Реакции с кальцием. Кальций в природе (3,4% в Земной коре). Влияние известкования на формы и доступность макроэлементов и микроэлементов

09.10.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Кальций

КА́ЛЬЦИЙ -я; м. [от лат. calx (calcis) - известь] Химический элемент (Ca), металл серебристо-белого цвета, входящий в состав известняков, мрамора и др.

Ка́льциевый, -ая, -ое. К-ые соли.

ка́льций

(лат. Calcium), химическая элемент II группы периодической системы, относится к щёлочноземельным металлам. Название от лат. calx, родительный падеж calcis - известь. Серебристо-белый металл, плотность 1,54 г/см 3 , t пл 842ºC. При обычной температуре легко окисляется на воздухе. По распространённости в земной коре занимает 5-е место (минералы кальцит, гипс, флюорит и др.). Как активный восстановитель служит для получения U, Th, V, Cr, Zn, Be и других металлов из их соединений, для раскисления сталей, бронз и т. д. Входит в состав антифрикционных материалов. Соединения калькия применяют в строительстве (известь, цемент), препараты кальция - в медицине.

КАЛЬЦИЙ

КА́ЛЬЦИЙ (лат. Calcium), Ca (читается «кальций»), химический элемент с атомным номером 20, расположен в четвертом периоде в группе IIА периодической системы элементов Менделеева; атомная масса 40,08. Относится к числу щелочноземельных элементов (см. ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ) .
Природный кальций состоит из смеси нуклидов (см. НУКЛИД) с массовыми числами 40 (в смеси по массе 96,94 %), 44 (2,09%), 42 (0,667%), 48 (0,187%), 43 (0,135%) и 46 (0,003%). Конфигурация внешнего электронного слоя 4s 2 . Практически во всех соединениях степень окисления кальция +2 (валентность II).
Радиус нейтрального атома кальция 0,1974 нм, радиус иона Cа 2+ от 0,114 нм (для координационного числа 6) до 0,148 нм (для координационного числа 12). Энергии последовательной ионизации нейтрального атома кальция равны, соответственно, 6,133, 11,872, 50,91, 67,27 и 84,5 эВ. По шкале Полинга электроотрицательность кальция около 1,0. В свободном виде кальций - серебристо-белый металл.
История открытия
Соединения кальция встречаются в природе повсеместно, поэтому человечество знакомо с ними с древнейших времен. Издавна в строительном деле находила применение известь (см. ИЗВЕСТЬ) (негашеная и гашеная), которую долгое время считали простым веществом, «землей». Однако в 1808 английский ученый Г. Дэви (см. ДЭВИ Гемфри) сумел получить из извести новый металл. Для этого Дэви подверг электролизу смесь слегка увлажненной гашеной извести с окисью ртути и выделил из образующейся на ртутном катоде амальгамы новый металл, который он назвал кальцием (от лат. calx, род. падеж calcis - известь). В России некоторое время этот металл называли «известковием».
Нахождение в природе
Кальций - один из наиболее распространенных на Земле элементов. На его долю приходится 3,38% массы земной коры (5-е место по распространенности после кислорода, кремния, алюминия и железа). Из-за высокой химической активности кальций в свободном виде в природе не встречается. Большая часть кальция содержится в составе силикатов (см. СИЛИКАТЫ) и алюмосиликатов (см. АЛЮМОСИЛИКАТЫ) различных горных пород (граниты (см. ГРАНИТ) , гнейсы (см. ГНЕЙС) и т. п.). В виде осадочных пород соединения кальция представлены мелом и известняками, состоящими в основном из минерала кальцита (см. КАЛЬЦИТ) (CaCO 3). Кристаллическая форма кальцита - мрамор - встречается в природе гораздо реже.
Довольно широко распространены такие минералы кальция, как известняк (см. ИЗВЕСТНЯК) СaCO 3 , ангидрит (см. АНГИДРИТ) CaSO 4 и гипс (см. ГИПС) CaSO 4 ·2H 2 O, флюорит (см. ФЛЮОРИТ) CaF 2 , апатиты (см. АПАТИТЫ) Ca 5 (PO 4) 3 (F,Cl,OH), доломит (см. ДОЛОМИТ) MgCO 3 ·СaCO 3 . Присутствием солей кальция и магния в природной воде определяется ее жесткость (см. ЖЕСТКОСТЬ ВОДЫ) . Значительное количество кальция входит в состав живых организмов. Так, гидроксилапатит Ca 5 (PO 4) 3 (OH), или, в другой записи, 3Ca 3 (PO 4) 2 ·Са(OH) 2 - основа костной ткани позвоночных, в том числе и человека; из карбоната кальция CaCO 3 состоят раковины и панцири многих беспозвоночных, яичная скорлупа и др.
Получение
Металлический кальций получают электролизом расплава, состоящего из CaCl 2 (75-80%) и KCl или из CaCl 2 и CaF 2 , а также алюминотермическим восстановлением CaO при 1170-1200 °C:
4CaO + 2Al = CaAl 2 O 4 + 3Ca.
Физические и химические свойства
Металл кальций существует в двух аллотропных модификациях (см. Аллотропия (см. АЛЛОТРОПИЯ) ). До 443 °C устойчив a-Ca с кубической гранецентрированной решеткой (параметр а = 0,558 нм), выше устойчив b-Ca с кубической объемно центрированной решеткой типа a-Fe (параметр a = 0,448 нм). Температура плавления кальция 839 °C, температура кипения 1484 °C, плотность 1,55 г/см 3 .
Химическая активность кальция высока, но ниже, чем всех других щелочноземельных металлов. Он легко взаимодействует с кислородом, углекислым газом и влагой воздуха, из-за чего поверхность металлического кальция обычно тускло серая, поэтому в лаборатории кальций обычно хранят, как и другие щелочноземельные металлы, в плотно закрытой банке под слоем керосина.
В ряду стандартных потенциалов кальций расположен слева от водорода. Стандартный электродный потенциал пары Ca 2+ /Ca 0 –2,84 В, так что кальций активно реагирует с водой:
Ca + 2Н 2 О = Ca(ОН) 2 + Н 2 .
С активными неметаллами (кислородом, хлором, бромом) кальций реагирует при обычных условиях:
2Са + О 2 = 2СаО; Са + Br 2 = CaBr 2 .
При нагревании на воздухе или в кислороде кальций воспламеняется. С менее активными неметаллами (водородом, бором, углеродом, кремнием, азотом, фосфором и другими) кальций вступает во взаимодействие при нагревании, например:
Са + Н 2 = СаН 2 (гидрид кальция),
Ca + 6B = CaB 6 (борид кальция),
3Ca + N 2 = Ca 3 N 2 (нитрид кальция)
Са + 2С = СаС 2 (карбид кальция)
3Са + 2Р = Са 3 Р 2 (фосфид кальция), известны также фосфиды кальция составов СаР и СаР 5 ;
2Ca + Si = Ca 2 Si (силицид кальция), известны также силициды кальция составов CaSi, Ca 3 Si 4 и CaSi 2 .
Протекание указанных выше реакций, как правило, сопровождается выделением большого количества теплоты (т. е. эти реакции - экзотермические). Во всех соединениях с неметаллами степень окисления кальция +2. Большинство из соединений кальция с неметаллами легко разлагается водой, например:
СаН 2 + 2Н 2 О = Са(ОН) 2 + 2Н 2 ,
Ca 3 N 2 + 3Н 2 О = 3Са(ОН) 2 + 2NН 3 .
Оксид кальция - типично основной. В лаборатории и технике его получают термическим разложением карбонатов:
CaCO 3 = CaO + CO 2 .
Технический оксид кальция СаО называется негашеной известью.
Он реагирует с водой с образованием Ca(ОН) 2 и выделением большого количества теплоты:
CaО + Н 2 О = Ca(ОН) 2 .
Полученный таким способом Ca(ОН) 2 обычно называют гашеной известью или известковым молоком (см. ИЗВЕСТКОВОЕ МОЛОКО) из-за того, что растворимость гидроксида кальция в воде невелика (0,02 моль/л при 20°C), и при внесении его в воду образуется белая суспензия.
При взаимодействии с кислотными оксидами CaO образует соли, например:
CaО +СО 2 = СаСО 3 ; СаО + SO 3 = CaSO 4 .
Ион Ca 2+ бесцветен. При внесении в пламя солей кальция пламя окрашивается в кирпично-красный цвет.
Такие соли кальция, как хлорид CaCl 2 , бромид CaBr 2 , иодид CaI 2 и нитрат Ca(NO 3) 2 , хорошо растворимы в воде. Нерастворимы в воде фторид CaF 2 , карбонат CaCO 3 , сульфат CaSO 4 , средний ортофосфат Ca 3 (PO 4) 2 , оксалат СаС 2 О 4 и некоторые другие.
Важное значение имеет то обстоятельство, что в отличие от среднего карбоната кальция СаСО 3 кислый карбонат кальция (гидрокарбонат) Са(НСО 3) 2 в воде растворим. В природе это приводит к следующим процессам. Когда холодная дождевая или речная вода, насыщенная углекислым газом, проникает под землю и попадает на известняки, то наблюдается их растворение:
СаСО 3 + СО 2 + Н 2 О = Са(НСО 3) 2 .
В тех же местах, где вода, насыщенная гидрокарбонатом кальция, выходит на поверхность земли и нагревается солнечными лучами, протекает обратная реакция:
Са(НСО 3) 2 = СаСО 3 + СО 2 + Н 2 О.
Так в природе происходит перенос больших масс веществ. В результате под землей могут образоваться огромные провалы (см. Карст (см. КАРСТ (явление природы)) ), а в пещерах образуются красивые каменные «сосульки» - сталактиты (см. СТАЛАКТИТЫ (минеральные образования)) и сталагмиты (см. СТАЛАГМИТЫ) .
Наличие в воде растворенного гидрокарбоната кальция во многом определяет временную жесткость воды (см. ЖЕСТКОСТЬ ВОДЫ) . Временной ее называют потому, что при кипячении воды гидрокарбонат разлагается, и в осадок выпадает СаСО 3 . Это явление приводит, например, к тому, что в чайнике со временем образуется накипь.
Применение кальция и его соединений
Металлический кальций применяют для металлотермического получения урана (см. УРАН (химический элемент)) , тория (см. ТОРИЙ) , титана (см. ТИТАН (химический элемент)) , циркония (см. ЦИРКОНИЙ) , цезия (см. ЦЕЗИЙ) и рубидия (см. РУБИДИЙ) .
Природные соединения кальция широко используют в производстве вяжущих материалов (цемент (см. ЦЕМЕНТ) , гипс (см. ГИПС) , известь и др.). Связывающее действие гашеной извести основано на том, что с течением времени гидроксид кальция реагирует с углекислым газом воздуха. В результате протекающей реакции образуются игольчатые кристаллы кальцита СаСО з, которые прорастают в расположенные рядом камни, кирпичи, другие строительные материалы и как бы сваривают их в единое целое. Кристаллический карбонат кальция - мрамор - прекрасный отделочный материал. Мел используют для побелки. Большие количества известняка расходуются при производстве чугуна, так как позволяют перевести тугоплавкие примеси железной руды (например, кварц SiO 2) в сравнительно легкоплавкие шлаки.
В качестве дезинфицирующего средства очень эффективна хлорная известь (см. ХЛОРНАЯ ИЗВЕСТЬ) - «хлорка» Ca(OCl)Cl - смешанный хлорид и гипохлорид кальция (см. КАЛЬЦИЯ ГИПОХЛОРИТ) , обладающий высокой окислительной способностью.
Широко применяется и сульфат кальция, существующий как в виде безводного соединения, так и в виде кристаллогидратов - так называемого «полуводного» сульфата - алебастра (см. АЛЕВИЗ ФРЯЗИН (Миланец)) CaSO 4 ·0,5H 2 O и двухводного сульфата - гипса CaSO 4 ·2H 2 O. Гипс широко используют в строительстве, в скульптуре, для изготовления лепнины и различных художественных изделий. Применяют гипс и в медицине для фиксации костей при переломах.
Хлорид кальция CaCl 2 используют наряду с поваренной солью для борьбы с оледенением дорожных покрытий. Фторид кальция СаF 2 - прекрасный оптический материал.
Кальций в организме
Кальций - биогенный элемент (см. БИОГЕННЫЕ ЭЛЕМЕНТЫ) , постоянно присутствующий в тканях растений и животных. Важный компонент минерального обмена животных и человека и минерального питания растений, кальций выполняет в организме разнообразные функции. В составе апатита (см. АПАТИТ) , а также сульфата и карбоната кальций образует минеральный компонент костной ткани. В организме человека массой 70 кг содержится около 1 кг кальция. Кальций участвует в работе ионных каналов (см. ИОННЫЕ КАНАЛЫ) , осуществляющих транспорт веществ через биологические мембраны, в передаче нервного импульса (см. НЕРВНЫЙ ИМПУЛЬС) , в процессах свертывания крови (см. СВЕРТЫВАНИЕ КРОВИ) и оплодотворения. Регулируют обмен кальция в организме кальциферолы (см. КАЛЬЦИФЕРОЛЫ) (витамин D). Недостаток или избыток кальция приводит к различным заболеваниям - рахиту (см. РАХИТ) , кальцинозу (см. КАЛЬЦИНОЗ) и др. Поэтому пища человека должна в нужных количествах содержать соединения кальция (800-1500 мг кальция в сутки). Содержание кальция высоко в молочных продуктах (таких, как творог, сыр, молоко), в некоторых овощах и других продуктах питания. Препараты кальция широко используются в медицине.


