Электронные формулы атомов и схемы. Электронное строение атома

22.09.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Любое вещество состоит из очень маленьких частиц, называемых атомами . Атом-это наименьшая частица химического элемента, сохраняющая все его характерные свойства. Чтобы представить себе размеры атома, достаточно сказать что если бы их удалось уложить вплотную один к другому, то один миллион атомов занял бы расстояние всего в 0,1 мм.

Дальнейшее развитие науки о строении вещества показало, что атом также имеет сложное строение и состоит из электронов и протонов. Так возникла электронная теория строения вещества.

В глубокой древности было обнаружено, что существуют два рода электричества: положительное и отрицательное. Количество электричества, содержащееся в теле, стали называть зарядом. В зависимости от рода электричества, которым обладает тело, заряд может быть положительным или отрицательным.

Было также установлено опытным путем, что одноименные заряды отталкиваются, а разноименные притягиваются.

Рассмотрим электронное строение атома . Атомы состоят из еще более мелких частиц, чем они сами, называемых электронами .

ОПРЕДЕЛЕНИЕ: Электрон - это мельчайшая частица вещества, имеющая наименьший отрицательный электрический заряд.

Электроны вращаются вокруг центрального ядра, состоящего из одного или более протонов и нейтронов , по концентрическим орбитам. Электроны являются отрицательно заряженными частицами, протоны - положительными, а нейтроны - нейтральными (рисунок 1.1).

ОПРЕДЕЛЕНИЕ: Протон - мельчайшая частица вещества, имеющая наименьший положительный электрический заряд.

Существование электронов и протонов не вызывает никакого сомнения. Ученые не только определили массу, заряд и размеры электронов и протонов, но даже заставили их работать в различных электрических и радиотехнических приборах.

Было также установлено, что масса электрона зависит от скорости его движения и что электрон не только поступательно движется в пространстве, но и вращается вокруг своей оси.

Наиболее простым по своему строению является атом водорода (рис. 1.1). Он состоит из ядра-протона и вращающегося с огромной скоростью вокруг ядра электрона, образующего внешнюю оболочку (орбиту) атома. Более сложные атомы имеют несколько оболочек, по которым вращаются электроны.

Эти оболочки последовательно от ядра заполняются электронами (рисунок 1.2).

Теперь разберем . Самая внешняя оболочка называется валентной , а число электронов, содержащееся в ней, называется валентностью . Чем дальше находится от ядра валентная оболочка, следовательно, тем меньшую силу притяжения испытывает каждый валентный электрон со стороны ядра. Тем самым у атома увеличивается возможность присоединять к себе электроны в том случае, если валентная оболочка не заполнена и расположена далеко от ядра, либо терять их.
Электроны внешней оболочки могут получать энергию. Если электроны находящиеся в валентной оболочке получат необходимый уровень энергии от внешних сил, они могут оторваться от нее и покинуть атом, то есть стать свободными электронами. Свободные электроны способны произвольно перемещаться от одного атома к атому. Те материалы, в которых содержится большое число свободных электронов, называются проводниками .

Изоляторы , есть противоположность проводникам. Они препятствуют протеканию электрического тока. Изоляторы стабильны потому, что валентные электроны одних атомов заполняют валентные оболочки других атомов, присоединяясь к ним. Это препятствует образованию свободных электронов.
Промежуточное положение между изоляторами и проводниками занимают полупроводники , но о них мы поговорим позже
Рассмотрим свойства атома . Атом, который имеет одинаковое число электронов и протонов, электрически нейтрален. Атом, получающий один или более электронов, становится отрицательно заряженным и имеет название отрицательный ион. Если атом теряет один или более электронов, то он становится положительным ионом, то есть заряжается положительно.

Первая модель строения атома была предложена Дж. Томсоном в 1904 г., согласно которой атом – положительно заряженная сфера с вкрапленными в нее электронами. Несмотря на свое несовершенство томсоновская модель позволяла объяснить явления испускания, поглощения и рассеяния света атомами, а также установить число электронов в атомах легких элементов.

Рис. 1. Атом, согласно модели Томсона. Электроны удерживаются внутри положительно заряженной сферы упругими силами. Те из них, которые находятся на поверхности, могут легко «выбиваться» , оставляя ионизированный атом.

    1. 2.2 Модель Резерфорда

Модель Томсона была опровергнута Э. Резерфордом (1911 г.), который доказал, что положительный заряд и практически вся масса атома сконцентрированы в малой части его объема – ядре, вокруг которого двигаются электроны (рис. 2).

Рис. 2. Эта модель строения атома известна как планетарная, т. к. электроны вращаются вокруг ядра подобно планетам солнечной системы.

