефектах и поверхностях раздела различных диэлектриков в диэлектрическом материале. Величина миграционной поляризации Р м

,

где N – количество положительных зарядов q, сместившихся на расстояние l относительно отрицательных зарядов в единице объема диэлектрика.

Миграционная поляризация чаще всего наблюдается в неоднородных диэлектриках, состоящих из частиц с различными диэлектрическими проницаемостями и проводимостями. В таких неоднородных диэлектриках свободные заряды могут собираться на поверхности раздела различных диэлектриков, приводя к частному виду миграционной поляризации, называемой межслойной.

Миграционная поляризация может возникать и в однородных диэлектриках, в которых свободные электрические заряды могут захватываться чужеродными ионами примесей, дислокациями и трещинами в различных частях объема диэлектрика.

Миграционная поляризация связана с появлением объемных зарядов в приэлектродных слоях или в самом диэлектрике при воздействии постоянного поля и с электропроводимостью диэлектрика. На образование этой поляризации затрачивается значительное время, измеряемое иногда десятками минут. Такая поляризация, как и другие замедленные виды поляризации, сопровождается потерями в диэлектрике.

1.2.6 Диэлектрические потери

При помещении любого вещества в электрическое поле с напряженностью Е в этом веществе наблюдается поглощение части энергии электрического поля. Поглощенная часть энергии превращается в тепловую, которая и является диэлектрическими потерями. Диэлектрические потери обычно пропорциональны Е 2 .

Диэлектрическими потерями называется мощность, поглощаемая диэлектриком при воздействии на него электрического поля и вызывающая нагревание диэлектрика.

Потери мощности вызываются электропроводностью и медленными поляризациями. Диэлектрические потери могут привести к увеличению удельной электропроводности вследствие миграции примесных и собственных ионов,а в полях высокой напряженности – к пробою. Возможны также потери, связанные с ионизацией газовых включений, которые могут вызвать ионизационный пробой.

Для характеристики способности диэлектрика рассеивать энергию в электрическом поле используют угол диэлектрических потерь δ, тангегс угла диэлектрических потерь tg δ

и мощность потерь или активную мощность Р а.

Диэлектрические потери наблюдаются как в постоянном, так и в переменном поле.

В постоянном поле диэлектрические потери невелики. Они оцениваются сопротивлением изоляции,то есть током сквозной проводимости I ск, возникающим вследствие миграции свободных носителей заряда, и определяются выражением

,

где U – напряжение, а I ск - ток сквозной проводимости.

В общем случае, при включении на постоянное напряжение возникает ток, спадающий во времени

Ток смещения (емкостной ток) I с вызван смещением электронных оболочек в атомах, ионах и молекулах, т.е. процессом установления быстрых, упругих поляризаций, и спадает в течение 10 -15 -10 -16 с, поэтому не вызывает рассеяния энергии в диэлектрике.

Спадающий со временем ток абсорбции I абс обусловлен смещением связанных зарядов в ходе медленных поляризаций и вызывает рассеяние энергии в диэлектрике и диэлектрические потери (рисунок 1.13, а).

Рисунок 1.13

Сквозной ток утечки I ск, вызванный перемещением свободных зарядов в диэлектрике в процессе электропроводности, не изменяется со временем (если не происходит электроочистка диэлектрика или его старение, деградация) и вызывает потери аналогичные джоулевым потерям в проводниках. Следовательно, при постоянном напряжении потери, вызванные током абсорбции, имеют место только в период, когда происходит процесс медленных поляризаций, т.е. в период включения.

Диэлектрические потери в переменном поле значительно выше, чем в постоянном поле.

Рассмотрим потери в переменном поле с частотой f = 2π·ω, напряжение которого изменяется синусоидально U(t) = U max ·Sinωt.

Общий ток, протекающий через диэлектрик, является суммой токов различной природы

Электроизоляционный материал – это диэлектрический материал, предназначенный для электрической изоляции. Величина электрического сопротивления находится в диапазоне от 10 6 Ом∙м до 10 17 Ом∙м, для неионизированных газов еще выше.