Энциклопедический словарь . 2009 .

Синонимы :

Кальций (латинское Calcium, обозначается символом Ca) - элемент с атомным номером 20 и атомной массой 40,078. Является элементом главной подгруппы второй группы, четвёртого периода периодической системы химических элементов Дмитрия Ивановича Менделеева. При нормальных условиях простое вещество кальций - легкий (1,54 г/см3) ковкий, мягкий химически активный щелочноземельный металл серебристо-белого цвета.

В природе кальций представлен в виде смеси шести изотопов: 40Ca (96,97 %), 42Ca (0,64 %), 43Ca (0,145 %), 44Ca (2,06 %), 46Ca (0,0033 %) и 48Ca (0,185 %). Основным изотопом двадцатого элемента - наиболее распространенным - является 40Са, его изотопная распространенность порядка 97 %. Из шести природных изотопов кальция пять стабильны, шестой изотоп 48Ca, самый тяжелый из шести и довольно редкий (его изотопная распространенность всего 0,185 %), как было недавно установлено, испытывает двойной β-распад с периодом полураспада 5,3∙1019 лет. Полученные искусственным путем изотопы с массовыми числами 39, 41, 45, 47 и 49 - радиоактивны. Чаще всего они используются в качестве изотопного индикатора при изучении процессов минерального обмена в живом организме. 45Ca, получаемый облучением металлического кальция или его соединений нейтронами в урановом реакторе, играет большую роль при изучении обменных процессов, происходящих в почвах, и при исследовании процессов усвоения кальция растениями. Благодаря этому же изотопу удалось обнаружить источники загрязнения различных сортов стали и сверхчистого железа соединениями кальция в процессе выплавки.

Соединения кальция - мрамор, гипс, известняк и известь (продукт обжига известняка) были известны с древнейших времен и широко применялись в строительстве и медицине. Древние Египтяне использовали соединения кальция при строительстве своих пирамид, а жители великого Рима изобрели бетон - используя смесь из дробленого камня, извести и песка. До самого конца XVIII века химики были убеждены, что известь - простое тело. Лишь в 1789 году Лавуазье предположил, что известь, глинозем и некоторые другие соединения - сложные вещества. В 1808 году металлический кальций был получен Г.Дэви путем электролиза.

Применение металлического кальция связано с его высокой химической активностью. Он используется для восстановления из соединений некоторых металлов, например, тория, урана, хрома, циркония, цезия, рубидия; для удаления из стали и из некоторых других сплавов кислорода, серы; для обезвоживания органических жидкостей; для поглощения остатков газов в вакуумных приборах. Кроме того, металлический кальций служит легирующим компонентом некоторых сплавов. Гораздо шире применяются соединения кальция - их используют в строительстве, пиротехнике, производстве стекла, медицине и многих других областях.

Кальций - один из важнейших биогенных элементов, он необходим большинству живых организмов для нормального протекания жизненных процессов. В организме взрослого человека содержится до полутора килограмм кальция. Он присутствует во всех тканях и жидкостях живых организмов. Двадцатый элемент необходим для формирования костной ткани, поддержания сердечного ритма, свертываемости крови, поддержания нормальной проницаемости наружных клеточных мембран, образования ряда ферментов. Список функций, которые выполняет кальций в организмах растений и животных весьма велик. Достаточно сказать, что лишь редкие организмы способны развиваться в среде, лишенной кальция, а другие организмы на 38 % состоят из этого элемента (человеческий организм содержит всего примерно 2 % кальция).

Биологические свойства

Кальций - один из биогенных элементов, его соединения находятся практически во всех живых организмах (немногие организмы способны развиваться в среде, лишенной кальция), обеспечивая нормальное протекание жизненных процессов. Двадцатый элемент присутствует во всех тканях и жидкостях животных и растений, его большая часть (в организмах позвоночных - в том числе и человека) содержится в скелете и зубах в виде фосфатов (например, гидроксиапатит Ca5(PO4)3OH или 3Ca3(PO4)2 Са(OH)2). Использование двадцатого элемента в качестве строительного материала костей и зубов связано с тем, что ионы кальция не используются в клетке. Концентрацию кальция контролируют особые гормоны, их совместное действие сохраняет и поддерживает структуру костей. Скелеты большинства групп беспозвоночных (моллюски, кораллы, губки и прочие) построены из различных форм карбоната кальция CaCO3 (извести). Многие беспозвоночные запасают кальций перед линькой для построения нового скелета или для обеспечения жизненных функций в неблагоприятных условиях. Животные получают кальций с пищей и водой, а растения - из почвы и по отношению к данному элементу делятся на кальцефилов и кальцефобов.

Ионы этого важного микроэлемента участвуют в процессах свертывания крови, а также в обеспечении постоянного осмотического давления крови. Кроме того, кальций необходим для образования ряда клеточных структур, поддержания нормальной проницаемости наружных клеточных мембран, для оплодотворения яйцеклеток рыб и других животных, активации ряда ферментов (возможно, данное обстоятельство связано с тем, что кальций замещает ионы магния). Ионы кальция передают возбуждение на мышечное волокно, вызывая его сокращение, увеличивают силу сердечных сокращений, повышают фагоцитарную функцию лейкоцитов, активируют систему защитных белков крови, регулируют экзоцитоз, в том числе секрецию гормонов и нейромедиаторов. Кальций влияет на проходимость сосудов - без этого элемента жиры, липиды и холестерин осели бы на стенках сосудов. Кальций способствует выделению из организма солей тяжелых металлов и радионуклидов, выполняет антиоксидантные функции. Кальций влияет на систему воспроизводства, оказывает антистрессовый эффект и обладает антиаллергическим действием.