Согласно законам классической электродинамики, движение электрона по окружности вокруг ядра будет устойчивым, если сила кулоновского притяжения будет равна центробежной силе. Однако, в соответствии с теорией электромагнитного поля, электроны в этом случае должны двигаться по спирали, непрерывно излучая энергию, и падать на ядро. Однако атом устойчив.

К тому же при непрерывном излучении энергии у атома должен наблюдаться непрерывный, сплошной спектр. На самом деле спектр атома состоит из отдельных линий и серий.

Таким образом, данная модель противоречит законам электродинамики и не объясняет линейчатого характера атомного спектра.

2.3. Модель Бора

В 1913 г. Н. Бор предложил свою теорию строения атома, не отрицая при этом полностью предыдущие представления. В основу своей теории Бор положил два постулата.

Первый постулат говорит о том, что электрон может вращаться вокруг ядра только по определенным стационарным орбитам. Находясь на них, он не излучает и не поглощает энергию (рис.3).

Рис. 3. Модель строения атома Бора. Изменение состояния атома при переходе электрона с одной орбиты на другую.

При движении по любой стационарной орбите запас энергии электрона (Е 1, Е 2 …) остается постоянным. Чем ближе к ядру расположена орбита, тем меньше запас энергии электрона Е 1 ˂ Е 2 …˂ Е n . Энергия электрона на орбитах определяется уравнением:

где m – масса электрона, h – постоянная Планка, n – 1, 2, 3… (n=1 для 1-ой орбиты, n=2 для 2-ой и т.д.).

Второй постулат говорит о том, что при переходе с одной орбиты на другую электрон поглощает или выделяет квант (порцию) энергии.

Если подвергнуть атомы воздействию (нагреванию, облучению и др.), то электрон может поглотить квант энергии и перейти на более удаленную от ядра орбиту (рис. 3). В этом случае говорят о возбужденном состоянии атома. При обратом переходе электрона (на более близкую к ядру орбиту) энергия выделяется в виде кванта лучистой энергии – фотона. В спектре это фиксируется определенной линией. На основании формулы

,

где λ – длина волны, n = квантовые числа, характеризующие ближнюю и дальнюю орбиты, Бор рассчитал длины волн для всех серий в спектре атома водорода. Полученные результаты соответствовали экспериментальным данным. Стало ясным происхождение прерывистых линейчатых спектров. Они – результат излучения энергии атомами при переходе электронов из возбужденного состояния в стационарное. Переходы электронов на 1-ю орбиту образуют группу частот серии Лаймана, на 2-ю – серию Бальмера, на 3-ю серию Пашена (рис. 4,табл. 1).

Рис. 4. Соответствие между электронными переходами и спектральными линиями атома водорода.

Таблица 1

Проверка формулы Бора для серий водородного спектра

Однако, теория Бора не смогла объяснить расщепление линий в спектрах многоэлектронных атомов. Бор исходил из того, что электрон – это частица, и использовал для описания электрона законы, характерные для частиц. Вместе с тем накапливались факты, свидетельствующие о том, что электрон способен проявлять и волновые свойства. Классическая механика оказалась не в состоянии объяснить движение микрообъектов, обладающих одновременно свойствами материальных частиц и свойствами волны. Эту задачу позволила решить квантовая механика – физическая теория, исследующая общие закономерности движения и взаимодействия микрочастиц, обладающих очень малой массой (табл. 2).

Таблица 2

Свойства элементарных частиц, образующих атом

Урок посвящен формированию представлений о сложном строении атома. Рассматривается состояние электронов в атоме, вводятся понятия «атомная орбиталь и электронное облако», формы орбиталей (s--, p-, d-орбитали). Также рассматриваются такие аспекты, как максимальное число электронов на энергетических уровнях и подуровнях, распределение электронов по энергетическим уровням и подуровням в атомах элементов первых четырех периодов, валентные электроны s-, p- и d-элементов. Приводится графическая схема строения электронных слоев атомов (электронно-графическая формула).

Тема: Строение атома. Периодический закон Д.И. Менделеева

Урок: Строение атома

В переводе с греческого языка, слово «атом» означает «неделимый». Однако, были открыты явления, которые демонстрируют возможность его деления. Это испускание рентгеновских лучей, испускание катодных лучей, явление фотоэффекта, явление радиоактивности. Электроны, протоны и нейтроны - это частицы, из которых состоит атом. Они называются субатомными частицами.

Табл. 1

Кроме протонов, в состав ядра большинства атомов входят нейтроны , не несущие никакого заряда. Как видно из табл. 1, масса нейтрона практически не отличается от массы протона. Протоны и нейтроны составляют ядро атома и называются нуклонами (nucleus - ядро). Их заряды и массы в атомных единицах массы (а.е.м.) показаны в таблице 1. При расчете массы атома массой электрона можно пренебречь.

