Строение атомного ядра ядерные силы кратко. Состав и строение атомного ядра (кратко). Объяснение нового материала

30.10.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Особенностью радиоактивного загрязнения в отличие от загрязнения другими поллютантами является то, что вредное воздействие на человека и объекты окружающей среды оказывает не сам радионуклид (поллютант), а излучение, источником которого он является.

Однако бывают случаи, когда радионуклид - токсичный элемент. Например, после аварии на Чернобыльской АЭС в окружающую среду с частицами ядерного топлива были выброшены плутоний 239, 242 Рu. Кроме того, что плутоний - альфа-излучатель и при попадании внутрь организма представляет значительную опасность, плутоний сам по себе - токсичный элемент.

По этой причине используют две группы количественных показателей: 1) для оценки содержания радионуклидов и 2) для оценки воздействия излучения на объект.
Активность - количественная мера содержания радионуклидов в анализируемом объекте. Активность определяется числом радиоактивных распадов атомов в единицу времени. Единицей измерения активности в системе СИ является Беккерель (Бк) равный одному распаду в секунду (1Бк = 1 расп/с). Иногда используется внесистемная единица измерения активности - Кюри (Ки); 1Ки = 3,7 ×1010 Бк.

Доза излучения - количественная мера воздействия излучения на объект.
В связи с тем, что воздействие излучения на объект можно оценивать на разных уровнях: физическом, химическом, биологическом; на уровне отдельных молекул, клеток, тканей или организмов и т. д., используют несколько видов доз: поглощенную, эффективную эквивалентную, экспозиционную.

Для оценки изменения дозы излучения во времени используют показатель «мощность дозы». Мощность дозы - это отношение дозы ко времени. Например, мощность дозы внешнего облучения от естественных источников радиации составляет на территории России 4-20 мкР/ч.

Основной норматив для человека - основной дозовый предел (1 мЗв/год) - вводится в единицах, эффективной эквивалентной дозы. Существуют нормативы и в единицах активности, уровни загрязнения земель, ВДУ, ПГП, СанПиН и др.

Строение атомного ядра.

Атом - это мельчайшая частица химического элемента, сохраняющая все его свойства. По своей структуре атом представляет сложную систему, состоящую из находящегося в центре атома положительно заряженного ядра очень малого размера (10 -13 см) и отрицательно заряженных электронов, вращающихся вокруг ядра на различных орбитах. Отрицательный заряд электронов равен положительному заряду ядра, при этом в целом оказывается электрически нейтральным.

Атомные ядра состоят из нуклонов - ядерных протонов (Z - число протонов) и ядерных нейтронов (N - число нейтронов). « Ядерные» протоны и нейтроны отличаются от частиц в свободном состоянии. Например, свободный нейтрон, в отличие от связанного в ядре, нестабилен и превращается в протон и электрон.


Число нуклонов Ам (массовое число) представляет собой сумму чисел протонов и нейтронов: Ам = Z+ N .

Протон - элементарная частица любого атома, он имеет положительный заряд, равный заряду электрона. Число электронов в оболочке атома определяется числом протонов в ядре.

Нейтрон - другой вид ядерных частиц всех элементов. Его нет лишь в ядре легкого водорода, состоящего из одного протона. Он не имеет заряда, электрически нейтрален. В атомном ядре нейтроны являются стабильными, а в свободном состоянии они неустойчивы. Число нейтронов в ядрах атомов одного и того же элемента может колебаться, поэтому число нейтронов в ядре не характеризует элемент.

Нуклоны (протоны + нейтроны) удерживаются внутри атомного ядра ядерными силами притяжения. Ядерные силы в 100 раз сильнее электромагнитных сил и поэтому удерживает внутри ядра одноименно заряженные протоны. Ядерные силы проявляются только на очень малых расстояниях (10 -13 см), они составляют потенциальную энергию связи ядра, которая при некоторых превращениях частично освобождается, переходит в кинетическую энергию.

Для атомов отличающихся составом ядра, употребляется название «нуклиды», а для радиоактивных атомов - «радионуклиды».

Нуклидами называют атомы или ядра с данным числом нуклонов и данным зарядом ядра (обозначение нуклида А Х).

