Что понимается под естественным и искусственным источником света: преимущества и недостатки

11.10.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот
Пример источника света относящийся к первому классу. Лампа накаливания общего применения в прозрачной колбе
Пример источника света относящийся ко второму классу. Дуговая натриевая лампа в прозрачной колбе
Пример источника света относящийся к третьему классу. Лампа смешанного типа в колбе покрытой люминофором
Пример источника света относящийся к четвертому классу. Светодиодная лампа выполненная в форме лампы накаливания общего применения

Классификация источников света

Нет ни одной отрасли народного хозяйства, где бы ни использовалось искусственное освещение. Начало развития отрасли производства источников света было положено в 19 веке. Поводом для этого послужило изобретение дуговых ламп и ламп накаливания.

Тело, излучающее свет в результате преобразования энергии называется источником света. Почти все производимые в настоящее время типы источников света являются электрическими. Это значит, что для создания светового излучения в качестве первичной затрачиваемой энергии используют электрический ток. Источниками света считают приборы с излучением света не только в видимой части спектра (длинны волн 380 - 780 нм), но и ультрафиолетовой (10 - 380 нм) и инфракрасной (780 - 10 6 нм) областях спектра.

Различают следующие виды источников света: тепловые, люминесцентные и светодиодные.

Тепловые источники излучения являются самыми распространенными. Излучение в них появляется вследствие нагревания тела накала до темпер, при которых появляется не только тепловое излучение в инфракрасном спектре, но и наблюдается видимое излучение.

Люминесцентные источники излучения способны излучать свет не зависимо от того в каком состоянии находится их излучающее тело. Свечение в них возникает через преобразование различных видов энергии непосредственно в оптическое излучение.

На основании изложенных различий источники света делят на четыре класса.

Тепловые

Сюда относят всевозможные , включая галогенные, а также электрические инфракрасные нагреватели и угольные дуги.

Люминесцентные

К ним относят следующие виды электрических ламп: дуговые , различные лампы тлеющего разряда, низкого давления, лампы дугового, импульсного и высокочастотного разряда, в том числе и те, в которые добавлены пары металлов или на колбу которых нанесено люминофорное покрытие.

Смешанного излучения

Такие виды ламп освещения одновременно используются тепловое и люминесцентное излучение. Примером могут служить дуги высокой интенсивности.

Светодиодные

К светодиодным источникам света относят все типы ламп и световых приборов с использованием светоизлучающих диодов.

Кроме того, существуют другие признаки по которым производится классификация ламп (по области применения, конструктивно-технологическим признакам и тому подобные).

Основные параметры источников света

Световые, электрические и эксплуатационные свойства электрических источников света характеризуют рядом параметров. Сравнение параметров нескольких источников света, для их использования в той или иной области применения, позволяет остановиться на наиболее подходящем из них. Сопоставляя параметры отдельных экземпляров одного и того же источника света, обращая внимание на место и время изготовления, можно судить о качестве и технологическом уровне их производства.

Перечислим основные электрические характеристики ламп и в целом всех источников света:

Номинальное напряжение - напряжение, при котором лампа работает в наиболее экономичном режиме и на которое она рассчитывалась для ее нормальной эксплуатации. Для лампы накаливания номинальное напряжение равно напряжению питающей электрической сети. Обозначается такое напряжение U л.н и измеряется в вольтах. Газоразрядные лампы такого параметра не имеют, так как напряжение разрядного промежутка определяется характеристиками примененного для ее стабилизации пускорегулирующего аппарата (ПРА).

Номинальная мощность P л.н - расчетная величина характеризующая мощность потребляемую лампой накаливания при ее включении на номинальное напряжение. Для газоразрядных ламп, в цепь которых включают пускорегулирующие аппараты, номинальная мощность считается основным параметром. Основываясь на ее значении, путем экспериментов, определяются остальные электрические параметры ламп. Нужно учесть, что для определения мощности потребляемой из сети нужно сложить мощности лампы и пускорегулирующего аппарата.

Номинальный ток лампы I л.н - ток потребляемый лампой при номинальном напряжении и номинальной мощности.