Масса атома (массовое число) равна сумме масс, составляющих его ядро протонов и нейтронов. Массовое число обозначается буквой А . Из названия этой величины видно, что она тесно связана с округленной до целого числа атомной массой элемента. A = Z + N

Здесь A - массовое число атома (сумма протонов и нейтронов), Z - заряд ядра (число протонов в ядре), N - число нейтронов в ядре. Согласно учению об изотопах, понятию «химический элемент» можно дать такое определение:

Химическим элементом называется совокупность атомов с одинаковым зарядом ядра.

Некоторые элементы существуют в виде нескольких изотопов . «Изотопы» означает «занимающий одно и тоже место». Изотопы имеют одинаковое число протонов, но отличаются массой, т. е. числом нейтронов в ядре (числом N). Поскольку нейтроны практически не влияют на химические свойства элементов, все изотопы одного и того же элемента химически неотличимы.

Изотопами называются разновидности атомов одного и того же химического элемента с одинаковым зарядом ядра (то есть с одинаковым числом протонов), но с разным числом нейтронов в ядре.

Изотопы отличаются друг от друга только массовым числом. Это обозначается либо верхним индексом в правом углу, либо в строчку: 12 С или С-12. Если элемент содержит несколько природных изотопов, то в периодической таблице Д.И. Менделеева указывается, его средняя атомная масса с учетом распространённости. Например, хлор содержит 2 природных изотопа 35 Cl и 37 Cl, содержание которых составляет соответственно 75% и 25%. Таким образом, атомная масса хлора будет равна:

А r (Cl )=0,75 . 35+0,25 . 37=35,5

Для тяжёлых искусственно-синтезированных атомов приводится одно значение атомной массы в квадратных скобках. Это атомная масса наиболее устойчивого изотопа данного элемента.

Основные модели строения атома

Исторически первой в 1897 году была модель атома Томсона.

Рис. 1. Модель строения атома Дж. Томсона

Английский физик Дж. Дж. Томсон предположил, что атомы состоят из положительно заряженной сферы, в которую вкраплены электроны (рис. 1). Эту модель образно называют «сливовый пудинг», булочка с изюмом (где «изюминки» - это электроны), или «арбуз» с «семечками» - электронами. Однако от этой модели отказались, т. к. были получены экспериментальные данные, противоречащие ей.

Рис. 2. Модель строения атома Э. Резерфорда

В 1910 году английский физик Эрнст Резерфорд со своими учениками Гейгером и Марсденом провели эксперимент, который дал поразительные результаты, необъяснимые с точки зрения модели Томсона. Эрнст Резерфорд доказал на опыте, что в центре атома имеется положительно заряженное ядро (рис. 2), вокруг которого, подобно планетам вокруг Солнца, вращаются электроны. Атом в целом электронейтрален, а электроны удерживаются в атоме за счет сил электростатического притяжения (кулоновских сил). Эта модель имела много противоречий и главное, не объясняла, почему электроны не падают на ядро, а также возможность поглощения и излучения им энергии.

Датский физик Н. Бор в 1913 году, взяв за основу модель атома Резерфорда, предложил модель атома, в которой электроны-частицы вращаются вокруг ядра атома примерно так же, как планеты обращаются вокруг Солнца.

Рис. 3. Планетарная модель Н. Бора

Бор предположил, что электроны в атоме могут устойчиво существовать только на орбитах, удаленных от ядра на строго определенные расстояния. Эти орбиты он назвал стационарными. Вне стационарных орбит электрон существовать не может. Почему это так, Бор в то время объяснить не мог. Но он показал, что такая модель (рис. 3) позволяет объяснить многие экспериментальные факты.

В настоящее время для описания строения атома используется квантовая механика. Это наука, главным аспектом в которой является то, что электрон обладает свойствами частицы и волны одновременно, т. е. корпускулярно-волновым дуализмом. Согласно квантовой механике, область пространства, в которой вероятность нахождения электрона наибольшая, называется орбиталью. Чем дальше электрон находится от ядра, тем меньше его энергия взаимодействия с ядром. Электроны с близкими энергиями образуют энергетический уровень. Число энергетических уровней равно номеру периода , в котором находится данный элемент в таблице Д.И. Менделеева. Существуют различные формы атомных орбиталей. (Рис. 4). d-орбиталь и f-орбиталь имеют более сложную форму.