Содержание кальция в организме взрослого человека (массой 70 кг) составляет 1,7 кг (в основном в составе межклеточного вещества костной ткани). Потребность в данном элементе зависит от возраста: для взрослых необходимая дневная норма составляет от 800 до 1 000 миллиграммов, для детей от 600 до 900 миллиграммов. Для детей особенно важно потребление необходимой дозы для интенсивного роста и развития костей. Основным источником поступления кальция в организм служат молоко и молочные продукты, остальной кальций поступает с мясом, рыбой, некоторыми растительными продуктами (особенно с бобовыми). Всасывание катионов кальция происходит в толстом и тонком кишечнике, усвоению способствуют кислая среда, витамины C и D, лактоза (молочная кислота), а также ненасыщенные жирные кислоты. В свою очередь аспирин, щавелевая кислота, производные эстрогенов значительно снижают усвояемость двадцатого элемента. Так, соединяясь с щавелевой кислотой, кальций дает нерастворимые в воде соединения, которые являются компонентами камней в почках. Велика роль магния в кальциевом обмене - при его недостатке кальций «вымывается» из костей и осаждается в почках (почечные камни) и мышцах. Вообще в организме существует сложная система хранения и высвобождения двадцатого элемента, по этой причине содержание кальция в крови точно регулируется, и при правильном питании недостатка либо переизбытка не возникает. Длительная кальциевая диета способна вызвать судороги, боли в суставах, запоры, усталость, сонливость, задержки роста. Продолжительное отсутствие кальция в рационе питания приводит к развитию остеопороза. Никотин, кофеин и алкоголь являются одними из причин недостатка кальция в организме, так как способствуют его интенсивному выведению с мочой. Однако и избыток двадцатого элемента (либо витамина D) приводит к отрицательным последствиям - развивается гиперкальцемия, последствием которой является интенсивная кальцификация костей и тканей (в основном затрагивает мочевыделительную систему). Длительный профицит кальция нарушает функционирование мышечных и нервных тканей, увеличивает свертываемость крови и уменьшает усвояемость цинка клетками костной ткани. Возможно появление остеоартрита, катаракты, проблем с артериальным давлением. Из сказанного можно заключить, что клетки растительных и животных организмов нуждаются в строго определенных соотношениях ионов кальция.

В фармакологии и медицине соединения кальция используются для изготовления витаминов, таблеток, пилюль, инъекций, антибиотиков, а также для изготовления ампул, медицинской посуды.

Оказывается, довольно распространенной причиной мужского бесплодия является нехватка кальция в организме! Дело в том, что головка сперматозоида имеет стреловидное образование, которое полностью состоит из кальция, при достаточном количестве данного элемента сперматозоид способен преодолеть оболочку и оплодотворить яйцеклетку, при недостаточном наступает бесплодие.

Американские ученые выяснили, что недостаток ионов кальция в крови приводит к ослаблению памяти и снижению интеллекта. Так, например, из известного в США журнала Science News стало известно об опытах, которые подтвердили, что у кошек вырабатывается условный рефлекс лишь в том случае, если клетки их мозга содержат больше кальция, чем кровь.

Высоко ценимое в сельском хозяйстве соединение цианамид кальция, используется не только в качестве азотного удобрения и источника получения мочевины - ценнейшего удобрения и сырья для производства синтетических смол, но и в качестве вещества, с помощью которого удалось механизировать уборку хлопковых полей. Дело в том, что после обработки этим соединением хлопчатник моментально сбрасывает листву, что позволяет людям предоставить сбор хлопка машинам.

Говоря о пище богатой кальцием, всегда упоминают молочные продукты, однако само молоко содержит от 120 мг (коровье) до 170 мг (овечье) кальция на 100 г; творог и того беднее - всего 80 мг на 100 грамм. Из молочных продуктов лишь сыр содержит от 730 мг (гауда) до 970 мг (эмменталь) кальция на 100 г продукта. Однако рекордсменом по содержанию двадцатого элемента является мак - в 100 граммах маковых зерен содержится почти 1 500 мг кальция!

Хлорид кальция CaCl2, использующийся, например, в холодильных установках, является отходом многих химико-технологических процессов, в частности, крупномасштабного производства соды. Однако, несмотря на широкое использование хлорида кальция в различных областях, его потребление значительно уступает его производству. По этой причине, например, около заводов, производящих соду, образуются целые озера из рассола хлорида кальция. Подобные пруды-накопители не редкость.

Для того чтобы понять, как много потребляется соединений кальция, стоит привести всего пару примеров. При производстве стали известь используют для удаления фосфора, кремния, марганца и серы, в кислородно-конверторном процессе на тонну стали расходуется 75 килограмм извести! Другой пример из совершенно иной области - пищевой промышленности. При производстве сахара для осаждения сахарата кальция проводят реакцию сырого сахарного сиропа с известью. Так вот, тростниковый сахар обычно требует порядка 3-5 кг извести на тонну, а свекловичный сахар - в сто раз больше, то есть около полутонны извести на тонну сахара!

«Жёсткость» воды - это ряд свойств, которые придают воде растворенные в ней соли кальция и магния. Жесткость подразделяют на временную и постоянную. Временная или карбонатная жесткость обуславливается наличием в воде растворимых гидрокарбонатов Са(НCO3)2 и Mg(HCO3)2. Избавиться от карбонатной жесткости очень легко - при кипячении воды гидрокарбонаты превращаются в нерастворимые в воде карбонаты кальция и магния, выпадая в осадок. Постоянная жесткость создается сульфатами и хлоридами тех же металлов, однако избавиться от нее гораздо сложнее. Жесткая вода страшна не столько тем, что препятствует образованию мыльной пены и поэтому хуже отстирывает белье, гораздо страшнее то, что она образует слой накипи в паровых котлах и котельных установках, тем самым, снижая их КПД и приводя к аварийным ситуациям. Что интересно - определять жесткость воды умели еще в Древнем Риме. В качестве реактива использовалось красное вино - его красящие вещества образуют осадок с ионами кальция и магния.

Весьма интересен процесс подготовки кальция к хранению. Металлический кальций сохраняется в течение длительного времени в виде кусков массой от 0,5 до 60 кг. Эти «чушки» упаковывают в бумажные мешки, затем помещают в железные оцинкованные емкости с пропаянными и прокрашенными швами. Плотно закрытые емкости укладывают в деревянные ящики. Куски весом менее полукилограмма долго хранить нельзя - окисляясь, они быстро превращаются в окись, гидроокись и карбонат кальция.

История

Металлический кальций был получен сравнительно недавно - в 1808 году, однако с соединениями данного металла человечество знакомо очень давно. С древнейших времен люди использовали известняк, мел, мрамор, алебастр, гипс и прочие кальцийсодержащие соединения в строительстве и медицине. Известняк CaCO3, скорее всего, был первым строительным материалом, который использовал человек. Его применяли при возведении египетских пирамид и Великой китайской стены. Многие храмы и церкви на Руси, а также большинство зданий древней Москвы были построены с использованием известняка - белого камня. Еще в давние времена человек, обжигая известняк, получал негашеную известь (CaO), о чем свидетельствуют труды Плиния Старшего (I век н.э.) и Диоскорида - врача при римской армии, которой в сочинении «О лекарственных средствах» ввел для окиси кальция название «негашеная известь», которое сохранилось и в наше время. И всё это притом, что чистый оксид кальция был впервые описан немецким ученым-химиком И. Потом лишь в 1746 году, а в 1755 году химик Дж. Блэк, изучая процесс обжига, выявил, что потеря массы известняка при обжиге происходит за счет выделения углекислого газа:

CaCO3 ↔ CO2 + CaO

Египетские строительные растворы, которые использовались в пирамидах Гизы, были основаны на частично обезвоженном гипсе CaSO4 2H2O или говоря иначе - алебастре 2CaSO4∙H2O. Он же является основой всей штукатурки в гробнице Тутанхамона. Жженый гипс (алебастр) египтяне использовали в качестве вяжущего вещества при строительстве ирригационных сооружений. Обжигая природный гипс при высоких температурах, египетские строители добивались его частичного обезвоживания, причем от молекулы отщеплялась не только вода, но и серный ангидрид. В дальнейшем при разведении водой получалась очень прочная масса, которая не боялась воды и колебаний температуры.

Римлян по праву можно назвать изобретателями бетона, ведь в своих постройках они использовали одну из разновидностей данного строительного материала - смесь дробленого камня, песка и извести. Существует описание Плиния Старшего постройки цистерн из такого бетона: «Для постройки цистерн берут пять частей чистого гравийного песка, две части самой лучшей гашеной извести и обломки силекса (твердая лава) весом не больше фунта каждый, после смешивания уплотняют нижнюю и боковые поверхности ударами железной трамбовки». Во влажном климате Италии бетон был наиболее устойчивым материалом.

Получается, что человечеству были давно известны соединения кальция, которые они широко употребляли. Однако вплоть до конца XVIII века химики считали известь простым телом, лишь в преддверии нового века началось изучение природы извести и прочих соединений кальция. Так Шталь предположил, что известь сложное тело, состоящее из землистого и водного начал, а Блэк установил различие между едкой известью и углекислой известью, содержавшей «фиксированный воздух». Антуан Лоран Лавуазье относил известковую землю (CaO) к числу элементов, то есть к простым веществам, хотя в 1789 году предположил, что известь, магнезия, барит, глинозём и кремнезём - вещества сложные, но доказать это будет возможно лишь разложив «упрямую землю» (оксид кальция). И первым, кому это удалось, был Хэмфри Дэви. После успешного разложения электролизом окислов калия и натрия химик решил получить тем же путем щелочноземельные металлы. Однако первые попытки были неудачны - англичанин пытался разложить известь путем электролиза на воздухе и под слоем нефти, затем прокаливал известь с металлическим калием в трубке и производил многие другие опыты, но безуспешно. Наконец, в приборе с ртутным катодом он получил электролизом извести амальгаму, а из нее металлический кальций. Довольно скоро этот метод получения металла был усовершенствован И. Берцелиусом и М. Понтиным.