Нуклиды, имеющие одинаковое число нуклонов (Ам = соnst), называются изобарами. Например, нуклиды 96 Sr, 96 Y, 96 Zr принадлежат к ряду изобаров с числом нуклонов Ам = 96.

Нуклиды, имеющие одинаковое число протонов (Z = соnst), называются изотопами. Они различаются только числом нейтронов, поэтому принадлежат одному и тому же элементу: 234 U, 235 U, 236 U, 238 U.

Изотопы - нуклиды с одинаковым числом нейтронов (N = Ам -Z = const). Нуклиды: 36 S, 37 Cl, 38 Ar, 39 K, 40 Ca принадлежат к ряду изотопов с 20 нейтронами.

Изотопы принято обозначать в виде Z Х М, где X - символ химического элемента; М - массовое число, равное сумме числа протонов и нейтронов в ядре; Z - атомный номер или заряд ядра, равный числу протонов в ядре. Поскольку каждый химический элемент имеет свой постоянный атомный номер, то его обычно опускают и ограничиваются написанием только массового числа, например: 3 Н, 14 С, 137 Сs, 90 Sr и т. д.

Атомы ядра, которые имеют одинаковые массовые числа, но разные заряды и, следственно, различные свойства называют «изобарами», так например один из изотопов фосфора имеет массовое число 32 - 15 Р 32 , такое же массовое число имеет и один из изотопов серы - 16 S 32 .

Нуклиды могут быть стабильными (если их ядра устойчивы и не распадаются) и нестабильными (если их ядра неустойчивы и подвергаются изменениям, приводящим в конечном итоге к увеличению стабильности ядра). Неустойчивые атомные ядра, способные самопроизвольно распадаться, называют радионуклидами. Явление самопроизвольного распада ядра атома, сопровождающееся излучением частиц и (или) электромагнитного излучения, называется радиоактивностью.

В результате радиоактивного распада может образоваться как стабильный, так и радиоактивный изотоп, в свою очередь, самопроизвольно распадающийся. Такие цепочки радиоактивных элементов, связанные серией ядерных превращений, называются радиоактивными семействами.

В настоящее время IUРАС (Международный союз теоретической и прикладной химии) официально дал название 109 химическим элементам. Из них только 81 имеет стабильные изотопы, наиболее тяжелым из которых является висмут (Z = 83). Для остальных 28 элементов известны только радиоактивные изотопы, причем уран (U ~ 92) является самым тяжелым элементом, встречающимся в природе. Самый большой из природных нуклидов имеет 238 нуклонов. В общей сложности в настоящее время доказано существование порядка 1700 нуклидов этих 109 элементов, причем число изотопов, известных для отдельных элементов, колеблется от 3 (для водорода) до 29 (для платины).

Каждый атом состоит из ядра и атомной оболочки , в состав которых входят различные элементарные частицы – нуклоны и электроны (рис. 5.1). Ядро – центральная часть атома, содержащая практически всю массу атома и обладающая положительным зарядом. Ядро состоит из протонов и нейтронов , которые являются двухзарядными состояниями одной элементарной частицы – нуклона. Заряд протона +1; нейтрона 0.

Заряд ядра атома равен Z . ē , где Z – порядковый номер элементов (атомный номер) в периодической системе Менделеева, равный числу протонов в ядре; ē – заряд электрона.

Число нуклонов в ядре называется массовым числом элемента (A ):

A = Z + N ,

где Z – число протонов; N – число нейтронов в атомном ядре.

Для протонов и нейтронов массовое число принимают равное 1, для электронов равное 0.


Рис. 5.1. Строение атома

Общеприняты следующие обозначения для какого-нибудь химического элемента X : , здесь A – массовое число, Z – атомный номер элемента.

Атомные ядра одного и того же элемента могут содержать разное число нейтронов N . Такие разновидности атомных ядер называются изотопами данного элемента. Таким образом, изотопы имеют: одинаковый атомный номер, но различные массовые числа A . Большинство химических элементов представляют собой смесь различных изотопов, например изотопы урана:

.