Электроизоляционные материалы в зависимости от агрегатного состояния подразделяют на газообразные, жидкие и твердые. По химическому составу – на органические (полиэтилен, полистирол и др.) и неорганические (слюда, мрамор и т.д.).

Под действием приложенного электрического поля проявляется важнейшее свойство диэлектриков – способность к поляризации. Поляризация – это процесс ограниченного смеще­ния или ориентации имеющих электрические заряды частиц ди­электрика, причем диэлектрик приобретает индуцированный электрический момент. По этому свойству диэлектрики делятся на «полярные», молекулы которых имеют постоянный, не равный нулю электрический момент, и «неполярные», молекулы которых приобретают электрический момент только при воздействии внешнего электрического поля.

Основные свойства диэлектриков:

- удельное объемное и поверхностное сопротивление (проводимость).

Температурный коэффициент удельного электрического сопротивления ТКρ определяет изменение удельного сопротивления материала с изменением его температуры, 0 С -1:

ТКρ=(1/ ρ 2)(dρ / dt ),

где ρ2 – удельное сопротивление при температуре t 2; dρ – изменение удельного сопротивления; dt – изменение температуры с начальной до t 2.

Диэлектрическая проницаемость диэлектрика ε. Различают относительную диэлектрическую проницаемость ε r , абсолютную ε и диэлектрическую проницаемость вакуума ε0 (электрическая посто­янная e 0= 8,85 × 10 -12 Ф/м ) . Их связывает соотношение:

ε=ε r ∙ε0 или ε r =ε/ε0.

Относительная диэлектрическая проницаемость показывает во сколько раз диэлектрическая проницаемость среды больше диэлектрической проницаемости вакуума.

Диэлектрическая проницаемость газообразных диэлектриков составляет около 1, для неполярных жидких и твердых диэлектриков она обычно равна 2-2,5, для полярных – обычно в пределах 3-8, но может и достигать нескольких десятков и сотен.

Температурный коэффициент диэлектрической проницаемости ТКε r – позволяет оценить изменение диэлектрической проницаемости с изменением температуры:

ТКε r =(1/ ε r )(d ε r / dt ).

Диэлектрические потери - мощность,рассеиваемая в диэлектрике при действии на него переменного электромагнитного поля. Диэлектрические потери могут быть обусловлены как токами проводимости (потери проводимости), так и запаздыванием поляризации при изменении поля (релаксационные, миграционные и резонансные потери). Кроме того, в сильных электрических полях приналичии в диэлектрике воздушных включений наблюдаются дополнительные потери энергии (ионизационные потери). Диэлектрические потери зависят от приложенного напряжения U , В, частоты f , Гц, емкости C , Ф и тангенса угла диэлектрических потерь tgδ , Вт:

P = U 2∙ C ∙2 πf ∙ tgδ .

Тангенс угла диэлектрических потерь tgδ определяет рассеиваемую в диэлектрике мощность при переменном электромагнитном поле. Произведение tgδ на величину относительной диэлектрической проницаемости называется фактором потерь:

e" = e r ∙ tg δ .

Электрическая прочность диэлектрика E пр – напряженность электрического поля, при достижении которой в какой-либо точке диэлектрика происходит пробой:

E пр= U пр/ h ,

где U пр – пробивное напряжение, наибольшее значение напряжения, которое было приложено к диэлектрику в момент пробоя, h – толщина диэлектрика. Размерность электрической прочности – В/м.

Нагревостойкость. ГОСТ 21515-76 определяет нагревостойкость как способность диэлектрика длительно выдерживать воздействие повышенной температуры в течение времени, сравнимого со сроком эксплуатации, без недопустимого ухудшения его свойств.

По нагревостойкости диэлектрики делятся на 7 классов. Температурные индексы, классы нагревостойкости приведены в табл. 1.

Таблица 1. Классы нагревостойкости электроизоляционных материалов.

ТИКласс нагревостойкостиТемпература, 0 С

90 Y 90

105A105

120E120

130B130

155F155

180H180

180C Более 180

Указанные температуры являются предельно допустимыми при их длительном использовании.