Название новый элемент получил от латинского слова «calx» (в родительном падеже calcis) - известь, мягкий камень. Кальксом (calx) называли мел, известковый камень, вообще камень-голыш, но чаще же всего строительный раствор на основе извести. Это понятие употребляли и древние авторы (Витрувий, Плиний Старший, Диоскорид), описывая обжиг известняка, гашения извести и приготовления строительных растворов. Позже в кругу алхимиков «calx» обозначало продукт обжига вообще - в частности металлов. Так, например, оксиды металлов назывались металлическими известями, а сам процесс обжига - кальцинацией (calcinatio). В древнерусской рецептурной литературе встречается слово кал (грязь, глина), так в сборнике Троице-Сергиевской лавры (XV век) говорится: «обрящи кал, от него же творят златарие горнила». Лишь позднее слово кал, которое, несомненно, связано со словом «calx», стало синонимом слова навоз. В русской литературе начала XIX века кальций называли иногда основанием известковой земли, известковием (Щеглов, 1830), известковистостью (Иовский), калцием, кальцием (Гесс).

Нахождение в природе

Кальций один из самых распространенных элементов на нашей планете - пятый по количественному содержанию в природе (из неметаллов больше только кислорода - 49,5 % и кремния - 25,3 %) и третий среди металлов (более распространены лишь алюминий - 7,5 % и железо - 5,08 %). Кларк (среднее содержание в земной коре) кальция по разным оценкам составляет от 2,96 % по массе до 3,38 %, определенно можно сказать, что цифра эта порядка 3 %. В наружной оболочке атома кальция два валентных электрона, связь которых с ядром довольно непрочна. По этой причине кальций обладает высокой химической активностью и в природе в свободном виде не встречается. Однако он активно мигрирует и накапливается в различных геохимических системах, образуя приблизительно 400 минералов: силикаты, алюмосиликаты, карбонаты, фосфаты, сульфаты, боросиликаты, молибдаты, хлориды и прочие, занимая по этому показателю четвертое место. При расплавлении базальтовых магм кальций накапливается в расплаве и входит в состав главных породообразующих минералов, при фракционировании которых его содержание в ходе дифференциации магмы от основных к кислым породам падает. По большей части кальций залегает в нижней части земной коры, накапливаясь в основных породах (6,72 %); в земной мантии кальция мало (0,7 %) и, вероятно, еще меньше в земном ядре (в схожих с ядром железных метеоритах двадцатого элемента всего 0,02 %).

Правда, кларк кальция в каменных метеоритах составляет 1,4 % (встречается редкий сульфид кальция), в средних породах - 4,65 %, кислые породы содержат 1,58 % кальция по массе. Основная часть кальция содержится в составе силикатов и алюмосиликатов различных горных пород (граниты, гнейсы и т. п.), особенно в полевом шпате - анортите Ca, а также диопсиде CaMg, волластоните Са3. В виде осадочных пород соединения кальция представлены мелом и известняками, состоящими в основном из минерала кальцита (CaCO3).

Карбонат кальция СаCO3 - одно из самых распространенных на Земле соединений - минералы на основе карбоната кальция покрывают примерно 40 миллионов квадратных километров земной поверхности. Во многих частях поверхности Земли имеются значительные осадочные залежи карбоната кальция, которые образовались из остатков древних морских организмов - мел, мрамор, известняки, ракушечники - все это СаCO3 с незначительными примесями, а кальцит - чистый СаCO3. Самый важный из этих минералов - известняк, точнее - известняки - ведь каждое месторождение отличается по плотности, составу и количеству примесей. Например, ракушечник - известняк органического происхождения, а имеющий меньше примесей карбонат кальция образует прозрачные кристаллы известкового или исландского шпата. Мел - еще одна часто встречаемая разновидность углекислого кальция, а вот мрамор - кристаллическая форма кальцита - встречается в природе гораздо реже. Принято считать, что мрамор образовался из известняка в древние геологические эпохи. При движении земной коры отдельные залежи известняка оказались погребенными под слоями других пород. Под действием высокого давления и температуры происходил процесс перекристаллизации, и известняк превращался в более плотную кристаллическую породу - мрамор. Причудливые сталактиты и сталагмиты - минерал арагонит, являющийся еще одной разновидностью карбоната кальция. Орторомбический арагонит образуется в теплых морях - громадными пластами карбоната кальция в виде арагонита образованы Багамы, острова Флорида-Кис и бассейн Красного моря. Также довольно широко распространены такие минералы кальция, как флюорит CaF2, доломит MgCO3 CaCO3, ангидрит CaSO4, фосфорит Са5(РО4)3(ОН,СО3) (с различными примесями) и апатиты Ca5(PO4)3(F,Cl,OH) - формы фосфорнокислого кальция, алебастр CaSO4 0,5H2O и гипс CaSO4 2H2O (формы сернокислого кальция) и другие. В кальцийсодержащих минералах присутствуют замещающие его изоморфно элементы-примеси (например, натрий, стронций, редкоземельные, радиоактивные и другие элементы).

Большое количество двадцатого элемента находится в природных водах вследствие существования глобального «карбонатного равновесия» между плохо растворимым СаСО3, хорошо растворимым Са(НСО3)2 и находящимся в воде и воздухе СО2:

CaCO3 + H2O + CO2 = Ca(HCO3)2 = Са2+ + 2HCO3-

Эта реакция обратима и является основой перераспределения двадцатого элемента - при высоком содержании углекислого газа в водах кальций находится в растворе, а при низком содержании CO2 в осадок выпадает минерал кальцит CaCO3, образуя мощные залежи известняка, мела, мрамора.

Немалое количество кальция входит в состав живых организмов, например, гидроксиапатит Ca5(PO4)3OH, или, в другой записи, 3Ca3(PO4)2 Са(OH)2 - основа костной ткани позвоночных, в том числе и человека. Карбонат кальция СаСО3 - основная составляющая панцирей и раковин многих беспозвоночных, яичной скорлупы, кораллов и даже жемчуга.

Применение

Металлический кальций используется довольно редко. В основном этот металл (как и его гидрид) применяется при металлотермическом получении трудновосстанавливаемых металлов - урана, титана, тория, циркония, цезия, рубидия и ряда редкоземельных металлов из их соединений (оксидов или галогенидов). Кальций используют как восстановитель при получении никеля, меди и нержавеющей стали. Также двадцатый элемент используют для раскисления сталей, бронз и других сплавов, для удаления серы из нефтепродуктов, для обезвоживания органических растворителей, для очистки аргона от примеси азота и в качестве поглотителя газов в электровакуумных приборах. Металлический кальций находит применение при получении антифрикционных сплавов системы Pb-Na-Ca (используются в подшипниках), а также сплава Pb-Ca, служащего для изготовления оболочки электрических кабелей. Сплав силикокальций (Ca-Si-Ca) применяется в качестве раскислителя и дегазатора в производстве качественных сталей. Кальций применяется и как легирующий элемент для алюминиевых сплавов и в качестве модифицирующей добавки для магниевых сплавов. Так, например, введение кальция повышает прочность алюминиевых подшипников. Чистый кальций применяется и для легирования свинца, идущего на изготовление аккумуляторных пластин, необслуживаемых стартерных свинцово-кислотных аккумуляторов с малым саморазрядом. Также металлический кальций идет на производство качественных кальциевых баббитов БКА. С помощью кальция регулируют содержание углерода в чугуне и удаляют висмут из свинца, очищают сталь от кислорода, серы и фосфора. Кальций, а также его сплавы с алюминием и магнием используются в резервных тепловых электрических батареях в качестве анода (например, кальций-хроматный элемент).

Однако значительно шире используются соединения двадцатого элемента. И в первую очередь речь идет о природных соединениях кальция. Одно из самых распространенных на Земле соединений кальция - карбонат СаCO3. Чистый карбонат кальция - минерал кальцит, а известняк, мел, мрамор, ракушечник - СаCO3 с незначительными примесями. Смешанный карбонат кальция и магния носит название доломит. Известняк и доломит используются, главным образом, в качестве строительных материалов, дорожных покрытий либо реагентов, понижающих кислотность почвы. Карбонат кальция СаCO3 необходим для получения оксида кальция (негашеной извести) CaO и гидроксида кальция (гашеной извести) Ca(OH)2. В свою очередь CaO и Ca(OH)2 являются основными веществами во многих областях химической, металлургической и машиностроительной промышленности - оксид кальция, как в свободном виде, так и в составе керамических смесей, применяется в производстве огнеупорных материалов; колоссальные объёмы гидроксида кальция необходимы целлюлозно-бумажной промышленности. Кроме того, Ca(OH)2 применяется при производстве хлорной извести (хорошее отбеливающее и дезинфицирующее средство), бертоллетовой соли, соды, некоторых ядохимикатов для борьбы с вредителями растений. Огромное количество извести расходуется при производстве сталей - для удаления серы, фосфора, кремния и марганца. Другая роль извести в металлургии - это производство магния. Известь используется также в качестве смазочного материала при вытягивании стальной проволоки и нейтрализации отходов травильных жидкостей, содержащих серную кислоту. Кроме того, именно известь - самый распространенный химический реагент в обработке питьевой и промышленной воды (совместно с квасцами или солями железа она коагулирует суспензии и удаляет осадок, а также смягчает воду за счет удаления временной - гидрокарбонатной - жесткости). В быту и медицине осажденный карбонат кальция применяется как средство, нейтрализующее кислоту, мягкий абразив в зубных пастах, источник дополнительного кальция в диетах, составная часть жевательной резинки и наполнитель в косметике. СаСО3 также используется как наполнитель в резинах, латексах, красках и эмалях, а также в пластиках (около 10 % по массе) для улучшения их термостойкости, жесткости, твердости и обрабатываемости.