Атомные ядра различных химических элементов могут иметь одинаковое массовое число А разным числом протонов Z ). Такие разновидности атомных ядер называются изобарами . Например:

– – – ; –

Атомная масса

Для характеристики массы атомов и молекул используют понятие атомной массы M – это относительная величина, которая определяется по отношению
к массе атома углерода и принимается равной m а = 12,000 000. Для
абсолютного определения атомной массы была введена атомная единица
массы
(а.е.м.), которая определяется по отношению к массе атома углерода в следующем виде:

.

Тогда атомную массу элемента можно определить как:

где М – атомная масса изотопов рассматриваемого элемента. Это выражение облегчает определение массы ядер элементов, элементарных частиц, частиц – продуктов радиоактивных превращений и т. д.

Дефект массы ядра и энергия связи ядра

Энергия связи нуклона физическая величина, численно равная работе, которую нужно совершить для удаления нуклона из ядра без сообщения ему кинетической энергии.

Нуклоны связаны в ядре благодаря ядерным силам, которые значительно превосходят силы электростатического отталкивания, действующие между протонами. Для расщепления ядра необходимо преодолеть эти силы, т. е. затратить энергию. Соединение нуклонов с образованием ядра, напротив, сопровождается высвобождением энергии, которую называют энергией связи ядра ΔW св:

,

где – так называемый дефект массы ядра; с ≈ 3 . 10 8 м/с – скорость света в вакууме.

Энергия связи ядра – физическая величина, равная работе, которую нужно совершить для расщепления ядра на отдельные нуклоны без сообщения им кинетической энергии.

При образовании ядра происходит уменьшение его массы, т. е. масса ядра меньше, чем сумма масс составляющих его нуклонов, эта разница называется дефектом масс Δm :

где m p – масса протона; m n – масса нейтрона; m ядр – масса ядра.

При переходе от массы ядра m ядр к атомным массам элемента m а, это выражение можно записать в следующем виде:

где m H – масса водорода; m n –масса нейтрона и m а – атомная масса элемента, определенные через атомную единицу массы (а.е.м.).

Критерием устойчивости ядра является строгое соответствие в нем числа протонов и нейтронов. Для устойчивости ядер справедливо следующее соотношение:

,

где Z – число протонов; A – массовое число элемента.

Из известных к настоящему времени примерно 1700 видов ядер, только около 270 являются стабильными. Причем в природе преобладают четно­-четные ядра (т. е. с четным числом протонов и нейтронов), которые являются особенно стабильными.

Радиоактивность

Радиоактивность – превращение неустойчивых изотопов одного химического элемента в изотопы другого химического элемента с выделением некоторых элементарных частиц. Различают: естественную и искусственную радиоактивность.

К основным видам относят:

– α-излучение (распад);

– β-излучение (распад);

– спонтанное деление ядра.

Ядро распадающегося элемента называется материнским , а ядро образующегося элемента – дочерним . Самопроизвольный распад атомных ядер подчиняется следующему закону радиоактивного распада:

где N 0 – число ядер в химическом элементе в начальный момент времени; N – число ядер в момент времени t ; – так называемая «постоянная» распада, которая представляет собой долю ядер, распавшихся в единицу времени.

Величина обратная «постоянной» распада , характеризует среднюю продолжительность жизни изотопа. Характеристикой устойчивости ядер относительно к распаду является период полураспада , т. е. время, в течение которого первоначальное количество ядер уменьшается вдвое:

Связь между и :

, .

При радиоактивном распаде выполняется закон сохранения заряда:

,

где – заряд распавшихся или получившихся (образовавшихся) «осколков»; и правило сохранения массовых чисел :

где – массовое число образовавшихся (распавшихся) «осколков».

5.4.1. α и β-распад

α-распад представляет собой излучение ядер гелия . Характерен для «тяжелых» ядер с большими массовыми числами A > 200 и зарядом z > 82.

Правило смещения при α-распаде имеет следующий вид (происходит образование нового элемента):

.

; .

Отметим, что α-распад (излучение) обладает наибольшей ионизирующей способностью, но наименьшей проницаемостью.

Различают следующие виды β-распада :

– электронный β-распад (β – -распад);

– позитронный β-распад (β + -распад);

– электронный захват (k-захват).

β – -распад происходит при избытке нейтронов с выделением электронов и антинейтрино :

.

β + -распад происходит при избытке протонов с выделением позитронов и нейтрино :

.

Для электронного захвата (k -захвата) характерно следующее превра­щение:

.