Удельное объемное электрическое сопротивление, относительная диэлектрическая проницаемость, тангенс угла диэлектрических потерь, электрическая прочность основных электроизоляционных материалов приведены в табл. 2.

Таблица 2. Электрические свойства основных электроизоляционных материалов (при 20 0 С)

Названиеρ, Ом∙мε r tgδ E пр, кВ/мм

При 50 Гц При 50 Гц

Полистирол 10 13 - 10 15 2,4-2,7(2-4)∙10 -4 25-30

Полиэтилен 10 13 - 10 15 2,3(2-3)∙10 -4 40-42

низкой плотности

Полиэтилен 10 13 - 10 15 2,45∙10 -4 40-42

высокой плотности

Полипропилен10 13 - 10 15 2,1(2-3)∙10 -4 30-35

Поли-10 12 - 10 13 3,7(3-5)∙10 -4 24

формальдегид

Полиуретан 10 12 - 10 13 4,612∙10 -3 20-25

Полиметил-10 10 - 10 12 3,66∙10 -2 15-18

Метакрилат

ПВХ10 10 - 10 12 4,7(3-8)∙10 -2 15-20

ПЭТФ10 12 - 10 13 3,5(2-6)∙10 -4 30

(лавсан)

Фторопласт-410 16 - 10 18 2,0(1-3)∙10 -4 27-40

Обозначения: ρ - удельное объемное электрическое сопротивление, ε r - относительная диэлектрическая проницаемость, tgδ - тангенс угла диэлектрических потерь, E пр - электрическая прочность.

5.8.2. Жидкие диэлектрики

Подразделяются на 3 группы:

1) нефтяные масла;

2) синтетические жидкости;

3) растительные масла.

Жидкие диэлектрики используют для пропитки кабелей высокого напряжения, конденсаторов, для заливки трансформаторов, выключателей и вводов. Кроме этого они выполняют функции теплоносителя в трансформаторах, дугогасителя в выключателях и др.

Нефтяные масла

Нефтяные масла представляют собой смесь углеводородов парафинового (С n Н 2 n+ 2 ) и нафтенового (С n Н 2 n ) рядов. Они широко применяются в электротехнике в качестве трансформаторного, кабельного и конденсаторного масел. Масло, заполняя промежутки и поры внутри электротехнических установок и изделий, повышает электрическую прочность изоляции и улучшает теплоотвод от изделий.

Трансформаторное масло получают из нефти путем перегонки. Электрические свойства трансформаторного масла в значительной степени зависят от качества очистки масла от примесей, содержания в нем воды и степени обезгаживания . Диэлектрическая проницаемость масла 2,2, удельное электрическое сопротивление 10 13 Ом· м .

Назначение трансформаторных масел – повышать электрическую прочность изоляции; отводить тепло; способствовать дугогашению в масляных выключателях, улучшать качество электроизоляции в электротехнических изделиях: реостатах, бумажных конденсаторах, кабелях с бумажной изоляцией, силовых кабелях - путем заливки и пропитки.

Трансформаторное масло в процессе эксплуатации стареет, что ухудшает его качество. Старению масла способствуют: контакт масла с воздухом, повышенные температуры, соприкосновение с металлами (Сu , Рb , Fе ), воздействие света. Для увеличения срока службы масло регенерируют очисткой и удалением продуктов старения, добавлением ингибиторов.

Кабельное и конденсаторное масла отличаются от трансформаторного более высоким качеством очистки.

Синтетические жидкие диэлектрики

Синтетические жидкие диэлектрики по некоторым свойствам превосходят нефтяные электроизоляционные масла.