Особую важность имеет фторид кальция CaF2, ведь в виде минерала (флюорит) он является единственным промышленно важным источником фтора! Фторид кальция (флюорит) применяется в виде монокристаллов в оптике (астрономические объективы, линзы, призмы) и как лазерный материал. Дело в том, что стекла лишь из фторида кальция проницаемы для всей области спектра. Вольфрамат кальция (шеелит) в виде монокристаллов применяется в лазерной технике, а также как сцинтиллятор. Не менее важен хлорид кальция CaCl2 - компонент рассолов для холодильных установок и для заполнения шин тракторов и иного транспорта. С помощью хлорида кальция очищают дороги и тротуары от снега и льда, это соединение применяется для защиты угля и руды от замерзания при транспортировке и хранении, его раствором пропитывают древесину для придания ей огнестойкости. CaCl2 используют в бетонных смесях для ускорения начала схватывания, повышения начальной и конечной прочности бетона.

Искусственно получаемый карбид кальция CaC2 (при прокаливании в электропечах оксида кальция с коксом) применяется для получения ацетилена и для восстановления металлов, а также при получении цианамида кальция, который, в свою очередь, под действием водяного пара освобождает аммиак. Кроме этого, цианамид кальция идет на производство мочевины - ценнейшего удобрения и сырья для производства синтетических смол. Нагреванием кальция в атмосфере водорода получают CaH2 (гидрид кальция), используемый в металлургии (металлотермии) и при получении водорода в полевых условиях (из 1 килограмма гидрида кальция можно получить более кубометра водорода), что используется для заполнения аэростатов, например. В лабораторной практике гидрид кальция используется как энергичный восстановитель. Инсектицид арсенат кальция, который получают нейтрализацией мышьяковой кислоты известью, широко используется для борьбы с хлопковым долгоносиком, яблонной плодожоркой, табачным червем, колорадским жуком. Важными фунгицидами являются известково-сульфатные аэрозоли и бордосские смеси, которые получают из сульфата меди и гидроксида кальция.

Производство

Первым, кто получил металлический кальций, был английский химик Хэмфри Дэви. В 1808 году он произвел электролиз смеси влажной гашеной извести Са(ОН)2 с оксидом ртути HgO на платиновой пластине, служившей анодом (в качестве катода выступала платиновая проволока, погруженная в ртуть), в результате чего Дэви получил амальгаму кальция, отогнав из нее ртуть, химик получил новый металл, который он назвал кальцием.

В современной промышленности свободный металлический кальций получают электролизом расплава хлорида кальция СаСl2, доля которого составляет 75-85 % и хлорида калия КСl (возможно использование смеси СаСl2 и CaF2) либо алюмотермическим восстановлением оксида кальция СаО при температуре 1 170-1 200 °C. Необходимый для электролиза чистый безводный хлорид кальция получают хлорированием окиси кальция при нагреве в присутствии угля или обезвоживанием СаСl2∙6Н2О, полученного действием соляной кислоты на известняк. Электролитический процесс происходит в электролизной ванне, в которую помещают сухую, очищенную от примесей соль хлорида кальция и хлористый калий, необходимый для понижения температуры плавления смеси. Над ванной помещают графитовые блоки - анод, чугунная или стальная ванна, заполненная медно-кальциевым сплавом, выступает в роли катода. В процессе электролиза кальций переходит в медно-кальциевый сплав, существенно обогащая его, часть обогащенного сплава постоянно извлекается, взамен добавляют сплав, обедненный кальцием (30-35 % Са), в тоже время хлор образует хлорвоздушную смесь (анодные газы), которая в последствии поступает на хлорирование известкового молока. Обогащенный медно-кальциевый сплав можно использовать непосредственно как сплав или направлять на очистку (дистилляцию), где отгонкой в вакууме (при температуре 1 000-1 080 °С и остаточном давлении 13-20 кПа) из него получают металлический кальций ядерной чистоты. Для получения высокочистого кальция его перегоняют дважды. Процесс электролиза проводится при температуре 680-720 °С. Дело в том, что это наиболее оптимальная температура для электролитического процесса - при более низкой температуре обогащенный кальцием сплав всплывает на поверхность электролита, а при более высокой происходит растворение кальция в электролите с образованием СаСl. При электролизе с жидкими катодами из сплавов кальция и свинца или кальция и цинка непосредственно получают используемые в технике сплавы кальция со свинцом (для подшипников) и с цинком (для получения пенобетона - при взаимодействии сплава с влагой выделяется водород и создается пористая структура). Иногда процесс ведут с железным охлаждаемым катодом, который только соприкасается с поверхностью расплавленного электролита. По мере выделения кальция катод постепенно поднимают, вытягивают из расплава стержень (50-60 см) из кальция, защищенный от кислорода воздуха слоем затвердевшего электролита. «Методом касания» получают кальций сильно загрязненный хлористым кальцием, железом, алюминием, натрием, очищение проводится переплавкой в атмосфере аргона.

Другой метод получения кальция - металлотермический - был теоретически обоснован еще в 1865 году известным русским химиком Н. Н. Бекетовым. Алюмотермический метод основан на реакции:

6CaO + 2Al → 3CaO Al2O3 + 3Ca

Из смеси окиси кальция с порошкообразным алюминием прессуют брикеты, их помещают в реторту из хромоникелевой стали и отгоняют образовавшийся кальций при 1 170-1 200 °С и остаточном давлении 0,7-2,6 Па. Кальций получается при этом в виде пара, который затем конденсируют на холодной поверхности. Алюмотермический способ получения кальция применяется в Китае, во Франции и ряде других стран. В промышленных масштабах металлотермический способ получения кальция первыми применили США в годы второй мировой войны. Таким же образом кальций может быть получен восстановлением СаО ферросилицием или силикоалюминием. Кальций выпускают в виде слитков или листов с чистотой 98-99 %.

Плюсы и минусы существуют в обоих методах. Электролитический метод многооперационен, энергоемок (на 1 кг кальция расходуется энергии 40-50 кВт.ч.), к тому же экологически не безопасен, требует большого количества реагентов и материалов. Однако выход кальция при данном методе составляет 70-80 %, в то время как при алюмотермическом методе выход составляет всего 50-60 %. К тому же при металлотермическом способе получения кальция минус в том, что необходимо осуществлять повторную дистилляцию, а плюс - в низком расходе электроэнергии, и в отсутствии газовых и жидких вредных выбросов.

Не так давно был разработан новый метод получения металлического кальция - он основан на термической диссоциации карбида кальция: раскаленный в вакууме до 1 750 °C карбид разлагается с образованием паров кальция и твердого графита.

До середины XX века металлический кальций производился в очень малых количествах, так как почти не находил применения. Например, в Соединенных Штатах Америки в годы второй мировой войны потреблялось не более 25 тонн кальция, а в Германии всего 5-10 тонн. Лишь во второй половине XX века, когда выяснилось, что кальций активный восстановитель многих редких и тугоплавких металлов, начался стремительный рост потребления (порядка 100 тонн в год) и, как следствие, производства данного металла. С развитием атомной промышленности, где кальций используется в качестве компонента металлотермического восстановления урана из тетрафторида урана (исключение США, где вместо кальция применяется магний), спрос (около 2 000 тонн в год) на элемент номер двадцать, как и его производство, возросло многократно. На данный момент основными производителями металлического кальция можно считать Китай, Россию, Канаду и Францию. Из этих стран кальций направляется в США, Мексику, Австралию, Швейцарию, Японию, Германию, Великобританию. Цены на металлический кальций неуклонно росли до тех пор, пока Китай не стал производить металл в таких объемах, что на мировом рынке появился излишек двадцатого элемента, что привело к резкому снижению цены.

Физические свойства

Что же представляет собой металлический кальций? Какими же свойствами обладает этот элемент, полученный в 1808 году английским химиком Хэмфри Дэви, металл, масса которого в организме взрослого человека может составлять до 2 килограмм?

Простое вещество кальций - серебристо-белый легкий металл. Плотность кальция всего 1,54 г/см3 (при температуре 20 °C), что значительно меньше плотности железа (7,87 г/см3), свинца (11,34 г/см3), золота (19,3 г/см3) или платины (21,5 г/см3). Кальций легче даже, чем такие «невесомые» металлы как алюминий (2,70 г/см3) или магний (1,74 г/см3). Немногие металлы могут «похвастать» плотностью меньшей, чем у двадцатого элемента - натрий (0,97 г/см3), калий (0,86 г/см3), литий (0,53 г/см3). По плотности кальций очень похож на рубидий (1,53 г/см3). Температура плавления кальция 851 °C, температура кипения 1 480 °C. Схожие температуры плавления (хотя и немного ниже) и кипения у других щелочноземельных металлов - стронция (770 °C и 1 380 °C) и бария (710 °C и 1 640 °C).