Правило смещения при β-распаде имеет следующий вид (происходит образование нового элемента):

для β – -распада: ;

для β + -распада: .

β-распад (излучение) обладает наименьшей ионизирующей способностью, но наибольшей проницаемостью.

α и β-излучения сопровождаются γ-излучением , которое представляет собой излучение фотонов и не является самостоятельным видом радиоактивного излучения.

γ-фотоны выделяются при уменьшении энергии возбужденных атомов и не вызывают изменение массового числа A и изменение заряда Z . γ-излучение обладает наибольшей проникающей способностью.

Активность радионуклидов

Активность радионуклидов – мера радиоактивности, характеризующая число распадов ядер в единицу времени. Для определенного количества радионуклидов в определенном энергетическом состоянии в заданный момент времени активность А задается в виде:

где – ожидаемое число спонтанных ядерных превращений (число распадов ядер), происходящих в источнике ионизирующего излучения за интервал времени .

Самопроизвольное ядерное превращение называют радиоактивным распадом .

Единицей измерения активности радионуклидов является обратная секунда (), имеющая специальное название беккерель (Бк) .

Беккерель равен активности радионуклида в источнике, в котором за время 1 сек. происходит одно спонтанное ядерное превращение.

Внесистемная единица активности – кюри (Ku) .

Кюри – активность радионуклида в источнике, в котором за время 1 сек. происходит 3,7 . 10 10 спонтанных ядерных превращений, т. е. 1 Ku = 3,7 . 10 10 Бк.

Например, примерно 1 г чистого радия дает активность 3,7 . 10 10 ядерных распадов в секунду.

Не все ядра радионуклида распадаются одновременно. В каждую единицу времени самопроизвольное ядерное превращение происходит с определенной долей ядер. Доля ядерных превращений для разных радионуклидов различна. Например, из общего числа ядер радия ежесекундно распадается 1,38 . часть, а из общего количества ядер радона – 2,1 . часть. Доля ядер, распадающихся в единицу времени, называется постоянной распада λ.

Из приведенных определений следует, что активность А связана с числом радиоактивных атомов N в источнике в данный момент времени соотношением:

С течением времени число радиоактивных атомов уменьшается по закону:

, (3) – 30 лет, радона поверхностной или линейной активностью.

Выбор единиц удельной активности определяется конкретной задачей. Например, активность в воздухе выражают в беккерелях на кубический метр (Бк/м 3) – объемная активность. Активность в воде, молоке и других жидкостях также выражается как объемная активность, так как количество воды и молока измеряется в литрах (Бк/л). Активность в хлебе, картофеле, мясе и других продуктах выражается как удельная активность (Бк/кг).

Очевидно, что биологический эффект воздействия радионуклидов на организм человека будет зависеть от их активности, т. е. от количества радионуклида. Поэтому объемная и удельная активность радионуклидов в воздухе, воде, продуктах питания, строительных и других материалах нормируются.

Поскольку в течение определенного времени человек может облучаться различными путями (от поступления радионуклидов в организм до внешнего облучения), то все факторы облучения связывают определенной величиной, которая называется дозой облучения.

ОПРЕДЕЛЕНИЕ

Атом состоит из положительно заряженного ядра, внутри которого находятся протоны и нейтроны, а по орбитам вокруг него движутся электроны. Ядро атома расположено в центре и в нем сосредоточена практически вся его масса.

По величине заряда ядра атома определяют химический элемент, к которому этот атом относится.

Существование атомного ядра было доказано в 1911 году Э. Резерфордом и описано в труде под названием «Рассеяние α и β-лучей и строение атома». После этого разными учеными выдвигались многочисленные теории строения атомного ядра (капельная (Н. Бор), оболочечная, кластерная, оптическая и т.д.).

Электронное строение ядра атома

Согласно современным представлениям атомное ядро состоит из положительно заряженных протонов и нейтральных нейтронов, которые вместе называют нуклонами. Они удерживаются в ядре за счет сильного взаимодействия.

Число протонов в ядре называют зарядовым числом (Z). Его можно определить при помощи Периодической таблицы Д. И. Менделеева - оно равно порядковому номеру химического элемента, к которому относится атом.