Хлорированные углеводороды

Совол пентахлордифенил С 6 Н 2 Сl 3 – С 6 Н 3 Сl 2 , получают при хлорировании дифенила С 12 Н 10

С 6 Н 5 – С 6 Н 5 + 5 Сl 2 → С 6 Н 2 Сl 3 – С 6 Н 3 Сl 2 + 5 НСl

Совол применяется для пропитки и заливки конденсаторов. Обладает более высокой по сравнению с нефтяными маслами диэлектрической проницаемостью. Диэлектрическая проницаемость совола 5,0, удельное электрическое сопротивление 10 11 ¸ 10 12 Ом · м.Применяется совол для пропитки бумажных силовых и радиоконденсаторов с повышенной удельной емкостью и невысоким рабочим напряжением.

Совтол – смесь совола с трихлорбензолом . Используется для изоляции взрывобезопасных трансформаторов.

Кремнийорганические жидкости

Наибольшее распространение имеют полидиметилсилоксановые , полидиэтилсилоксановые , полиметилфенилсилоксановые жидкости.

Полисилоксановые жидкости – жидкие кремнийорганические полимеры (полиорганосилоксаны ), обладают такими ценными свойствами как: высокая нагревостойкость , химическая инертность, низкая гигроскопичность, низкая температура застывания, высокие электрические характеристики в широком интервале частот и температур.

Жидкие полиорганосилоксаны представляют собой полимерные соединения с низкой степенью полимеризации, молекулы которых содержат силоксанную группировку атомов

,

где атомы кремния связаны с органическими радикалами R : метилом CH 3 , этилом C 2 H 5 , фенилом C 6 H 5 . Молекулы полиорганосилоксановых жидкостей могут иметь линейную, линейно-разветвленную и циклическую структуру.

Жидкие полиметилсилоксаны получают при гидролизе диметилдихлорсилана в смеси с триметилхлорсиланом .

Образующиеся жидкости бесцветны, растворяются в ароматических углеводородах, дихлорэтане и ряде других органических растворителей, не растворяются в спиртах и ацетоне. Полиметилсилоксаны химически инертны, не оказывают агрессивного действия на металлы и не взаимодействуют с большинством органических диэлектриков и резин. Диэлектрическая проницаемость 2,0 ¸ 2,8, удельное электрическое сопротивление 10 12 Ом · м , электрическая прочность 12 ¸ 20 МВ/м

Формула полидиметилсилоксан а имеет вид

Si (СН 3 ) 3 – О – [ Si (СН 3 ) 2 – О ] n – Si (СН 3 ) = О

Жидкие кремнийорганические полимеры находят применение как:

Полидиэтилсилоксаны получают при гидролизе диэтилдихлорсилана и триэтилхлорсилана . Имеют широкий интервал температур кипения. Строение выражается формулой:


Свойства зависят от температуры кипения. Электрические свойства совпадают со свойствами полидиметилсилоксана .

Жидкие полиметилфенилсилоксаны имеют строение, выражаемое формулой

Получают гидролизом фенилметилдихлорсиланов и др. Масло вязкое. После обработки NаОН вязкость повышается в 3 раза. Выдерживает нагрев в течение 1000 час до 250 °С. Электрические свойства совпадают со свойствами полидиметилсилоксана .

При γ – облучении вязкость кремнийорганических жидкостей сильно возрастает, а диэлектрические характеристики резко ухудшаются. При большой дозе облучения жидкостипревращаются в каучукоподобную массу, а затем в твердое хрупкое тело.

Фторорганические жидкости

Фторорганические жидкости – С 8 F 16 – негорючи и взрывобезопасны, высоконагревостойки (200 °С), обладают малой гигроскопичностью. Пары их имеют высокую электрическую прочность. Жидкости имеют низкую вязкость, летучи. Обладают лучшим теплоотводом , чем нефтяные масла и кремнийорганические жидкости. –) n ,

представляет собой неполярный полимер линейной структуры. Получается полимеризацией газа этилена С 2 Н 4 при высоком давлении (до 300 МПа), либо при низком (до 0,6 МПа). Молекулярная масса полиэтилена высокого давления – 18000 – 40000, низкого – 60000 – 800000.