Металлический кальций существует в двух аллотропических модификациях: при нормальной температуре до 443 °С устойчив α-кальций с кубической гранецентрированной решеткой типа меди, с параметрами: а = 0,558 нм, z = 4, пространственная группа Fm3m, атомный радиус 1,97 A, ионный радиус Ca2+ 1,04 A; в интервале температур 443-842 °С устойчив β-кальций с кубической объемноцентрированной решеткой типа α-железа, с параметрами а = 0,448 нм, z = 2, пространственная группа Im3m. Стандартная энтальпия перехода из α-модификации в β-модификацию составляет 0,93 кДж/моль. Температурный коэффициент линейного расширения для кальция в интервале температур 0-300 °C составляет 22 10-6. Теплопроводность двадцатого элемента при 20 °C равна 125,6 Вт/(м К) или 0,3 кал/(см сек °C). Удельная теплоемкость кальция в интервале от 0 до 100° C равна 623,9 дж/(кг К) или 0,149 кал/(г °C). Удельное электросопротивление кальция при температуре 20° C составляет 4,6 10-8 ом м или 4,6 10-6 ом см; температурный коэффициент электросопротивления элемента номер двадцать 4,57 10-3 (при 20 °C). Модуль упругости кальция 26 Гн/м2 или 2600 кгс/мм2; предел прочности при растяжении 60 Мн/м2 (6 кгс/мм2); предел упругости для кальция равен 4 Мн/м2 или 0,4 кгс/мм2, предел текучести 38 Мн/м2 (3,8 кгс/мм2); относительное удлинение двадцатого элемента 50 %; твердость кальция по Бринеллю 200-300 Мн/м2 или 20-30 кгс/мм2. При постепенном повышении давления кальций начинает проявлять свойства полупроводника, но не становится им в полном смысле этого слова (при этом металлом он уже тоже не является). При дальнейшем повышении давления кальций возвращается в металлическое состояние и начинает проявлять сверхпроводящие свойства (температура сверхпроводимости в шесть раз выше, чем у ртути, и намного превосходит по проводимости все остальные элементы). Уникальное поведение кальция похоже во многом на стронций (то есть параллели в периодической системе сохраняются).

Механические свойства элементарного кальция не отличаются от свойств других представителей семейства металлов, являющихся великолепными конструкционными материалами: металлический кальций высокой чистоты пластичен, хорошо прессуется и прокатывается, вытягивается в проволоку, куётся и поддается обработке резанием - его можно обтачивать на токарном станке. Однако, несмотря на все эти великолепные качества конструкционного материала, кальций таковым не является - причиной всему его высокая химическая активность. Правда не стоит забывать о том, что кальций - незаменимый конструкционный материал костной ткани, а его минералы - строительный материал уже на протяжении многих тысячелетий.

Химические свойства

Конфигурация внешней электронной оболочки атома кальция 4s2, что обуславливает валентность 2 двадцатого элемента в соединениях. Два электрона внешнего слоя сравнительно легко отщепляются от атомов, которые превращаются при этом в положительные двухзарядные ионы. По этой причине в отношении химической активности кальций лишь немного уступает щелочным металлам (калий, натрий, литий). Подобно последним, кальций уже при обычной комнатной температуре легко взаимодействует с кислородом, углекислым газом и влажным воздухом, покрываясь при этом тускло-серой пленкой из смеси оксида СаО и гидроксида Са(ОН)2. Поэтому хранят кальций в герметично закрытом сосуде под слоем минерального масла, жидкого парафина либо же керосина. При нагревании в кислороде и на воздухе кальций воспламеняется, сгорая ярко-красным пламенем, при этом образуется основной оксид СаО, который представляет собой белое, весьма огнестойкое вещество, температура плавления которого примерно 2 600 °C. Оксид кальция также известен в технике как негашеная или жженая известь. Получены также пероксиды кальция - CaO2 и CaO4. С водой кальций реагирует с выделением водорода (в ряду стандартных потенциалов кальций расположен слева от водорода и способен вытеснять его из воды) и образованием гидроксида кальция Са(ОН)2, причем в холодной воде скорость реакции постепенно уменьшается (вследствие образования на поверхности металла слоя малорастворимого гидроксида кальция):

Ca + 2Н2О → Ca(ОН)2 + Н2 + Q

Более энергично кальций взаимодействует с горячей водой, бурно вытесняя водород и образуя Са(ОН)2. Гидроксид кальция Са(ОН)2 - сильное основание, мало растворимое в воде. Насыщенный раствор гидроксида кальция называется известковой водой и имеет щелочную реакцию. На воздухе известковая вода быстро становится мутной вследствие поглощения ею диоксида углерода и образования нерастворимого карбоната кальция. Несмотря на столь бурные процессы, происходящие при взаимодействии двадцатого элемента с водой, всё же, в отличие от щелочных металлов, реакция взаимодействия кальция с водой протекает менее энергично - без взрывов и воспламенений. Вообще химическая активность кальция ниже, чем у других щелочноземельных металлов.

Кальций активно соединяется с галогенами, образуя при этом соединения типа СаХ2 - с фтором он реагирует на холоду, а с хлором и бромом при температуре выше 400 °C, давая соответственно CaF2, CaCl2 и CaBr2. Эти галогениды в расплавленном состоянии образуют с кальцием моногалогениды типа СаХ - CaF, CaCl, в которых кальций формально одновалентен. Данные соединения стабильны только выше температур плавления дигалогенидов (они диспропорционируют при охлаждении с образованием Са и СаХ2). Кроме того, кальций активно взаимодействует, особенно при нагревании, с различными неметаллами: с серой при нагревании получается сульфид кальция CaS, последний присоединяет серу, образуя полисульфиды (CaS2, CaS4 и другие); взаимодействуя с сухим водородом при температуре 300-400 °C, кальций образует гидрид CaH2 - ионное соединение, в котором водород является анионом. Гидрид кальция CaH2 - белое солеобразное вещество, бурно реагирующее с водой с выделением водорода:

CaH2 + 2H2O → Ca(OH)2 + 2H2

При нагревании (порядка 500° C) в атмосфере азота кальций загорается и образует нитрид Ca3N2, известный в двух кристаллических формах - высокотемпературной α и низкотемпературной β. Также был получен нитрид Ca3N4 при нагревании в вакууме амида кальция Ca(NH2)2. При нагревании без доступа воздуха с графитом (углеродом), кремнием или фосфором кальций дает соответственно карбид кальция CaC2, силициды Ca2Si, Ca3Si4, CaSi, CaSi2 и фосфиды Ca3P2, СаР и СаР3. Большинство из соединений кальция с неметаллами легко разлагается водой:

СаН2 + 2Н2О → Са(ОН)2 + 2Н2

Ca3N2 + 6Н2О → 3Са(ОН)2 + 2NH3

С бором кальций образует борид кальция СаВ6, с халькогенами - халькогениды CaS, CaSe, СаТе. Известны также полихалькогениды CaS4, CaS5, Са2Те3. Кальций образует интерметаллические соединения с различными металлами - алюминием, золотом, серебром, медью, свинцом и прочими. Будучи энергичным восстановителем кальций вытесняет при нагревании почти все металлы из их окислов, сульфидов и галогенидов. Кальций хорошо растворяется в жидком аммиаке NH3 с образованием синего раствора, при испарении которого выделяется аммиакат [Са(NН3)6] - твердое соединение золотистого цвета с металлической проводимостью. Соли кальция обычно получают взаимодействием кислотных оксидов с оксидом кальция, действием кислот на Са(ОН)2 или СаСО3, обменными реакциями в водных растворах электролитов. Многие соли кальция хорошо растворимы в воде (хлорид CaCl2, бромид CaBr2, иодид CaI2 и нитрат Ca(NO3)2), они почти всегда образуют кристаллогидраты. Нерастворимы в воде фторид CaF2, карбонат CaCO3, сульфат CaSO4, ортофосфат Ca3(PO4)2, оксалат СаС2О4 и некоторые другие.

Соединения кальция известны с древних времен, однако до 17 в. об их природе ничего не знали. Египетские строительные растворы, которые использовались в пирамидах Гизы, были основаны на частично обезвоженном гипсе CaSO 4 ·2H 2 O. Он же является основой всей штукатурки в гробнице Тутанхамона. Римляне использовали строительный раствор из песка и извести (полученной при нагревании известняка CaCO 3): во влажном климате Италии он был более устойчив.

Название элемента – от латинского calx, calcis – известь («мягкий камень»). Оно было предложено Г.Дэви в 1808, выделившим металлический кальций электролитическим методом. Дэви смешивал влажную кальциевую «землю» (оксид кальция CaO) с оксидом ртути HgO на платиновой пластине, которая являлась анодом. Катодом служила платиновая проволока, погруженная в жидкую ртуть. В результате электролиза получалась амальгама металла, который можно было получить в чистом виде, испарив ртуть.

Кальций является пятым из наиболее распространенных в земной коре элементом и третьим по распространенности металлом (после алюминия и железа). На долю кальция приходится около 1,5% от общего числа атомов земной коры. Во многих частях поверхности Земли имеются значительные осадочные залежи карбоната кальция, которые образовались из остатков древних морских организмов. В них это соединение находится, в основном, в виде минералов двух типов. Чаще встречается ромбоэдрический кальцит, в теплых морях образуется орторомбический арагонит. Представителями минералов первого типа является сам кальцит, а также доломит, мрамор, мел и исландский шпат. Громадными пластами карбоната кальция в виде арагонита образованы Багамы, о-ва Флорида-Кис и бассейн Красного моря. Другие важные минералы – гипс CaSO 4 ·2H 2 O, ангидрит CaSO 4 , флюорит CaF 2 и апатит Ca 5 (PO 4) 3 (Cl,OH,F). Значительное количество кальция находится в природных водах в виде гидрокарбоната (см . ХИМИЯ ГИДРОСФЕРЫ). Кальций содержится и в организмах многих животных. Гидроксоапатит Ca 5 (PO 4) 3 (OH) является основой костной ткани позвоночных. Из карбоната кальция, в основном, состоят кораллы, раковины моллюсков, жемчуг, яичная скорлупа.

Металлический кальций получают электролизом расплавленного хлорида кальция, который является побочным продуктом в процессе Сольве или образуется в реакции между соляной кислотой и карбонатом кальция.

Сравнительно мягкий блестящий металл имеет бледно-желтую окраску. Он химически менее активен, чем другие щелочноземельные металлы, так как на воздухе покрывается защитной оксидно-нитридной пленкой. Его даже можно обрабатывать на токарном станке.