Род тока - переменный или постоянный. Данный параметр нормируется только для газоразрядных ламп. Он влияет на другие параметры (кроме указанных ранее), которые изменяются с изменением рода тока, причем это относится к лампам, работающим только на постоянном или только на переменном токе.

Основными световыми параметрами источников света являются:

Световой поток , излучаемый лампой. Для измерения светового потока лампы накаливания ее включают на номинальное напряжение. У газоразрядных ламп измерение производят когда она работает на номинальной мощности. Световой поток обозначается буквой Ф (латинская фи). Единицей измерения светового потока является люмен (лм).

Сила света. Для некоторых видов вместо светового потока используются параметры средняя сферическая сила света или яркость тела накала. Для таких ламп они являются основными светотехническими параметрами. Используемые обозначения для силы света I v , I v Θ , для яркости - L , их единицы измерения - соответственно кандела (кд) и кандела на квадратный метр (кд/м 2).

Световая отдача лампы , это отношение светового потока лампы к ее мощности

Единица световой отдачи - единица измерения параметра люмен на ватт (Лм/Вт). С помощью этого параметра можно оценить эффективность применения источников света в осветительных установках. Однако в качестве характеристики облучательных ламп используют другой параметр - величину отдачи потока излучения.

Стабильность светового потока - процентное отношение величины снижения светового потока в конце срока службы лампы к первоначальному световому потоку.

К эксплуатационным параметрам источников света относят параметры, характеризующие эффективность источника в определенных эксплуатационных условиях:

Полный срок службы τ полн - продолжительность горения в часах источника света, включенного при номинальных условиях, до полного отказа (перегорание лампы накаливания, отказ в зажигании для большинства газоразрядных ламп).

Полезный срок службы τ п - продолжительность горения в часах источника света, включенного при номинальных условиях, до снижения светового потока до уровня, при котором дальнейшая его эксплуатация становится экономически невыгодной.

Средний срок службы τ - основной эксплуатационный параметр лампы. Он представляет собой среднеарифметическое полных сроков службы групп ламп (не менее десяти) при условии, что среднее значение светового потока ламп группы к моменту достижения среднего срока службы осталось в пределах полезного срока службы, то есть при заданной стабильности светового потока. Это параметр особенно важен для ламп накаливания, так как увеличение их световой отдачи при прочих равных условиях приводит к сокращению срока службы. Так как экспериментальное определение срока службы приводит к выходу из строя испытуемых ламп, этот параметр определяется на определенном числе ламп с заданной степенью вероятности, рассчитываемой по законам математической статистики.

Динамическая долговечность - параметр, характеризующий срок службы ламп накаливания в условиях вибрации и тряски. Лампы с требуемой динамической долговечностью должны выдерживать определенное число циклов испытаний в установленном диапазоне частот.

Для уточнения работоспособности ламп кроме понятия среднего срока службы используют понятие гарантийного срока службы, определяющего минимальное время горения всех ламп в партии. Этому понятию иногда придают коммерческий смысл, считая гарантийный срок службы временем, в течение которого должна гореть любая лампа.

Сравнительно ограниченная продолжительность горения источников света, особенно ламп накаливания, устанавливает требование к их взаимозаменяемости, что может быть осуществлено только при повторяемости параметров отдельных ламп.

Для обеспечения экономичности осветительной установки важны как начальный световой поток лампы, так и зависимость его спада от времени эксплуатации. С увеличением длительности эксплуатации осветительной установки снижается роль капитальных затрат в стоимости световой энергии. Отсюда следует, что осветительные установки с малым числом часов горения в год целесообразно выполнять, используя более дешевые лампы накаливания и, наоборот, в промышленных осветительных установках, где продолжительность горения составляет 3000 часов и более, рационально использовать более дорогие, чем лампы накаливания, газоразрядные источники света с высокой световой отдачей. Стоимость единицы световой энергии определяется также тарифом на электроэнергию. При низких тарифах оправдано применение в осветительных установках ламп с относительно низкой световой отдачей и повышенным сроком службы.

Качественное и рациональное освещение (свет) – одно из главных условий нормальной трудовой и обычной деятельности человека.