Число нейтронов в ядре называют изотопическим числом (N). Суммарное количество нуклонов в ядре называют массовым числом (M) и оно равно относительной атомной массе атома химического элемента, указанной в Периодической таблице Д. И. Менделеева.

Ядра с одинаковым числом нейтронов, но разным числом протонов называют изотонами. Если же в ядре одинаковое число протонов, но различное нейтронов - изотопами. В случае, когда равны массовые числа, но различный состав нуклонов - изобарами.

Ядро атома может находиться в стабильном (основном) состоянии и в возбужденном.

Рассмотрим строение ядра атома на примере химического элемента кислорода. Кислород имеет порядковый номер 8 в Периодической таблице Д. И. Менделеева и относительную атомную массу 16 а.е.м. Это означает, что ядро атома кислорода имеет заряд равный (+8). В ядре содержится 8 протонов и 8 нейтронов (Z=8, N=8, M=16), а по 2-м орбитам вокруг ядра движутся 8 электронов (рис. 1).

Рис. 1. Схематичное изображение строения атома кислорода.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Охарактеризуйте квантовыми числами все электроны, которые находятся на 3p-подуровне.
Решение На p-подуровне 3-го уровня находится шесть электронов:

Как уже отмечалось, атом состоит из трех видов элементарных частиц: протонов, нейтронов и электронов. Атомное ядро – центральная часть атома, состоящая из протонов и нейтронов. Протоны и нейтроны имеют общее название нуклон, в ядре они могут превращаться друг в друга. Ядро простейшего атома – атома водорода – состоит из одной элементарной частицы – протона.

Диаметр ядра атома равен примерно 10 -13 – 10 -12 см и составляет 0,0001 диаметра атома. Однако, практически вся масса атома (99,95 – 99,98 %) сосредоточена в ядре. Если бы удалось получить 1 см 3 чистого ядерного вещества, масса его составила бы 100 – 200 млн.т. Масса ядра атома в несколько тысяч раз превосходит массу всех входящих в состав атома электронов.

Протон – элементарная частица, ядро атома водорода. Масса протона равна 1,6721х10 -27 кг, она в 1836 раз больше массы электрона. Электрический заряд положителен и равен 1,66х10 -19 Кл. Кулон – единица электрического заряда, равная количеству электричества, проходящему через поперечное сечение проводника за время 1с при неизменной силе тока 1А (ампер).

Каждый атом любого элемента содержит в ядре определенное число протонов. Это число постоянное для данного элемента и определяет его физические и химические свойства. То есть, от количества протонов зависит, с каким химическим элементом мы имеем дело. Например, если в ядре один протон – это водород, если 26 протонов – это железо. Число протонов в атомном ядре определяет заряд ядра (зарядовое число Z) и порядковый номер элемента в периодической системе элементов Д.И. Менделеева (атомный номер элемента).

Н ейтрон – электрически нейтральная частица с массой 1,6749 х10 -27 кг, в 1839 раз больше массы электрона. Нейрон в свободном состоянии – нестабильная частица, он самостоятельно превращается в протон с испусканием электрона и антинейтрино. Период полураспада нейтронов (время, в течение которого распадается половина первоначального количества нейтронов) равен примерно 12 мин. Однако в связанном состоянии внутри стабильных атомных ядер он стабилен. Общее число нуклонов (протонов и нейтронов) в ядре называют массовым числом (атомной массой – А). Число нейтронов, входящих в состав ядра, равно разности между массовым и зарядовым числами: N = A – Z.

Электрон – элементарная частица, носитель наименьшей массы – 0,91095х10 -27 г и наименьшего электрического заряда – 1,6021х10 -19 Кл. Это отрицательно заряженная частица. Число электронов в атоме равно числу протонов в ядре, т.е. атом электрически нейтрален.

Позитрон – элементарная частица с положительным электрическим зарядом, античастица по отношению к электрону. Масса электрона и позитрона равны, а электрические заряды равны по абсолютной величине, но противоположны по знаку.