Кальций активно реагирует с неметаллами. При нагревании в кислороде и на воздухе воспламеняется. С водой кальций реагирует с выделением водорода и образованием гидроксида кальция. Он растворяется в жидком аммиаке с образованием темно-синих растворов, из которых при выпаривании можно получить блестящий аммиакат медного цвета Са(NH 3) 6 .

Металлический кальций используется, главным образом, как легирующая добавка. Так, введение кальция повышает прочность алюминиевых подшипников. С помощью кальция регулируют содержание углерода в чугуне и удаляют висмут из свинца. Он используется для очистки стали от кислорода, серы и фосфора. Его применяют и для поглощения кислорода и азота, в частности, для удаления примесей азота из технического аргона. Он служит восстановителем при производстве других металлов, таких как хром, цирконий, торий и уран. Например, металлический цирконий можно получить из его диоксида: ZrO 2 + 2Ca = Zr + 2CaO. Кальций также непосредственно реагирует с водородом с образованием гидрида кальция СаН 2 , который является удобным источником водорода.

Наиболее важным галогенидом кальция является фторид CaF 2 , так как в виде минерала (флюорит) он является единственным промышленно важным источником фтора. Белый тугоплавкий фторид кальция мало растворим в воде, что используется в количественном анализе.

Хлорид кальция CaCl 2 также имеет большое значение. Он является компонентом рассолов для холодильных установок и для заполнения шин тракторов и другого транспорта. С помощью хлорида кальция удаляют снег и лед с дорог и тротуаров. Эвтектическая смесь CaCl 2 –H 2 O, содержащая 30 масс. % CaCl 2, плавится при –55° С. Эта температура существенно ниже, чем в случае смеси хлорида натрия с водой, для которой минимальная температура плавления составляет –18° С. Хлорид кальция применяется и для защиты угля и руды от замерзания при транспортировке и хранении. Его используют в бетонных смесях для ускорения начала схватывания, повышения начальной и конечной прочности бетона. Хлорид кальция является отходом многих химико-технологических процессов, в частности, крупнотоннажного производства соды. Однако потребление хлорида кальция значительно уступает его производству, поэтому около содовых заводов образовались целые озера, наполненные рассолом CaCl 2 . Такие пруды-накопители можно видеть, например, в Донбассе.

Наиболее широкое применение из соединений кальция имеют карбонат, оксид и гидроксид. Самая распространенная форма карбоната кальция – известняк. Смешанный карбонат кальция и магния носит название доломит. Известняк и доломит используются в качестве строительных материалов, дорожных покрытий, реагентов, понижающих кислотность почвы. Их добывают во всем мире в огромных количествах. Карбонат кальция CaCO 3 является также важнейшим промышленным реагентом, который необходим для получения оксида кальция (негашеной извести) CaO и гидроксида кальция (гашеной извести) Ca(OH) 2 .

Оксид и гидроксид кальция являются ключевыми веществами во многих областях химической, металлургической и машиностроительной промышленности. Известь СаО производится в огромных количествах во многих странах и входит в десятку химических веществ с максимальным объемом производства.

Большие количества извести расходуются при производстве стали, где она используется для удаления фосфора, серы, кремния и марганца. В кислородно-конверторном процессе на тонну стали требуется 75 кг извести. Она заметно продлевает жизнь огнеупорной облицовки. Известь используется также в качестве смазочного материала при вытягивании стальной проволоки и нейтрализации отходов травильных жидкостей, содержащих серную кислоту. Еще одно применение в металлургии – производство магния.

Известь – наиболее распространенный химический реагент для обработки источников воды для питья и промышленности. Ее используют вместе с квасцами или солями железа для коагуляции суспензий и удаления помутнения, а также для смягчения воды за счет удаления временной (гидрокарбонатной) жесткости (см . ОЧИСТКА ВОДЫ)

Еще одна область применения извести – нейтрализация кислотных растворов и промышленных отходов. С ее помощью устанавливают оптимальное значение рН для биохимического окисления сточных вод. Известь используют и в газопромывателях для удаления диоксида серы и сероводорода из газовых отходов электростанций, работающих на ископаемом топливе, и печей для плавки металлов.

В химической промышленности известь используется при производстве карбида кальция (для последующего получения ацетилена), цианамида кальция и многих других веществ. Важным потребителем является также стекольная промышленность. Наиболее распространенные стекла содержат в своем составе около 12% оксида кальция. Инсектицид арсенат кальция, который получают нейтрализацией мышьяковой кислоты известью, широко используется для борьбы с хлопковым долгоносиком, яблонной плодожоркой, табачным червем, колорадским жуком. Важными фунгицидами являются известково-сульфатные аэрозоли и бордосские смеси, которые получают из сульфата меди и гидроксида кальция.

Большие количества гидроксида кальция требуются для целлюлозно-бумажной промышленности. На бумажных предприятиях отработанный раствор карбоната натрия обрабатывают известью для регенерации каустической соды (гидроксида натрия NaOH), используемой в технологическом процессе. Около 95% образовавшейся суспензии карбоната кальция высушивается и вновь обжигается во вращающихся печах для регенерации оксида кальция. Отбеливающие жидкости для бумажной пульпы, содержащие гипохлорит кальция, получают реакцией извести с хлором.

Производство высококачественной бумаги требует использования специально осажденного карбоната кальция. Для этого сначала обжигают известняк и собирают по отдельности диоксид углерода и оксид кальция. Последний затем обрабатывают водой и вновь переводят в карбонат. Тип образующихся кристаллов, а также их размеры и форма зависят от температуры, рН, скорости смешивания, концентраций и присутствия добавок. Мелкие кристаллы (менее 45 мкм) часто покрывают жирными кислотами, смолами или смачивающими веществами. Карбонат кальция придает бумаге яркость, непрозрачность, восприимчивость к чернилам и гладкость. В более высоких концентрациях он нейтрализует сильный глянец, вызываемый добавками каолина, и дает тусклый матовый оттенок. Такая бумага может содержать 5–50% (по массе) осажденного карбоната кальция. СаСО 3 также используется как наполнитель в резинах, латексах, красках и эмалях, а также в пластиках (около 10% по массе) для улучшения их термостойкости, жесткости, твердости и обрабатываемости.

В быту и медицине осажденный карбонат кальция применяется как средство, нейтрализующее кислоту, мягкий абразив в зубных пастах, источник дополнительного кальция в диетах, составная часть жевательной резинки и наполнитель в косметике.

Известь применяется и в молочной промышленности. Известковую воду (насыщенный раствор гидроксида кальция) часто добавляют к сливкам при отделении их от цельного молока, чтобы понизить их кислотность перед пастеризацией и превращением в масло. Снятое молоко затем подкисляют, чтобы отделить казеин, который смешивают с известью для получения казеинового клея. После ферментации оставшегося снятого молока (сыворотки) к нему добавляют известь, чтобы выделить лактат кальция, который используют в медицине или как сырье для последующего получения молочной кислоты. Производство сахара также связано с использованием извести. Для осаждения сахарата кальция, который затем очищают от фосфатных и органических загрязнений, проводят реакцию сырого сахарного сиропа с известью. Последующее действие диоксида углерода приводит к образованию нерастворимого карбоната кальция и очищенной растворимой сахарозы. Цикл повторяют несколько раз. Тростниковый сахар обычно требует около 3–5 кг извести на тонну, а свекловичный сахар – в сто раз больше, то есть около 1/2 тонны извести на тонну сахара.

Можно отметить также частную область применения карбоната кальция в виде перламутра. Это материал, образованный тонкими слоями карбоната кальция в форме арагонита, соединенными белковым клеем. После полировки он переливается всеми цветами радуги и становится декоративным, очень прочен, хотя на 95% состоит из карбоната кальция.

Сульфат кальция обычно существует в виде дигидрата (гипс), хотя добывают и безводный сульфат кальция (ангидрит). Известен также алебастр – компактная, массивная, мелкозернистая форма CaSO 4 ·2H 2 O, напоминающая мрамор. Если гипс прокалить при 150–165 °С, он теряет примерно 2/3 кристаллизационной воды и образует полугидрат CaSO 4 ·0,5H 2 O, известный также как строительный алебастр, или «парижская штукатурка» (так как его первоначально получали из гипса, добытого на Монмартре). Нагревание при более высокой температуре приводит к образованию различных безводных форм.

Хотя гипс добывают не в таких количествах, как известняк, он остается промышленно важным материалом. Почти весь прокаленный гипс (95%) используется для производства полуфабрикатов – в основном, стеновых панелей, а остальное количество – в промышленных и строительных штукатурках. Поглощая воду, полугидрат незначительно расширяется (на 0,2–0,3%), и это главное при его использовании для лепнины и штукатурки. Применяя добавки, можно менять степень его расширения в пределах 0,03–1,2%.

Для кальция не очень характерно образование комплексных соединений. Кислородсодержащие комплексы, например, с ЭДТА или полифосфатами, имеют большое значение в аналитической химии и для удаления ионов кальция из жесткой воды.

Кальций относится к числу макроэлементов. Его содержание в организме взрослого человека (в расчете на массу 65 кг) составляет 1,3 кг. Он необходим для формирования костей и зубов, поддержания сердечного ритма и свертывания крови. Основным источником поступления кальция в организм служат молоко и молочные продукты. Суточная потребность составляет 0,8 г в сутки. Всасыванию катионов кальция способствуют молочная и лимонная кислоты, в то время как фосфат-ион, оксалат-ион и фитиновая кислота затрудняют всасывание кальция из-за образования комплексов и малорастворимых солей. В организме есть сложная система хранения и высвобождения кальция.

Использование кальция в качестве строительного материала костей и зубов связано с тем, что ионы кальция не используются в клетке. Концентрацию кальция контролируют особые гормоны, их совместное действие сохраняет и поддерживает структуру костей.