Хорошее освещение – это высокая продуктивность, внимательность, сосредоточенность, хорошее самочувствие и здоровье человека в целом. Плохое освещение – это пониженная продуктивность ввиду усталости глаз, более высокая опасность появления неправильных и ошибочных действий, опасность возрастания производственного и бытового травматизма, а также это постепенное ухудшение зрительного процесса. Низкая степень освещённости может стать причиной профессионального заболевания органов зрения.

Уровень освещения, как на производстве, так и в быту, должен быть, как минимум, достаточным, а как максимум, соответствовать всем техническим нормам и правилам.

Освещение бывает двух основных видов: естественное и искусственное.

Естественное

Естественное освещение часто называют дневным. Источником данного вида освещения является обычный солнечный свет. Освещение может исходить как непосредственно от солнца, так и от ясного дневного неба в виде рассеянных по нему солнечных лучей.

Использование естественного освещения не предполагает практически никаких материальных затрат, поэтому оно экономически выгодно. Дневной свет является естественным для глаз, в отличие от света искусственного.

Естественное освещение производственных помещений и жилых зданий осуществляется чаще всего через обычные окна, расположенные на боковых стенах. Также данный вид освещения реализуется через световые проёмы, находящиеся сверху. По данным параметрам естественное освещение делят на боковое освещение, верхнее и совмещённое.

Ввиду того, что боковое освещение несколько неравномерно само по себе, совмещённое освещение встречается не так уж редко. В настоящее время существует много технических решений для выполнения совмещённого освещения.

Для того чтобы максимально использовать возможности дневного света, проектируются световые проёмы, обладающие достаточно большой высотой и шириной.

Несмотря на все свои огромные преимущества, у естественного освещения есть также и собственные недостатки. Одним из них является неравномерность и непостоянность освещённости. Во-первых, источник света Солнце постоянно движется в дневном небе, поэтому освещённость меняется в течение всего светового дня.

Во-вторых, уровень освещённости зависит от различных факторов. Это, например, состояние погоды. Она может быть ясной или пасмурной, может идти дождь или снег. С самого утра может быть туман. Также естественная освещённость может зависеть от времени суток (утро, день, вечер, ночь), а также от времени года.

Освещение искусственного типа используется в тёмное время суток или в случае недостаточности обычного дневного света. Источниками искусственного освещения являются лампы накаливания, люминесцентные лампы, газоразрядные лампы, светодиодные лампы и т.д.

Данный вид освещения можно условно разделить на общее освещение, местное освещение и комбинированное освещение.

Общее применяется для полного освещения какого-либо помещения. Общее освещение в свою очередь подразделяется на равномерное (одинаковое освещение в любом месте) и локализованное (освещённость в определённом месте).

Местное освещение обеспечивает освещённость только на рабочих поверхностях. На производстве использовать только местное освещение не разрешается ввиду того, что оно не освещает (или почти не освещает) рядом находящиеся места.

Комбинированное освещение включает в себя два выше перечисленных вида освещения.

По назначению искусственное освещение бывает рабочим, аварийным, охранным и дежурным.

Рабочее освещение является стандартной и самой распространённой разновидностью искусственного освещения. Оно используется в местах производства работ (в помещениях, в цехах, внутри зданий, снаружи).

Аварийное освещение предусматривается в тех местах, где отключение рабочего освещения может привести к различным аварийным ситуациям на производстве, таким как нарушение технологического процесса, нарушение нормального обслуживания оборудования со стороны персонала предприятия. Также данное освещение используется и для эвакуационных целей.

Аварийное освещение обязательно должно иметь либо независимое электроснабжение, либо электрическое питание автономного типа.

Охранное освещение обычно используется по периметру территории, которая находится под охраной. Оно включается в тёмное время суток и обеспечивает необходимую степень освещённости для полноценной охраны территории.

Дежурное освещение используется в тех случаях, когда необходимо обеспечить минимальную искусственную освещённость в каком-либо месте.

Световые эффекты

Лучше всего цвета передаются при естественном освещении, поэтому одной из главных задач искусственного освещения является максимально естественная цветопередача. У разных источников искусственного света цветопередача абсолютно разная.