Различные типы ядер называют нуклидами. Нуклид – вид атомов с данными числами протонов и нейтронов. В природе существуют атомы одного и того же элемента с разной атомной массой (массовым числом): 17 35 Cl, 17 37 Cl и т.д. Ядра этих атомов содержат одинаковое число протонов, но различное число нейтронов. Разновидности атомов одного и того же элемента, имеющие одинаковый заряд ядер, но различное массовое число, называются изотопами . Обладая одинаковым количеством протонов, но различаясь числом нейтронов, изотопы имеют одинаковое строение электронных оболочек, т.е. очень близкие химические свойства и занимают одно и то же место в периодической системе химических элементов.

Изотопы обозначают символом соответствующего химического элемента с расположенным сверху слева индексом А – массовым числом, иногда слева внизу приводится также число протонов (Z). Например, радиоактивные изотопы фосфора обозначают 32 Р, 33 Р или 15 32 Р и 15 33 Р соответственно. При обозначении изотопа без указания символа элемента массовое число приводится после обозначения элемента, например, фосфор – 32, фосфор – 33.

Большинство химических элементов имеет по несколько изотопов. Кроме изотопа водорода 1 Н-протия, известен тяжелый водород 2 Н-дейтерий и сверхтяжелый водород 3 Н-тритий. У урана 11 изотопов, в природных соединениях их три (уран 238, уран 235, уран 233). У них по 92 протона и соответственно 146,143 и 141 нейтрон.

В настоящее время известно более 1900 изотопов 108 химических элементов. Из них к естественным относятся все стабильные (их примерно 280) и естественные изотопы, входящие в состав радиоактивных семейств (их 46). Остальные относятся к искусственным, они получены искусственным путем в результате различных ядерных реакций.

Термин «изотопы» следует применять только в тех случаях, когда речь идет об атомах одного и того же элемента, например, изотопы углерода 12 С и 14 С. Если подразумеваются атомы разных химических элементов, рекомендуется использовать термин «нуклиды», например, радионуклиды 90 Sr, 131 J, 137 Cs.

«Физика - 11 класс»

Строение атомного ядра. Ядерные силы

Сразу же после того, как в опытах Чедвика был открыт нейтрон, советский физик Д. Д. Иваненко и немецкий ученый В. Гейзенберг в 1932 г. предложили протонно-нейтронную модель ядра.
Она была подтверждена последующими исследованиями ядерных превращений и в настоящее время является общепризнанной.


Протонно-нейтронная модель ядра


Согласно протоннонейтронной модели ядра состоят из элементарных частиц двух видов - протонов и нейтронов.

Так как в целом атом электрически нейтрален, а заряд протона равен модулю заряда электрона, то число протонов в ядре равно числу электронов в атомной оболочке.
Следовательно, число протонов в ядре равно атомному номеру элемента Z в периодической системе элементов Д. И. Менделеева.

Сумму числа протонов Z и числа нейтронов N в ядре называют массовым числом и обозначают буквой А :


A = Z + N


Массы протона и нейтрона близки друг к другу и каждая из них примерно равна атомной единице массы.
Масса электронов в атоме много меньше массы его ядра.
Поэтому массовое число ядра равно округленной до целого числа относительной атомной массе элемента.
Массовые числа могут быть определены путем приближенного измерения массы ядер приборами, не обладающими высокой точностью.

Изотопы представляют собой ядра с одним и тем же значением Z , но с различными массовыми числами А , т. е. с различными числами нейтронов N .


Ядерные силы


Так как ядра весьма устойчивы, то протоны и нейтроны должны удерживаться внутри ядра какими-то силами, причем очень большими.
Это не гравитационные силы, которые слишком слабые.
Устойчивость ядра не может быть объяснена также электромагнитными силами, так как между одноименно заряженными протонами действует электрическое отталкивание.
А нейтроны не имеют электрического заряда.

Значит, между ядерными частицами - протонами и нейтронами, их называют нуклонами - действуют особые силы, называемые ядерными силами .

Каковы основные свойства ядерных сил? Ядерные силы примерно в 100 раз превышают электрические (кулоновские) силы.
Это самые мощные силы из всех существующих в природе.
Поэтому взаимодействия ядерных частиц часто называют сильными взаимодействиями .

Сильные взаимодействия проявляются не только во взаимодействиях нуклонов в ядре.
Это особый тип взаимодействий, присущий большинству элементарных частиц наряду с электромагнитными взаимодействиями.