Предполагается, что ионы кальция, связываясь с мембраной нерва, влияют на ее проницаемость для других катионов. Очевидно, он замещает ионы магния и тем самым активирует некоторые ферменты. Поступление ионов кальция может быть сопряжено с внесением фосфата, который поэтому называют переносчиком кальция.

Установлено, что регулятором ионов кальция в различных типах мышц является саркоплазматический ретикулум (СР). Ионы кальция накапливаются в кальциесвязывающих белках, например в кальсеквестрине. Последний связывает примерно 43 иона Са 2+ на моль белка. Мышечное сокращение связано с освобождением ионов кальция из СР и его связыванием на активных центрах мышечных волокон. Концентрация ионов кальция в саркоплазме за несколько миллисекунд повышается в 100 раз. Вынужденное истечение ионов Са 2+ из СР происходит очень быстро. Непосредственно после освобождения ионов кальция СР начинает накачивать их обратно. Сокращение мышц возникает в результате появления нервного импульса в двигательном нерве, оканчивающемся в мышечном волокне, что вызывает высвобождение ионов кальция из его запасов.

Механизм свертывания крови представляет собой каскадный процесс, многие этапы которого зависят от присутствия ионов кальция, которые активируют соответствующие ферменты.

Накопление кальция является характерной особенностью роста костей зубов, раковин и других подобных структур. С другой стороны, повышение содержания кальция в нетипичных участках приводит к образованию камней, остеоартриту, катарактам и артериальным нарушениям.

Елена Савинкина

История кальция

Кальций был открыт в 1808 году Хэмфри Дэви, который путём электролиза гашеной извести и оксида ртути получил амальгаму кальция, в результате процесса выгонки ртути из которой и остался металл, получивший название кальций. На латыни известь звучит как calx , именно это название и было выбрано английским химиком для открытого вещества.

Кальций является элементом главной подгруппы II группы IV периода периодической системы химических элементов Д.И. Менделеева, имеет атомный номер 20 и атомную массу 40,08. Принятое обозначение - Ca (от латинского - Calcium).

Физические и химические свойства

Кальций является химически активным мягким щелочным металлом серебристо-белого цвета. Из-за взаимодействия с кислородом и углекислым газом поверхность металла тускнеет, поэтому кальций нуждается в особом режиме хранения - в обязательном порядке плотно закрытая ёмкость, в которой металл заливают слоем жидкого парафина или керосина.

Кальций - наиболее известный из необходимых человеку микроэлементов, суточная потребность в нём составляет от 700 до 1500 мг для здорового взрослого человека, но она увеличивается во время беременности и лактации, это нужно учитывать и получать кальций в виде препаратов.

Нахождение в природе

Кальций имеет очень высокую химическую активность, поэтому в свободном (чистом) виде не встречается в природе. Тем не менее, является пятым по распространённости в земной коре, в виде соединений имеется в осадочных (известняк, мел) и горных породах (гранит), много кальция содержит полевой шпат анорит.

В живых организмах распространён достаточно широко, его наличие обнаружено в растениях, организмах животных и человека, где он присутствует, в основном, в составе зубов и костной ткани.

Усвояемость кальция

Препятствием для нормального усвоения кальция из пищевых продуктов является употребление в пищу углеводов в виде сладостей и щелочей, которые нейтрализуют соляную кислоту желудка, необходимую для растворения кальция. Процесс усвоения кальция достаточно сложен, поэтому иногда недостаточно получать его только с пищей, необходим дополнительный приём микроэлемента.

Взаимодействие с другими

Для улучшения всасывания кальция в кишечнике необходим , который имеет свойство облегчать процесс усвоения кальция. При приёме кальция (в виде добавок) в процессе еды происходит блокировка всасывания , но приём препаратов кальция отдельно от пищи никак не влияет на этот процесс.

Почти весь кальций организма (от 1 до 1,5 кг) находится в костях и зубах. Кальций участвует в процессах возбудимости нервной ткани, сократимости мышц, процессах свертываемости крови, входит в состав ядра и мембран клеток, клеточных и тканевых жидкостей, обладает антиаллергическим и противовоспалительным действием, предотвращает ацидоз, активирует ряд ферментов и гормонов. Кальций также участвует в регуляции проницаемости клеточных мембран, оказывает действие, противоположное .

Признаки нехватки кальция

Признаками нехватки кальция в организме являются такие, на первый взгляд, не связанные между собой симптомы:

  • нервозность, ухудшение настроения;
  • учащённое сердцебиение;
  • судороги, онемение конечностей;
  • замедление роста и детей;
  • повышенное артериальное давление;
  • расслоение и ломкость ногтей;
  • боль в суставах, понижение «болевого порога»;
  • обильные менструации.

Причины нехватки кальция

Причинами нехватки кальция могут служить несбалансированные диеты (особенно голодания), низкое содержание кальция в пище, курение и увлечение кофе и кофеинсодержащими напитками, дисбактериоз, болезни почек, щитовидной железы, беременность, периоды лактации и менопаузы.

Избыток кальция, который может возникнуть при чрезмерном употреблении молочных продуктов или неконтролируемом приёме препаратов, характеризуется сильной жаждой, тошнотой, рвотой, потерей аппетита, слабостью и усиленным мочеотделением.

Применение кальция в жизни

Кальций нашёл применение в металлотермическом получении урана, в виде природных соединений используется как сырьё для производства гипса и цемент, как средство дезинфекции (всем известная хлорка ).

Хотя кальций очень широко распространен на земном шаре, в свободном состоянии в природе он не встречается.

Прежде чем мы узнаем, каким образом можно получить чистый кальций, давайте познакомимся с природными соединениями кальция.

Кальций – металл. В периодической системе Менделеева кальций (Calcium), Ca имеет атомный номер 20 и расположен во II группе. Это химически активный элемент, он легко взаимодействует с кислородом. Имеет серебристо-белый цвет.

Природные соединения кальция


Соединения кальция мы встречаем практически повсюду.

Углекислый кальций, или карбонат кальция это самое распространенное соединение кальция. Его химическая формула -СаCO 3. Мрамор, мел, известняк, ракушечник – все эти вещества содержат карбонат кальция с небольшим количеством примесей. Совсем нет примесей в кальците, формула которого также СаCO 3 .

Сернокислый кальций также называют сульфатом кальция. Химическая формула сернокислого кальция СаSO 4. Известный нам минерал гипс – это кристаллогидрат СаSO 4 · 2Н 2 О.

Фосфорнокислый кальций, иликальциевая соль ортофосфорной кислоты. Это материал, из которого построены кости людей и животных. Называется этот минерал трикальцийфосфат Са 3 (РO 4) 2.

Хлористый кальций CaCl 2, или хлорид кальция,встречается в природе в виде кристаллогидрата СаСl 2 · 6Н 2 O. При нагревании это соединение теряет молекулы воды.

Фтористый кальций CaF 2, или фторид кальция,в природе можно найти в минерале флюорите. А чистый кристаллический дифторид кальция называется плавиковый шпат.

Но не всегда природные соединения кальция обладают теми свойствами, которые нужны людям. Поэтому человек научилсяискусственно превращать такие соединения в другие вещества. Некоторые из этих искусственных соединений знакомы нам даже в большей степени, чем природные. Пример – гашеная Са(OH) 2 и негашеная известь СаО, которые применяются человеком очень давно. Многие строительные материалы, такие как цемент, карбид кальция, хлорная известь также содержат искусственные соединения кальция.

Что такое электролиз


Наверное, почти каждый из нас слышал о явлении, называемом электролизом. Мы попробуем дать простейшее описание этого процесса.

Если пропустить электрический токчерез водные растворы солей, то в результате химических превращений образуются новые химические вещества. Процессы, происходящие в растворе при пропускании через него электрического тока, и называются электролизом. Все эти процессы изучает наука, которая называется электрохимия. Конечно же, процесс электролиза может проходить только в среде, которая проводит ток. Водные растворы кислот, оснований и солей и являются такой средой. Их называют электролитами.

В электролит погружаются электроды. Отрицательно заряженный электрод называется катодом. Положительно заряженный электрод называется анодом. При прохождении электрического тока через электролит и происходит электролиз. В результате электролиза на электродах оседают составные части растворённых веществ. На катоде – положительно заряженные, на аноде – отрицательные. Но на самих электродах могут происходить вторичные реакции, в результате которых образуется вторичное вещество.

Мы видим, что с помощью электролиза химические продукты образуются без применения химических реактивов.

Как получают кальций

В промышленности кальций можно получить с помощью электролиза расплавленного хлорида кальция CaCl 2 .

CaCl 2 = Ca + Cl 2

В этом процессе ванна, сделанная их графита, является анодом. Ванна помещается в электрическую печь. Железный стержень, перемещающийся по ширине ванны, а также имеющий возможность подниматься и опускаться, является катодом. Электролитом является расплавленный хлористый кальций, который заливают в ванну. В электролит опускается катод. Так начинается процесс электролиза. Под катодом образуется расплавленный кальций. Когда катод поднимается, в месте касания с катодом кальций застывает. Так постепенно в процессе поднятия катода и происходит наращивание кальция в виде штанги. Затем кальциевую штангу отбивают от катода.

Впервые чистый кальций с помощью электролиза был получен в 1808 г.

Кальций также получают из оксидов с помощью алюминотермического восстановления.

4CaO + 2Al -> CaAl 2 O 4 + Ca

При этом кальций получается в виде пара. Затем этот пар конденсируется.

Кальций имеет высокую химическую активность. Именно поэтому он широко используется в промышленности для восстановления тугоплавких металлов из оксидов, а также в производстве стали и чугуна.

Последние материалы сайта