Рис. 4. Формы атомных орбиталей

В электронной оболочке любого атома ровно столько электронов, сколько протонов в его ядре, поэтому атом в целом электронейтрален. Электроны в атоме размещаются так, чтобы их энергия была минимальной. Чем дальше электрон находится от ядра, тем больше орбиталей и тем сложнее они по форме. На каждом уровне и подуровне может помещаться только определенное количество электронов. Подуровни, в свою очередь, состоят из одинаковых по энергии орбиталей .

На первом энергетическом уровне, наиболее близком к ядру, может существовать одна сферическая орбиталь (1 s ). На втором энергетическом уровне - сферическая орбиталь, большая по размеру и три р-орбитали: 2 s 2 ppp . На третьем уровне: 3 s 3 ppp 3 ddddd .

Кроме движения вокруг ядра, электроны обладают еще движением, которое можно представить, как их движение вокруг собственной оси. Это вращение называется спином (в пер. с англ. «веретено»). На одной орбитали могут находиться лишь два электрона, обладающих противоположными (антипараллельными) спинами.

Максимальное число электронов на энергетическом уровне определяется по формуле N =2 n 2.

Где n - главное квантовое число (номер энергетического уровня). См. табл. 2

Табл. 2

В зависимости от того, на какой орбитали находится последний электрон, различают s -, p -, d -элементы. Элементы главных подгрупп относятся к s -, p -элементам. В побочных подгруппах находятся d -элементы

Графическая схема строения электронных слоев атомов (электронно-графическая формула).

Для описания расположения электронов на атомных орбиталях используют электронную конфигурацию. Для её написания в строчку пишутся орбитали в условных обозначениях (s- -, p -, d-, f -орбитали), а перед ними - числа, обозначающие номер энергетического уровня. Чем больше число, тем дальше электрон находится от ядра. В верхнем регистре, над обозначением орбитали, пишется количество электронов, находящихся на данной орбитали (Рис. 5).

Рис. 5

Графически распределение электронов на атомных орбиталях можно представить в виде ячеек. Каждая ячейка соответствует одной орбитали. Для р-орбитали таких ячеек будет три, для d-орбитали - пять, для f-орбитали - семь. В одной ячейке может находиться 1 или 2 электрона. Согласно правилу Гунда , электроны распределяются на одинаковых по энергии орбиталях (например, на трех p-орбиталях) сначала по одному, и лишь когда в каждой такой орбитали уже находится по одному электрону, начинается заполнение этих орбиталей вторыми электронами. Такие электроны называют спаренными. Объясняют это тем, что в соседних ячейках электроны меньше отталкиваются друг от друга, как одноименно заряженные частицы.

См. рис. 6 для атома 7 N.

Рис. 6

Электронная конфигурация атома скандия

21 Sc : 1 s 2 2 s 2 2 p 6 3 s 2 3 p 6 4 s 2 3 d 1

Электроны внешнего энергетического уровня называются валентными. 21 Sc относится к d -элементам.

Подведение итога урока

На уроке было рассмотрено строение атома, состояние электронов в атоме, введено понятие «атомная орбиталь и электронное облако». Учащиеся узнали, что такое форма орбиталей (s -, p -, d -орбитали), каково максимальное число электронов на энергетических уровнях и подуровнях, распределение электронов по энергетическим уровням, что такое s -, p - и d -элементы. Приведена графическая схема строения электронных слоев атомов (электронно-графическая формула).

Список литературы

1. Рудзитис Г.Е. Химия. Основы общей химии. 11 класс: учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. - 14-е изд. - М.: Просвещение, 2012.

2. Попель П.П. Химия: 8 кл.: учебник для общеобразовательных учебных заведений / П.П. Попель, Л.С.Кривля. - К.: ИЦ «Академия», 2008. - 240 с.: ил.

3. А.В. Мануйлов, В.И. Родионов. Основы химии. Интернет-учебник.

Домашнее задание

1. №№5-7 (с. 22) Рудзитис Г.Е. Химия. Основы общей химии. 11 класс: учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. - 14-е изд. - М.: Просвещение, 2012.

2. Напишите электронные формулы для следующих элементов: 6 C, 12 Mg, 16 S, 21 Sc.

3. Элементы имеют следующие электронные формулы: а) 1s 2 2s 2 2p 4 .б) 1s 2 2s 2 2p 6 3s 2 3p 1 . в) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 . Какие это элементы?

Тема: Программа и ее структура

Цели урока:

    Обучающие :

    • познакомить учащихся с общими характеристиками языков программирования, с программной средой Pascal ABC, со структурой программы на языке Паскаль;

      сформировать у учащихся первичные знания по применению изученного материала.

    Развивающие :

    • учить анализировать, обобщать и систематизировать;

      обогащать словарный запас учащихся.