У некоторых люминесцентных ламп происходит мерцание. Частота мерцания равна частоте рабочего питающего напряжения. Такое мерцание человек вполне может не заметить, однако оно способно создавать определённые иллюзии. Это может стать опасным фактором во время рабочего процесса на производстве.

Важной задачей электрического питания для освещения является стабильность и качество электроснабжения. Нестабильность питания может привести не только к пульсации осветительной техники и последующему его выходу из строя, но и к нарушению функционирования органов зрения человека.

Измерение освещённости

Освещённость измеряется в специальных единицах, называемых люксами. Для того чтобы произвести замер степени или уровня освещённости, используют приборы люксметры. Благодаря люксметрам становится возможным произвести необходимые замеры и сравнения показаний с техническими нормами и требованиями правил.

Для искусственного освещения применяют электрические лампы двух типов -- лампы накаливания (ЛН) и газоразрядные лампы (ГЛ).

Лампы накаливания относятся к источникам света теплового излучения. Видимое излучение (свет) в них получается в результате нагрева электрическим током вольфрамовой нити.

В газоразрядных лампах видимое излучение возникает в результате электрического разряда в атмосфере инертных газов или паров металлов, которыми заполняется колба лампы. Газоразрядные лампы называют люминесцентными, т. к. изнутри колбы покрыты люминофором, который под действием ультрафиолетового излучения, излучаемого электрическим разрядом, светится, преобразуя тем самым невидимое ультрафиолетовое излучение в свет.

Лампы накаливания наиболее широко распространены в быту из-за своей простоты, надежности и удобства эксплуатации. Находят они применение и на производстве, организациях и учреждениях, но в значительно меньшей степени. Это связано с их существенными недостатками: низкой светоотдачей -- от 7 до 20 лм/Вт (светоотдача лампы -- это отношение светового потока лампы к ее электрической мощности); небольшим сроком службы -- до 2500 часов; преобладанием в спектре желтых и красных лучей, что сильно отличает спектральный состав искусственного света от солнечного. В маркировке ламп накаливания буква В обозначает вакуумные лампы, Г -- газонаполненные, К -- лампы с криптоновым наполнением, Б -- биспиральные лампы.

Газоразрядные лампы получили наибольшее распространение на производстве, в организациях и учреждениях прежде всего из-за значительно большей светоотдачи (40...ПО лм/Вт) и срока службы (8000...12000 часов). Из-за этого газоразрядные лампы в основном применяются для освещения улиц, иллюминации, световой рекламы. Подбирая сочетание инертных газов, паров металлов, заполняющих колбы ламп, и люминоформа, можно получить свет практически любого спектрального диапазона -- красный, зеленый, желтый и т. д. Для освещения в помещениях наибольшее распространение получили люминесцентные лампы дневного света, колба которых заполнена парами ртути. Свет, излучаемый такими лампами, близок по своему спектру к солнечному свету.

К газоразрядным относятся различные типы люминесцентных ламп низкого давления с разным распределением светового потока по спектру: лампы белого света (ЛБ); лампы холодно-белого света

(ЛХБ); лампы с улучшенной цветопередачей (ЛДЦ); лампы тепло-белого света (ЛТБ); лампы, близкие по спектру к солнечному свету (ЛЕ); лампы холодно-белого света улучшенной цветопередачи (ЛХБЦ).

К газоразрядным лампам высокого давления относятся: дуговые ртутные лампы высокого давления с исправленной цветностью (ДРЛ); ксеноновые (ДКсТ), основанные на излучении дугового разряда в тяжелых инертных газах; натриевые высокого давления (ДНаТ); металлогалогенные (ДРИ) с добавкой йодидов металлов.

Лампы ЛЕ, ЛДЦ применяются в случаях, когда предъявляются высокие требования к определению цвета, в остальных случаях -- лампы ЛБ, как наиболее экономичные. Лампы ДРЛ рекомендуются для производственных помещений, если работа не связана с различением цветов (в высоких цехах машиностроительных предприятий и т. п.), и наружного освещения. Лампы ДРИ имеют высокую световую отдачу и улучшенную цветность, применяются для освещения помещений большой высоты и площади.