Молекулы полиэтилена обладают способностью образовывать участки материала с упорядоченным расположением цепей (кристаллитов), поэтому полиэтилен состоит из двух фаз (кристаллической и аморфной), соотношение которых определяет его механические и тепловые свойства. Аморфная придает материалу эластичные свойства, а кристаллическая – жесткость. Аморфная фаза имеет температуру стеклования +80 °С. Кристаллическая фаза обладает более высокой нагревостойкостью .

Агрегаты молекул полиэтилена кристаллической фазы представляют собой сферолиты с орторомбической структурой. Содержание кристаллической фазы (до 90 %) в полиэтилене низкого давления выше, чем в полиэтилене высокого давления (до 60 %). Благодаря высокой кристалличности полиэтилен низкого давления имеет более высокую температуру плавления (120 -125 °С) и более высокую прочность при растяжении. Структура полиэтилена в значительной степени зависит от режима охлаждения. При его быстром охлаждении образуются мелкие сферолиты, при медленном охлаждении – крупные. Быстро охлажденный полиэтилен отличается большой гибкостью и меньшей твердостью.

Свойства полиэтилена зависят от молекулярного веса, чистоты, посторонних примесей. Механические свойства зависят от степени полимеризации. Полиэтилен обладает большой химической стойкостью. Как электроизоляционный материал широко применяется в кабельной промышленности и в производстве изолированных проводов.

В настоящее время изготовляются следующие виды полиэтилена и полиэтиленовых изделий:

1. полиэтилен низкого и высокого давления - (н.д.) и (в.д.);

2. полиэтилен низкого давления для кабельной промышленности;

3. полиэтилен низкомолекулярный высокого или среднего давления;

4. пористый полиэтилен;

5. полиэтиленовый специальный шланговый пластикат;

6. полиэтилен для производства ВЧ кабеля;

7. электропроводящий полиэтилен для кабельной промышленности;

8. полиэтилен, наполненный сажей;

9. хлорсульфированный полиэтилен;

10. пленка полиэтиленовая.

Фторопласты

Существует несколько видов фторуглеродных полимеров, которые могут быть полярными и неполярными.

Рассмотрим свойства продукта реакции полимеризации газа тетрафторэтилена

(F 2 С = СF 2 ).

Фторопласт – 4 (политетрафторэтилен) – рыхлый порошок белого цвета. Структура молекул имеет вид

Молекулы фторопласта имеют симметричное строение. Поэтому фторопласт является неполярным диэлектриком

Симметричность молекулы и высокая чистота обеспечивают высокий уровень электрических характеристик. Большая энергия связи между С и F придает ему высокую холодостойкость и нагревостойкость . Радиодетали из него могут работать от-195 ÷ +250°С. Негорюч , химически стоек, негигроскопичен, обладает гидрофобностью, не поражается плесенью. Удельное электрическое сопротивление составляет 10 15 ¸ 10 18 Ом · м , диэлектрическая проницаемость 1,9 ¸ 2,2, электрическая прочность 20 ¸ 30 МВ/м

Радиодетали изготавливают из порошка фторопласта холодным прессованием. Отпрессованные изделия спекают в печах при 360 - 380°С. При быстром охлаждении изделия получаются закаленными с высокой механической прочностью. При медленном охлаждении – незакаленные. Они легче обрабатываются, менее тверды, имеют высокий уровень электрических характеристик. При нагреве деталей до 370° из кристаллического состояния переходят в аморфное и приобретают прозрачность. Термическое разложение материала начинается при > 400°. При этом образуется токсичный фтор.

Недостаток фторопласта – его текучесть под действием механической нагрузки. Имеет низкую стойкость к радиации и трудоемок при переработке в изделия. Один из лучших диэлектриков для техники ВЧ и СВЧ. Изготовляют электро - и радиотехнические изделия в виде пластин, дисков, колец, цилиндров. Изолируют ВЧ кабели тонкой пленкой, уплотняющиеся при усадке.

Фторопласт можно модифицировать, применяя наполнители – стекловолокно, нитрид бора, сажу и др., что дает возможность получать материалы с новыми свойствами и улучшить имеющиеся свойства.

Диэлектрическая проницаемость может иметь дисперсию.