    Воспитательные :

    • развивать информационную культуру учащихся, способность к самостоятельной и коллективной деятельности, рефлексию.

Тип урока: урок изучения и первичного закрепления новых знаний.

Оборудование: мультимедийный проектор, компьютеры с установленной средой программирования Pascal ABC, настроенная локальная сеть, конспект для учащегося.

План урока:

1. Организационный момент. Актуализация знаний.
2. Объяснение материала.
2.1. Языки программирования, их назначение, особенности.
2.2. Знакомство с программной средой Pascal ABC.
2.3. Знакомство со структурой программы на языке Паскаль.
2.4. Разбор простейшей программы «вывода».
3. Закрепление полученных умений и навыков.
4. Подведение итогов урока.

ХОД УРОКА

1. Оргмомент. Подготовка к изучению нового материала 2 .

Коротко, фронтально повторяем ранее изученный материал по теме «Алгоритмизация». Вопросы для актуализации знаний:

    Алгоритм. Свойства алгоритмов.

    Способы записи алгоритмов.

    Базовые структуры алгоритмов.

Ожидаемые результаты: (демонстрируются при положительных результатах на экране слайды 1 и 2 ) 3

2. Объяснение нового материала 4

2.1 Языки программирования, их назначение, особенности

Языки программирования предназначены для создания программ, которые могут быть исполнены ЭВМ или другими автоматическими устройствами, например, станками с числовым программным управлением. ( , слайд 5)
Исходя из этого, можно сказать, что эти языки формальны, то есть они используют специальную систему команд, имеют свой алфавит и свои правила написания (синтаксис).
Существует достаточно большое количество различных языков программирования. Все они созданы так, что их команды понимает то устройство (в данном случае - ЭВМ), на которое они рассчитаны.
Языки программирования можно разделить на две группы – языки высокого уровня и языки низкого уровня (машинные).
К языкам низкого уровня относится язык Ассемблер, в котором программа пишется в основном на уровне машинных кодов.
Языки высокого уровня позволяют писать программу с помощью условных обозначений, близких к языку человека.
Все языки высокого уровня условно можно разделить на две группы – алгоритмические языки (процедурные) и логические (непроцедурные, объектно-ориентированные).

Алгоритмические – предполагают реализацию алгоритма в виде последовательности операций с данными. При этом программы имеют жесткую структуру, определенную форму записи. (
, слайд 6)
К первой группе языков относятся такие языки, как БЕЙСИК, ПАСКАЛЬ, ФОРТРАН, АЛГОЛ, СИ и другие.
Вторые – описывают отношения между объектами и величинами, но при этом явно не указывают, какие именно операции нужно провести и в какой последовательности. К этим языкам относится, в частности, язык ПРОЛОГ. (
, слайд 7)
Кроме того, языки можно разделить еще и по их назначению.
Так, например, языки, перечисленные выше, можно назвать языками общего пользования, универсальными. Эти языки могут быть использованы как профессиональными программистами, так и начинающими (учениками, студентами и т.д.). Посредством этих языков можно решать как задачи вычислительного характера, так и работать с графикой, звуком, работать с текстом.
Мы и будем изучать такие языки, в частности язык ПАСКАЛЬ.
Алгоритмические языки общего назначения различаются своими возможностями, то есть тем кругом задач, которые с помощью них можно решить, и по типу преобразования алгоритма в команды, понятные ЭВМ.
Все дело в том, что программа, написанная на языке программирования, это в большинстве случаев текст.
А ЭВМ, как вы уже знаете (используем то, что учащиеся уже знают принцип работы ЭВМ), работает на двоичных кодах. Следовательно, алгоритм, введенный в ЭВМ на каком-либо языке программирования, должен быть преобразован в специальные коды. Для этого в состав языка программирования входит специальная программа – транслятор, которая и выполняет эту задачу.

Трансляторы можно разделить на две группы по их работе – компиляторы и интерпретаторы. ( , слайд 8)
Языки программирования, имеющие в своем составе
интерпретатор , чаще всего являются строчно-ориентированными языками, то есть команды записываются в строке, каждая из которых имеет свой номер. Выполнение программы происходит в последовательности номеров строк. Таким языком является, в частности, БЕЙСИК (Стандартный)
Интерпретатор читает строку программы, транслирует ее в коды ЭВМ и немедленно выполняет, затем переходит к следующей. При обнаружении ошибок специальный отладчик сообщает об ошибке, исполнение программы останавливается.

Компилятор действует иначе. Он сначала просматривает всю программу, отмечает все ошибки и только после того, как все ошибки исправлены, – компилирует программу, то есть в памяти создает программу в машинных кодах и после этого ее исполняет.
Большинство языков имеют в своем составе компилятор, так как они работают быстрее. К языкам такого уровня относятся ПАСКАЛЬ, СИ, Q-BASIC и многие другие.