Источники света обладают различной яркостью. Максимальная переносимая человеком яркость при прямом наблюдении составляет 7500 кд/м2.

Однако газоразрядные лампы наряду с преимуществами перед лампами накаливания обладают и существенными недостатками, которые пока ограничивают их распространение в быту.

Это пульсация светового потока, которая искажает зрительное восприятие и отрицательно воздействует на зрение.

При освещении газоразрядными лампами может возникнуть стробоскопический эффект, заключающийся в неправильном восприятии скорости движения предметов. Опасность стробоскопического эффекта при использовании газоразрядных ламп состоит в том, что вращающиеся части механизмов могут показаться неподвижными и стать причиной травматизма. Пульсации освещенности вредны и при работе с неподвижными поверхностями, вызывая быстрое утомление зрения и головную боль.

Ограничение пульсаций до безвредных значений достигается равномерным чередованием питания ламп от различных фаз трехфазной сети, специальными схемами подключения. Однако это усложняет систему освещения. Поэтому люминесцентные лампы не нашли широкого применения в быту. К недостаткам газоразрядных ламп относится: длительность их разгорания, зависимость их работоспособности от температуры окружающей среды, создание радиопомех.

Другой причиной, по-видимому, является следующее обстоятельство. Психологическое и отчасти физиологическое воздействие на человека цветности излучения источников света несомненно в значительной степени связано с теми световыми условиями, к которым человечество приспособилось за время своего существования. Далекое и холодное голубое небо, создающее в течение большей части светового дня высокие освещенности, вечером -- близкий и горячий желто-красный костер, а затем пришедшие ему на смену, но аналогичные по цветности «лампы сгорания», создающие, однако, низкие освещенности, -- таковы световые режимы, приспособлением к которым, вероятно, объясняются следующие факты. У человека наблюдается более работоспособное состояние днем при свете преимущественно холодных оттенков, а вечером при теплом красноватом свете лучше отдыхать. Лампы накаливания дают теплый красновато-желтый цвет и способствуют успокоению и отдыху, лю-минесцентные лампы, наоборот, создают холодный белый цвет, который возбуждает и настраивает на работу.

От применяемого типа источников света зависит правильность цветопередачи. Например, темно-синяя ткань при свете ламп накаливания кажется черной, желтый цветок -- грязно-белым. Т. е. лампы накаливания искажают правильную цветопередачу. Однако есть предметы, которые люди привыкли видеть преимущественно вечером при искусственном освещении, например, золотые украшения «естественнее» выглядят при свете ламп накаливания, чем при свете люминесцентных ламп. Если при выполнении работы важна правильность цветопередачи -- например, на уроках рисования, в полиграфической промышленности, картинных галереях и т. д. -- лучше применять естественное освещение, а при его недостаточности -- искусственное освещение люминесцентных ламп.

Таким образом, правильный выбор цвета для рабочего места значительно способствует повышению производительности труда, безопасности и общему самочувствию работников. Отделка поверхностей и оборудования, находящегося в рабочей зоне, точно также способствует созданию приятных зрительных ощущений и приятной рабочей обстановки.

Обычный свет состоит из электромагнитных излучений с различными длинами волн, каждое из которых соответствует определенному диапазону видимого спектра. Смешивая красный, желтый и голубой свет, мы можем получить большинство видимых цветов, включая белый. Наше восприятие цвета предмета зависит от цвета света, которым он освещен и от того, каким образом сам предмет отражает цвет.

Источники света подразделяются на следующие три категории в зависимости от цвета света, который они излучают:

  • *«теплого» цвета (белый красноватый свет) -- рекомендуются для освещения жилых помещений;
  • *промежуточного цвета (белый свет) -- рекомендуются для освещения рабочих мест;
  • *«холодного» цвета (белый голубоватый свет) -- рекомендуются при выполнении работ, требующих высокого уровня освещенности или для жаркого климата.

Таким образом, важной характеристикой источников света является цвет светового излучения. Для характеристики цвета излучения введено понятие цветовой температуры.