Ряд диэлектриков проявляют интересные физические свойства.

Ссылки

  • Виртуальный фонд естественнонаучных и научно-технических эффектов «Эффективная физика»

Wikimedia Foundation . 2010 .

Смотреть что такое "Диэлектрики" в других словарях:

    ДИЭЛЕКТРИКИ, вещества, плохо проводящие электрический ток (удельное сопротивление порядка 1010 Ом?м). Существуют твердые, жидкие и газообразные диэлектрики. Внешнее электрическое поле вызывает поляризацию диэлектрика. В некоторых твердых… … Современная энциклопедия

    Диэлектрики - ДИЭЛЕКТРИКИ, вещества, плохо проводящие электрический ток (удельное сопротивление порядка 1010 Ом´м). Существуют твердые, жидкие и газообразные диэлектрики. Внешнее электрическое поле вызывает поляризацию диэлектрика. В некоторых твердых… … Иллюстрированный энциклопедический словарь

    Вещества, плохо проводящие электрический ток (удельное электросопротивление 108 1012 Ом?см). Существуют твердые, жидкие и газообразные диэлектрики. Внешнее электрическое поле вызывает поляризацию диэлектриков. В некоторых твердых диэлектриках… … Большой Энциклопедический словарь

    - (англ. dielectric, от греч. dia через, сквозь и англ. electric электрический), вещества, плохо проводящие электрич. ток. Термин «Д.» введён Фарадеем для обозначения в в, в к рые проникает электрич. поле. Д. явл. все газы (неионизованные), нек рые … Физическая энциклопедия

    ДИЭЛЕКТРИКИ - ДИЭЛЕКТРИКИ, непроводники, или изоляторы тела, плохо проводящие или совершенно не проводящие электричества. Такими телами являются напр. стекло, слюда, сера, парафин, эбонит, фарфор и т. п. В течение долгого времени при изучении электричества… … Большая медицинская энциклопедия

    - (изоляторы) вещества, не проводящие электрического тока. Примеры диэлектриков: слюда, янтарь, каучук, сера, стекло, фарфор, различные сорта масел и др. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза … Морской словарь

    Название, данное Михаилом Фарадеем телам непроводящимили, иначе, дурно проводящим электричество, как, напр., воздух, стекло,различные смолы, сера и т. д. Подобные тела называются такжеизоляторами. До исследований Фарадея, произведенных в 30 х… … Энциклопедия Брокгауза и Ефрона

    ДИЭЛЕКТРИКИ - вещества, практически не проводящие электрический ток; бывают твёрдыми, жидкими и газообразными. Во внешнем электрическом поле Д. поляризуются. Их используют для изоляции электротехнических устройств, в электрических конденсаторах, в квантовой… … Большая политехническая энциклопедия

    Вещества, плохо проводящие электрический ток. Термин «Д.» (от греч. diá через и англ. electric электрический) введён М. Фарадеем (См. Фарадей) для обозначения веществ, через которые проникают электрические поля. В любом веществе,… … Большая советская энциклопедия

    Вещества, плохо проводящие электрический ток (электропроводность диэлектрики10 8 10 17 Ом 1·см 1). Существуют твёрдые, жидкие и газообразные диэлектрики. Внешнее электрическое поле вызывает поляризацию диэлектриков. В некоторых твердых… … Энциклопедический словарь

Книги

  • Диэлектрики и волны , А. Р. Хиппель. Автор предлагаемой вниманию читателей монографии, известный исследователь в области диэлектриков американский ученый А. Хиппель неоднократно выступал в периодической печати и в…
  • Действие лазерного излучения на полимерные материалы. Научные основы и прикладные задачи. В 2 книгах. Книга 1. Полимерные материалы. Научные основы лазерного воздействия на полимерные диэлектрики , Б. А. Виноградов, К. Е. Перепелкин, Г. П. Мещерякова. Предлагаемая книга содержит сведения о структуре и основных термических и оптических свойствах полимерных материалов, механизме воздействия на них лазерного излучения в инфракрасном, видимом…

Последние материалы сайта