Другая важная особенность ядерных сил - их коротко- действие.
Электромагнитные силы сравнительно медленно ослабевают с увеличением расстояния.
Ядерные силы заметно проявляются лишь на расстояниях, равных размерам ядра (10 -12 -10 -13 см), что показали уже опыты Резерфорда по рассеянию α-частиц атомными ядрами.
Законченная количественная теория ядерных сил пока еще не разработана.
Значительные успехи в ее разработке были достигнуты совсем недавно - в последние 10-15 лет.

Ядра атомов состоят из протонов и нейтронов. Эти частицы удерживаются в ядре ядерными силами.

Изотопы

Изучение явления радиоактивности привело к важному открытию: была выяснена природа атомных ядер.

В результате наблюдения огромного числа радиоактивных превращений постепенно обнаружилось, что существуют вещества, тождественные по своим химическим свойствам, но имеющие совершенно различные радиоактивные свойства (т. е. распадающиеся по-разному).
Их никак не удавалось разделить ни одним из известных химических способов.
На этом основании Содди в 1911 г высказал предположение о возможности существования элементов с одинаковыми химическими свойствами, но различающихся, в частности, своей радиоактивностью.
Эти элементы нужно помещать в одну и ту же клетку периодической системы Д. И. Менделеева.
Содди назвал их изотопами (т. е. занимающими одинаковые места).

Предположение Содди получило блестящее подтверждение и глубокое толкование год спустя, когда Дж. Дж. Томсон провел точные измерения массы ионов неона методом отклонения их в электрическом и магнитном полях.
Он обнаружил, что неон представляет собой смесь двух видов атомов.
Бо́льшая часть их имеет относительную массу, равную 20.
Но существует незначительная часть атомов с относительной атомной массой 22.
В результате относительная атомная масса смеси была принята равной 20,2.
Атомы, обладающие одними и теми же химическими свойствами, различались массой.

Оба вида атомов неона, естественно, занимают одно и то же место в таблице Д. И. Менделеева и, следовательно, являются изотопами.
Таким образом, изотопы могут различаться не только своими радиоактивными свойствами, но и массой.
Именно поэтому у изотопов заряды атомных ядер одинаковы, а значит, число электронов в оболочках атомов и, следовательно, химические свойства изотопов одинаковы.
Но массы ядер различны.
Причем ядра могут быть как радиоактивными, так и стабильными.
Различие свойств радиоактивных изотопов связано с тем, что их ядра имеют различную массу.

В настоящее время установлено существование изотопов у большинства химических элементов.
Некоторые элементы имеют только нестабильные (т. е. радиоактивные) изотопы.
Изотопы есть у самого тяжелого из существующих в природе элементов - урана (относительные атомные массы 238, 235 и др.) и у самого легкого - водорода (относительные атомные массы 1, 2, 3).

Особенно интересны изотопы водорода, так как они различаются по массе в 2 и 3 раза.
Изотоп с относительной атомной массой 2 называется дейтерием .
Он стабилен (т. е. не радиоактивен) и входит в качестве небольшой примеси (1: 4500) в обычный водород.
При соединении дейтерия с кислородом образуется так называемая тяжелая вода.
Ее физические свойства заметно отличаются от свойств обычной воды.
При нормальном атмосферном давлении она кипит при 101,2 °С и замерзает при 3,8 °С.

Изотоп водорода с атомной массой 3 называется тритием .
Он β-радиоактивен, и его период полураспада около 12 лет.

Существование изотопов доказывает, что заряд атомного ядра определяет не все свойства атома, а лишь его химические свойства и те физические свойства, которые зависят от периферии электронной оболочки, например размеры атома.
Масса же атома и его радиоактивные свойства не определяются порядковым номером в таблице Д. И. Менделеева.

Примечательно, что при точном измерении относительных атомных масс изотопов выяснилось, что они близки к целым числам.
А вот атомные массы химических элементов иногда сильно отличаются от целых чисел.
Так, относительная атомная масса хлора равна 35,5.
Это значит, что в естественном состоянии химически чистое вещество представляет собой смесь изотопов в различных пропорциях.
Целочисленность (приближенная) относительных атомных масс изотопов очень важна для выяснения строения атомного ядра.

Большинство химических элементов имеют изотопы.
Заряды атомных ядер изотопов одинаковы, но массы ядер различны.

Последние материалы сайта