Цветовая температура- такая температура черного тела, при которой его излучение имеет такую же цветность, как и рассматриваемое излучение. Действительно при нагреве черного тела его цвет изменяется от теплых оранжево-красных до холодных белых тонов. Цветовая температура измеряется в градусах Кельвина (°К). Связь между градусами по шкале Цельсия и по шкале Кельвина следующая: °К = °С + 273. Например, О °С соответствует 273 °К.

Свет всегда окружает нас в природе. И солнечный свет, и лунный свет, и звездный свет являются наиболее важными источниками света к жизни человека. Но, также, из-за потребности в дополнительном свете, люди научились собственными силами создавать свет. Понимание фундаментального различия между естественным и искусственным светом является отправной точкой в описании естественных и искусственных источников света. Природные источники света существуют в природе и находятся вне контроля людей. Они включают в себя солнечный свет, лунный свет, свет звезд, различных растительных и животных источников, радиолюминесценцию, и, конечно, огонь.

Искусственными источниками света могут управлять люди. Примеры таких источников – пламя от сгорающих поленьев, языки пламени масляной или газовой горелки, электрические лампы, свет от фотохимических реакций, и других различных реакций, например свет от реакций со взрывчатыми веществами.
Из-за их очевидных преимуществ с точки зрения доступности, безопасности, чистоты, и возможности удаленного управления, электрические лампы вытеснили почти все другие искусственные источники освещения в жизни человека. Однако, так как энергия, необходимая для работы таких искусственных источников света обеспечивается в основном при потреблении природных ресурсов, мы приходим к мысли о том, что необходимо в максимально возможной степени использовать природные источники света.

Эксплуатации природных источников света остается одной из самых больших проблем в освещении.

Дизайнеры и архитекторы прикладывают огромные усилия в целях максимального использования источников света такого типа.

А вы знаете, какими характеристиками обладают ? О них вы сможете узнать все из нашей статьи.

А светодиодные источники ультрафиолетового излучения можно прочитать . Попробуйте разобраться, в каких областях лежит применение таких источников?

С практической точки зрения, источники света могут быть классифицированы с точки зрения качеств света, который они производят . Эти качества имеют решающее значение для результата освещения и должны быть в первую очередь учтены при выборе источника для освещения.

Наиболее естественный свет исходит от солнца, также естественен и лунный свет. Его происхождение делает его абсолютно чистым, и он не потребляет природные ресурсы. В то же самое время искусственные источники для преобразования накопленной энергии в световую энергию обычно требуют потребления природных ресурсов, таких как ископаемое топливо. Электрическое освещение с одной стороны превосходит по всем параметрам обыкновенное пламя от сгорание древесины, газа, нефти, но и является источником загрязнения. В то же самое время, электричество может быть получено из природных источников энергии, таких как ветер, гидро-, геотермальная и солнечная энергии.
Принцип работы электрической лампы накаливания определяет практически все параметры света создающегося такой лампой. В общем и целом, лампы накаливания генерируют свет по принципу накаливания, при котором металл нагревается до тех пор, пока он не начинает светиться.
В это же время большинство других типов ламп излучают свет посредством сложной системы химических реакций, при протекании которых электрическая энергия превращается в световую энергию.

При этом выделение тепловой энергии всегда является побочным эффектом.

Эти процессы протекают в таких лампах в отношении генерируемого света обычно более эффективно, чем в лампах накала — за счет сложности и других ограничений. Например, флуоресцентная лампа генерирует свет при подачи электрического напряжения в газе, который в свою очередь испускает ультрафиолетовое излучение, которое окончательно преобразуется в видимый свет особым веществом, которое и обеспечивает необходимое свечение. Этот процесс генерирует свет примерно на 400 процентов более эффективно , чем в случае с обычными лампами накаливания.

К основным типам электрических ламп и осветительных устройств относятся:

1. Лампы накаливания: в такой лампе электрический ток протекает через тонкую металлическую нить и нагревает ее, в результате чего нить испускает электромагнитное излучение. Стеклянная колба, заполненная инертным газом, предотвращает быстрое разрушение нити вследствие окисления кислородом воздуха. Преимуществом ламп накаливания является то, что лампы этого типа могут производиться для широкого диапазона напряжений – от нескольких вольт до нескольких сот вольт. В силу низкой эффективности («светового КПД», учитывающего только энергию излучения в видимом диапазоне) ламп накаливания эти устройства во многих применениях постепенно вытесняются люминесцентными лампами, газоразрядными лампами высокой интенсивности, светодиодами и другими источниками света.

