Космические корабли и аппараты журнал 3 буран. Космический корабль буран

27.09.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

"БУРАН" - советский крылатый орбитальный корабль многоразового использования. Предназначен для решения ряда оборонных задач, выведения на орбиту вокруг Земли различных космических объектов и их обслуживания; доставки модулей и персонала для сборки на орбите крупногабаритных сооружений и межпланетных комплексов; возврата на Землю неисправных или выработавших свой ресурс спутников; освоения оборудования и технологий космического производства и доставки продукции на Землю; выполнения других грузопассажирских перевозок по маршруту Земля-космос-Земля.

Внешняя конфигурация

Орбитальный корабль "Буран" выполнен по самолетной схеме: это "бесхвостка" с низкорасположенным треугольным крылом двойной стреловидности по передней кромке; аэродинамические органы управления включают элевоны, балансировочный щиток, расположенный в хвостовой части фюзеляжа, и руль направления, который, "расшепляясь" по задней кромке (рис. справа), выполняет также функции воздушного тормоза; посадку "по-самолетному" обеспечивает трехопорное (с носовым колесом) выпускаюшееся шасси.

Внутренняя компоновка, конструкция

В носовой части "Бурана" расположены герметичная вставная кабина объемом 73 кубических метров для экипажа (2 - 4 чел.) и пассажиров (до 6 чел.), отсеки бортового оборудования и носовой блок двигателей управления.

Среднюю часть занимает грузовой отсек с открывающимися вверх створками, в котором размещаются манипуляторы для выполнения погрузочно-разгрузочных и монтажно-сборочных работ и различных операций по обслуживанию космических объектов. Под грузовым отсеком расположены агрегаты систем энергоснабжения и обеспечения температурного режима. В хвостовом отсеке установлены агрегаты двигательной установки, топливные баки, агрегаты гидросистемы. В конструкции "Бурана" использованы алюминиевые сплавы, титан, сталь и другие материалы. Чтобы противостоять аэродинамическому нагреванию при спуске с орбиты, внешняя поверхность ОК имеет теплозащитное покрытие, рассчитанное на многоразовое использование.

На менее подверженную нагреву верхнюю поверхность устанавливается гибкая теплозащита, а другие поверхности покрыты теплозащитными плитками, изготовленными на основе волокон кварца и выдерживающими температуру до 1300ºС. В особо теплонапряженных зонах (в носках фюзеляжа и крыла, где температура достигает 1500º - 1600ºС) применен композиционный материал типа углерод-углерод. Этап наиболее интенсивного нагревания орбитального корабля сопровождается образованием вокруг него слоя воздушной плазмы, однако конструкция орбитального корабля не прогревается к концу полета более чем до 160ºС. Каждая из 38600 плиток имеет конкретное место установки, обусловленное теоретическими обводами корпуса орбитального корабля. Для снижения тепловых нагрузок выбраны также большие значения радиусов затупления носков крыла и фюзеляжа. Расчетный ресурс конструкции - 100 орбитальных полетов.

Двигательная установка и бортовое оборудование

Объединенная двигательная установка (ОДУ) обеспечивает довыведение орбитального корабля на опорную орбиту, выполнение межорбитальных переходов (коррекций), точное маневрирование вблизи обслуживаемых орбитальных комплексов, ориентацию и стабилизацию орбитального корабля, его торможение для схода с орбиты. ОДУ состоит из двух двигателей орбитального маневрирования (на рис.справа), работающих на углеводородном горючем и жидком кислороде, и 46 двигателей газодинамического управления, сгрупированных в три блока (один носовой блок и два хвостовых). Более 50 бортовых систем, включающих радиотехнические, ТВ и телеметрические комплексы, системы жизнеобеспечения, терморегулирования, навигации, энергоснабжения и другие, объединены на основе ЭВМ в единый бортовой комплекс, который обеспечивает продолжительность пребывания "Бурана" на орбите до 30 суток.

Теплота, выделяемая бортовым оборудованием, с помощью теплоносителя подводится к радиационным теплообменникам, установленным на внутренней стороне створок грузового отсека, и излучается в окружающее пространство (в полете на орбите створки открыты).

Геометрические и весовые характеристики

Длина "Бурана" составляет 35,4 м, высота 16,5 м (при выпущенном шасси), размах крыла около 24 м,площадь крыла 250 квадратных метров, ширина фюзеляжа 5,6 м, высота 6,2 м; диаметр грузового отсека 4,6 м, его длина 18 м. Стартовая масса орбитального корабля до 105 т, масса груза, доставляемого на орбиту, до 30 т, возвращаемого с орбиты - до 15 т. Максимальный запас топлива до 14 т.