2.2 Знакомство с программной средой Pascal ABC

Теперь переходим к изучению языка – ПАСКАЛЬ. Точнее, учебной системы программирования Pascal ABC (автор – С.С.Михалкович).
Система Pascal ABC предназначена для обучения программированию на языке Паскаль и ориентирована на школьников и студентов младших курсов. Система Pascal ABC основана на языке Delphi Pascal.

(Запуск программы на демонстрационном экране).

После загрузки системы на экране появляется рабочий стол системы. Его вид может несколько различаться у разных версий, но в целом он типичен. В верхней части экрана расположено главное меню, в нижней – окно вывода. 5

Интерфейс программы очень удобен и прост. Программа открывается в своем окне аналогичном стандартным окнам ОС Windows с такими же элементами окна 6 .
Для запуска команды выполнения файлов используем инструмент.

Файлы имеют расширение .pas 7

2.3 Знакомство со структурой программы на языке Паскаль

Основные понятия 8

( , слайд 1)

Как и любой алгоритм, являющийся последовательностью инструкций, программа на языке Паскаль состоит из команд (операторов), записанных в определенном порядке и формате.
Команды позволяют получать, сохранять и обрабатывать данные различных типов (например, целые числа, символы, строки символов, т.д.).

Кроме команд в записи программы участвуют еще так называемые "служебные слова", организующие структуру программы.
Вам уже известно, что основное назначение компьютера – облегчить человеку работу с большими объемами информации, поэтому подавляющее большинство программ построено по одному, довольно простому принципу: (
, слайд 2)
Все эти действия реализуются через имеющиеся в языках программирования команды, алгоритмические структуры и структуры данных.

Основная структура программы

Правила языка Паскаль предусматривают единую для всех программ форму основной структуры ( , слайд 3):

Program <Имя программы> ;
<Раздел описаний>
; Begin
<Тело программы>
; End.

Здесь слова Program, Begin и End являются служебными. Правильное и уместное употребление этих слов является обязательным.
Угловые скобки в формате указывают на то, что вместо них при реальном программировании должно быть подставлено конкретное значение. Сама запись программы в принципе может производиться вообще в одну стоку. Однако, такая запись неудобна для чтения, недостаточно наглядна, поэтому я рекомендую придерживаться приведенной структуры, а в «теле» программы – по одному оператору в строке.
Имя программы выбирается самостоятельно разработчиком в соответствии с правилами построения идентификаторов.
Все объекты (переменные, константы метки, функции, процедуры и т.д.), не являющиеся зарезервированными в Паскале, которые вы используете в программе, должны быть описаны. Это производится для того, чтобы компьютер перед выполнением программы зарезервировал память под соответствующие объекты и поставил в соответствие им идентификаторы. Раздел описаний может состоять из пяти подразделов:

    Описание меток (Label)

    Описание типов (Type).

    Описание констант (Const).

    Описание переменных (Var).

    Описание процедур и функций (Procedure, Function).

При отсутствии таких объектов, соответствующий подраздел может быть опущен.

Алфавит языка

Основу любого языка составляет алфавит, то есть конечный, фиксированный набор символов, используемых для составления текстов на данном языке (в нашем случае – программ). ( , слайд 4)

Итак, алфавит языка Паскаль составляют:

    буквы латинского алфавита; (Вопрос: Сколько букв? Ответ: 26)

    арабские цифры; (Вопрос: Сколько цифр? Ответ: 10)

    специальные знаки. (Вопрос: Кто подскажет? Ответ: .,;:<> и т.д.)

Использование символов первой группы чаще всего вопросов не вызывает, но свои тонкости здесь имеются.
– Во-первых, это употребление заглавных и строчных букв. Большинство существующих трансляторов не различают буквы разных регистров. Таким образом, записи "progRaM" и "PROGram" будем считать идентичными.

– Во-вторых, некоторые символы латиницы и кириллицы совпадают по начертанию. Нельзя ли вместо буквы "К" латинской написать "K" русскую?
(Ожидаемый ответ: в программе на ЭВМ – ни в коем случае. На вид они может быть и похожи, но уж коды-то у них совершенно разные, а компьютер, как вам известно, оперирует внутри себя не буквами, а их числовыми кодами). ( , слайд 5)
По поводу привычных арабских цифр сказать можно только то, что с их помощью записываются не только числа. Цифры могут использоваться в качестве обыкновенных символов.