2. Газоразрядные лампы: этот термин охватывает несколько видов ламп, в которых источником света является электрический разряд в газовой среде. Основу конструкции такой лампы составляют два электрода, разделенные газом. Как правило, в таких лампах используется какой-либо инертный газ (аргон, неон, криптон, ксенон) или смесь таких газов. Помимо инертных газов, газоразрядные лампы в большинстве случаев содержат и другие вещества, например, ртуть, натрий и/или галогениды металлов. Конкретные виды газоразрядных ламп часто называются по используемым в них веществах – неоновые, аргоновые, ксеноновые, криптоновые, натриевые, ртутные и металлогалогенные. К наиболее распространенным разновидностям газоразрядных ламп относятся:

Люминесцентные лампы;

Металлогалогенные лампы;

Натриевые лампы высокого давления;

Натриевые лампы низкого давления.

Газ, заполняющий газоразрядную лампу, должен быть ионизирован под действием электрического напряжения, чтобы приобрести необходимую электропроводность. Как правило, для запуска газоразрядной лампы («зажигания» разряда) требуется более высокое напряжение, чем для поддержания разряда. Для этого используется специальные «стартеры» или другие зажигающие устройства. Кроме того, для нормальной работы лампы необходима балластная нагрузка, обеспечивающая стабильность электрических характеристик лампы. Стартер в сочетании с балластом образуют пускорегулирующий аппарат (ПРА). Газоразрядные лампы характеризуются длительным сроком службы и высоким «световым КПД». Недостатки этого типа ламп включают относительную сложность их производства и необходимость дополнительных электронных устройств для их стабильной работы.

Серные лампы: серная лампа представляет собой высокоэффективное осветительное устройство полного спектра без электродов, в котором источником света служит плазма серы, нагреваемая микроволновым излучением. Время разогрева серной лампы значительно меньше, чем у большинства типов газоразрядных ламп, за исключением люминесцентных, даже при низких температурах окружающей среды. Световой поток серной лампы достигает 80% максимальной величины в течение 20 с после включения; лампа может быть перезапущена примерно через пять минут после отключения электроэнергии;

Светодиоды, в т.ч. органические: светодиод представляет собой полупроводниковый диод, излучающий некогерентный свет в узком спектральном диапазоне. Одним из преимуществ светодиодного освещения является его высокая эффективность (световой поток в видимом диапазоне на единицу потребленной электроэнергии). Светодиод, в котором эмиссионный (излучающий) слой состоит из органических соединений, называется органическим светодиодом (OLED). Органические светодиоды легче, чем традиционные, а преимуществом полимерных светодиодов является их гибкость. Коммерческое применение обоих указанных типов светодиодов уже начато, однако их использование в промышленности пока ограничено.

Наиболее эффективным электрическим источником света является натриевая лампа низкого давления. Она испускает практически монохромный (оранжевый) свет, сильно искажающий зрительное восприятие цветов. По этой причине данный тип ламп используется, главным образом, для наружного освещения. «Световое загрязнение», создаваемое натриевыми лампами низкого давления, может быть легко отфильтровано в отличие от света других источников с широким или непрерывным спектром.

13. Санитарные нормы, предъявляемые к освещенности учебных помещений. Приборы и методы определения (измерения) освещенности в школьных кабинетах и лабораториях. Коэффициент естественной освещенности и его определение.

Все учебные помещения должны иметь ЕО. Наилучшими видами ЕО в учебных являются боковое левостороннее. При глубине помещения более 6м необходимо устройство правостороннего подсвета. Направление основного светового потока справа, спереди и сзади недопустимо, т.к. уровень ЕО на рабочих поверхностях парт снижается в 3-4 раза.

Стекла окон следует ежедневно протирать влажным способом с внутренней стороны и мыть снаружи не менее 3-4 раз в год и со стороны помещений не менее1-2 раз в месяц. Нормирование ЕО осуществляется по СниП.

Для окраски парт рекомендуется зеленая гамма цветов, а также цвет натуральной древесины с Q (коэф. отражения) 0,45. Для классной доски - темно зеленый или коричневый цвет с Q=0,1 - 0,2. Стекла, потолки, полы, оборудование учебных помещений должны иметь матовую поверхность во избежание образования бликов. Поверхности интерьера учебных помещений следует окрашивать в теплые тона, потолок и верхние части стен окрашивают в белый цвет. Нельзя помещать растения на подоконники.

ИО обеспечивается люминесцентными лампами (ЛБ, ЛЕ) или лампами накаливания. На помещение площадью 50м2 должно быть установлено 12 действующих люминесцентных светильников. Классная доска освещается двумя установленными параллельно ей светильниками (на 0,3м выше верхнего края доски и на 0,6 в сторону класса перед доской). Общая электромощность на класс в этом случае составляет 1040Вт.

При освещении лампами накаливания помещения площадью 50м2 должно быть установлено 7-8 действующих световых точек общей мощностью 2400Вт.

Светильники в учебном помещении располагают двумя рядами параллельно линии окон при расстоянии от внутренней и наружной стен 1,5м, от классной доски 1,2м, от задней стены 1,6м; расстояние между светильниками в рядах 2,65м.

Светильники очищают не реже одного раза в месяц (запрещается привлекать учащихся к очистке осветительной арматуры).

Учебные помещения школ должны иметь естественное освещение. Без естественного освещения допускается проектировать: снарядные, умывальные, душевые, уборные при гимнастическом зале; душевые и уборные персонала; кладовые и складские помещения (кроме помещений для хранения легковоспламеняющихся жидкостей), радиоузлы; кинофотолаборатории; книгохранилища; бойлерные, насосные водопровода и канализации; камеры вентиляционные и кондиционирования воздуха; узлы управления и другие помещения для установки и управления инженерным и технологическим оборудованием зданий; помещения для хранения дезсредств. В учебных помещениях следует проектировать боковое левостороннее освещение. При двустороннем освещении, которое проектируется при глубине учебных помещений более 6 м, обязательно устройство правостороннего подсвета, высота которого должна быть не менее 2,2 м от потолка. При этом не следует допускать направление основного светового потока впереди и сзади от учащихся. В учебно-производственных мастерских, актовых и спортивных залах также может применяться двустороннее боковое естественное освещение и комбинированное (верхнее и боковое).

Следует использовать следующие цвета красок:

Для стен учебных помещений - светлые тона желтого, бежевого, розового, зеленого, голубого;

Для мебели (парты, столы, шкафы) - цвета натурального дерева или светло-зеленый;

Для классных досок - темно-зеленый, темно-коричневый;

Для дверей, оконных рам - белый.

Для максимального использования дневного света и равномерного освещения учебных помещений рекомендуется:

Сажать деревья не ближе 15 м, кустарник - не ближе 5 м от здания;

Не закрашивать оконные стекла;

Не расставлять на подоконниках цветы. Их следует размещать в переносных цветочницах высотой 65 - 70 см от пола или подвесных кашпо в простенках окон;

Очистку и мытье стекол проводить 2 раза в год (осенью и весной).

Минимальное значение КЕО нормируется для наиболее удаленных от окон точек помещения при одностороннем боковом освещении. Определяют освещенность в жилых помещениях на полу или высоте 0,8 м от пола. Одновременно измеряют освещенность рассеянным светом под открытым небом. КЕО рассчитывают по выше приведенной формуле и сопоставляют с нормативными значениями.

Среднее значение КЕО нормируется в помещениях с верхним комбинированным освещением. В помещении определяют освещенность в 5 точках на высоте 1,5 м над полом и одновременно определяют освещенность под открытым небом (с защитой от прямых солнечных лучей). Затем рассчитывают КЕО для каждой точки.

Среднее значение КЕО рассчитывают по формуле:

где: KEO1, КЕО2... КЕО5 - значение КЕО в различных точках; n - количество точек измерения.

Последние материалы сайта