Сложнее всего обстоит дело со специальными знаками, поэтому их придется разобрать подробно:

Конец программы, разделение целой и дробной частей вещественного числа (десятичная точка), разделение полей в переменной типа Record;
, разделение элементов списков;
.. указание диапазона;
: используется в составе оператора присваивания:=, а также для указания формата вывода в операторе Writeln;
; отделяет один раздел программы от другого, разделяет операторы;
" используется для ограничения строковых констант;
- + * / () арифметические знаки;
< > знаки отношений;
= используется в составе оператора присваивания, в разделах описаний констант и типов, используется как знак отношения (равно);
^ используется для именования динамических переменных;
{} ограничение комментариев в программе;
заключают в себе индексы элементов массивов;
_ символ подчеркивания используется также как любая буква, например, в идентификаторах – вместо пробела.

В процессе изучения языка мы познакомимся с этими знаками.
Возникает вопрос, а как же быть с русскими буквами и другими знаками, имеющимися на клавиатуре? Некоторые версии Паскаля допускают их использование в программе, но стандарт языка этого не подразумевает. Поэтому включать эти символы в программу можно только в качестве строковых констант или внутри комментария, то есть там, где транслятор при компиляции их игнорирует.

Идентификаторы

Имена операторов, переменных, констант, типов величин, имя самой программы назначаются разработчиком и называются в Паскале идентификаторами. Существуют правила, которым должны отвечать все идентификаторы:

    идентификатор должен быть уникальным, то есть одним и тем же именем разные объекты не могут быть названы;

    идентификатор имеет ограничение по длине (зависит от конкретной реализации языка на компьютере);

    идентификатор может состоять только из символов латинского алфавита, цифр и знака подчеркивания ("_");

    идентификатор не может начинаться с цифры.

Например, можно записать имя программы ( , слайд 6): Iwanow_Petr_10a, но нельзя: 10а-Иванов Петр (допущены три ошибки: имя начинается цифрой, использовано тире и слова разделены пробелом).
Нельзя использовать как идентификаторы слова, предназначенные для обозначения операторов программы, но можно программу оставить без заголовка.

Понятие переменной и типы данных рассмотрим на следующих уроках.

Раздел операторов

Это основной раздел программы – выполнение программы сводится к выполнению раздела операторов, т.е. к выполнению последовательности операторов, заключенных в
операторные скобки
begin….. end .

Оператор вывода ( , слайд 7)

Для вывода информации в Паскале используется оператор:

Write (b1, b2, b3,…, bn);
выводится на экран значения переменных b1, b2, b3,…, bn
Writeln (b1, b2, b3,…, bn);
выводится на экран значения переменных b1, b2, b3,…, bn и после этого осуществляется переход на новую строку
Writeln ;
переход на новую строку
Write (‘значения переменных’, b1, b2, b3,…, bn);
выводится на экран сообщение «значения переменных», затем соответствующие значения переменных b1, b2, b3,…, bn и после этого осуществляется переход на новую строку

2.4 и 3 пункты – «Проба пера»

Посмотрим первую программу вывода на экран строковой графики.

Задача. Вывести на экран текст в заданном формате ( , слайд 8):

Вася

пошел

погулять

Ранее заготовленная программа показывается на демонстрационном экране и экране мониторов учащихся. Учащиеся самостоятельно открывают Pascal ABC, открывают файл , запускают на выполнение. Производится разбор программы при помощи учащихся 9 .

Затем предлагаем учащимся выполнить упражнение на основе готовой программы ( , слайд 9):

1. Напишите программу, которая печатает ваше имя в рамочке из звездочек. Пример:

Pascal – язык...? ( ответ: высокого уровня ).

Он является алгоритмическим или логическим языком? (Ответ: алгоритмическим ).

Чем характеризуются алгоритмические языки? (Ответ: алгоритмы имеют жесткую структуру, определенная форма записи в виде последовательности операций с данными ).

Pascal в своем составе имеет интерпретатор или компилятор? Напоминаю: интерпретатор – выполнение программы построчное; компилятор – просматривает сразу всю программу. (Ответ: компилятор ).

С какой средой программирования мы работаем? (Ответ: Pascal ABC ).

Алфавит языка Паскаль составляют..? (Ответ: буквы латинского алфавита, арабские цифры, специальные знаки ).

Домашнее задание:

выучить конспект для учащегося;
– составить программу для одной из задач № 1, 2, 3 (на выбор, все три на дополнительную оценку).

Задачи:

1. Вывести на экран символьный рисунок

2. Написать программу, которая рисует пингвина.

3. Написать программу, которая выводит следующий рисунок (Рис. 8).

4. Подведение итогов урока

Учителем дается общая оценка урока. Выставляются оценки ученикам, которые особенно активно проявили себя на уроке. Оцениваются успешно выполненные задания для самостоятельного решения.

Всем известно, что атом состоит из положительно заряженного ядра, в котором сосредоточена практически вся его масса. Внутри ядра находятся протоны и нейтроны, а вокруг него по орбитам движутся отрицательно заряженные электроны (рис. 1).

Рис. 1. Схематическое изображение строения атома неона.

Впервые модель строения атома была предложена в 1903 году Дж. Дж. Томсоном. Согласно его предположениям, атом состоит из положительного заряда, равномерно распределенного по всему объему атома, и электронов, колеблющихся внутри этого заряда.

Гипотеза Томсона была проверена и уточнена Э. Резерфордом, который провел серию опытов по рассеянию α-частиц тонкими металлическими пластинками и сообщил. На основании своего исследования он заключил что почти вся масса атома сосредоточена в очень малом объеме - положительно заряженном ядре. Вокруг ядра на достаточно большом расстоянии движутся электроны, причем их число таково, что в целом атом электронейтрален. Размеры ядра очень малы по сравнению с размерами атома в целом: диаметр атома - величина порядка 10 -8 см, а диаметр ядра - порядка 10 -13 - 10 -12 см. Такая модель строения атома получила название ядерной.

Однако, несмотря на большой прорыв в изучении строения атома теория Э. Резерфорда не могла дать ответ на два вопроса: устойчивость атома и приводила к неправильным выводам о характере атомных спектров.

Существенный вклад в развитие представлений о строении атома в 1913 году сделал Нильс Бор, предложивший квантовую теорию, объединяющую ядерную модель атома с квантовой теорией света. Он показал, что способность нагретого тела к лучеиспусканию можно описать количественно предположив, что лучистая энергия испускается и поглощается телами не непрерывно, а дискретно, т.е. отдельными порциями - квантами.

Основные положения теории Бора о схеме строения атома

Основные положения своей теории Бор изложил в виде постулатов:

  • Электрон может вращаться вокруг ядра не по любым, а только по некоторым определенным круговым орбитам (стационарным).
  • Двигаясь по стационарной орбите, электрон не излучает электромагнитной энергии.
  • Излучение происходит при скачкообразном переходе электрона с одной стационарной орбиты на другую. При этом испускается или поглощается квант электромагнитного излучения, энергия которого равна разности энергии атома в конечном и исходном состояниях.

Однако и теория Н. Бора страдала противоречивостью, например не могла ответить на вопрос: где находится электрон в процессе перехода с одной орбиты на другую.

Эта задача была решена только после развития нового ответвления теоретической физики - квантовой (волновой) механики (учения Луи де Бройля и Шредингера).

Примеры решения задач

ПРИМЕР 1

Задание Относительная атомная масса вольфрама равна 183,2. Известно, что вольфрам состоит из двух изотопов: 183 W и 184 W. Рассчитайте молярную долю каждого изотопа в природном вольфраме.
Решение Изотопы - это атомы одного и того же химического элемента, имеющие разные массовые числа (одинаковое число протонов, но разное - нейтронов). Примем за х число атомов изотопа вольфрама 183 W в каждых ста атомах природного вольфрама, тогда число атомов изотопа 184 W будет равно (100-х). Масса атомов изотопа 183 W будет равна 183х, а 184 W - 184×(100-х). Составим уравнение:

183х + 184×(100-х) = 183,2×100%.

Найдем х:

183х + 18400 — 184х = 18320;

Ответ Содержание изотопа 183 W в природном вольфраме равно 80%, а 184 W — 20%.

ПРИМЕР 2

Задание Составьте электронные и электронно-графические формулы атомов хлора и марганца. Укажите их сходство и различие. Определите для этих атомов высшую и низшую степени окисления. Напишите формулы высших оксидов этих элементов и соответствующих им гидроксидов. Укажите свойства гидроксидов.
Ответ Хлор:

17 Cl) 2) 8) 7 ;

1s 2 2s 2 2p 6 3s 2 3p 5 .

Марганец:

25 Mn) 2) 8) 13) 2 ;

1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 2 .

Энергетическая диаграмма основного состояния принимает следующий вид:

Хлор и марганец имеют одинаковое количество электронов на внешней электронной оболочке - 7, поэтому они находятся в одной группе Периодической таблицы Д.И. Менделеева — VII. Высшая валентность, так же как и степень окисления определяются по номеру группы, следовательно равны VII и +7, соответственно. Низшая валентность для атома хлора равна I, а степень окисления -1; марганца - II и +2, соответственно.

Высшие оксиды имеют формулы Cl 2 O 7 и Mn 2 O 7 , а соответствующие им гидроксиды HMnO 4 и HClO 4 , они проявляют кислотные свойства.

Последние материалы сайта