Большие габаритные размеры "Бурана" затрудняют использование наземных средств транспортировки, поэтому на космодром он (так же, как и блоки РН) доставляется по воздуху модифицированным для этих целей самолетом ВМ-Т Экспериментального машиностроительного завода им. В.М.Мясищева (при этом с "Бурана" снимается киль и масса доводится до 50 т) или многоцелевым транспортным самолетом Ан-225 в полностью собранном виде.

Выведение на орбиту

Запуск "Бурана" осуществляется с помощью универсальной двухступенчатой ракеты-носителя "Энергия", к центральному блоку которой крепится пирозамками Буран. Двигатели 1-й и 2-й ступеней ракеты-носителя запускаются практически одновременно и развивают суммарную тягу 34840 кН при стартовой массе ракеты с "Бураном" около 2400 т (из них около 90% составляет топливо). В первом испытательном запуске беспилотного варианта орбитального корабля, состоявшемся на космодроме Байконур 15 ноября 1988 года, ракета-носитель "Энергия" вывела Буран за 476 сек. на высоту около 150 км (блоки 1-й ступени ракеты отделились на 146-й сек. на высоте 52 км). После отделения орбитального корабля от 2-й ступени ракеты был осуществлен двухкратный запуск его двигателей, что обеспечило необходимый прирост скорости до достижения первой космической и выход на опорную круговую орбиту. Расчетная высота опорной орбиты "Бурана" составляет 250 км (при грузе 30 т и заправке топливом 8 т). В первом полете "Буран" был выведен на орбиту высоту 250,7/260,2 км (наклон орбиты 51,6╟) с периодом обращения 89,5 мин. При заправке топливом в количестве 14 т возможен переход на орбиту высотой 450 км с грузом 27 т.

При отказе на этапе выведения одного из маршевых ЖРД 1-й или 2-й ступени ракеты-носителя ее ЭВМ "выбирает" в зависимости от набранной высоты либо варианты выведения орбитального корабля на низкую орбиту или на одновитковую траекторию полета с последующей посадкой на одном из запасных аэродромов, либо вариант выведения ракеты-носителя с кораблем на траекторию возврата в район старта с последующим отделением орбитального корабля и посадкой его на основной аэродром. При нормальном запуске орбитального корабля 2-я ступень ракеты-носителя, конечная скорость которой меньше первой космической, продолжает полет по баллистической траектории до падения в Тихий океан.

Возвращение с орбиты

Для схода с орбиты Буран разворачивается двигателями газодинамического управления на 180º (хвостом вперед), после чего на непродолжительное время включаются основные ЖРД и сообщают ему необходимый тормозной импульс. Буран переходит на траекторию спуска, снова разворачивается на 180º (носом вперед) и выполняет планирование с большим углом атаки. До высоты 20 км осуществляется совместное газодинамическое и аэродинамическое управление, а на заключительном этапе полета используются только аэродинамические органы управления. Аэродинамическая схема "Бурана" обеспечивает ему достаточно высокое аэродинамическое качество, позволяющее осуществить управляемый планирующий спуск, выполнить на трассе спуска боковой маневр протяженностью до 2000 км для выхода в зону аэродрома посадки, произвести необходимое предпосадочное маневрирование и совершить посадку на аэродром. В то же время конфигурация ЛА и принятая траектория спуска (крутизна планирования) позволяют аэродинамическим торможением погасить скорость Бурана от близкой к орбитальной до посадочной, равной 300 - 360 км/ч. Длина пробега составляет 1100 - 1900 м, на пробеге используется тормозной парашют. Для расширения эксплуатационных возможностей "Бурана" предусматривалось использование трех штатных аэродромов посадки (на космодроме (ВПП посадочного комплекса длиной 5 км и шириной 84 м в 12 км от старта), а также в восточной (Хороль Приморского края) и западной (Симферополь) частях страны). Комплекс радиотехнических средств аэродрома создает радионавигационное и радиолокационное поля (радиус последнего около 500 км), обеспечивающие дальнее обнаружение корабля, его выведение к аэродрому и всепогодную высокоточную (в том числе автоматическую) посадку на ВПП.

Первый испытательный полет беспилотного варианта Бурана завершился после выполнения немногим более двух витков вокруг Земли успешной автоматической посадкой на аэродром в районе космодрома. Тормозной импульс был дан на высоте Н=250 км, на расстоянии около 20000 км от аэродрома приземления, боковая дальность на трассе спуска составила около 550 км, отклонение от расчетной точки касания на ВПП оказалось равным 15 м в продольном направлении и 3 м от оси полосы.

Разработка орбитального корабля "Буран" продолжалась более 10 лет

Первому запуску предшествовал большой объем научно-исследовательских и опытно-конструкторских работ по созданию орбитального корабля и его систем с обширными теоретическими и экспериментальными исследованиями по определению аэродинамических, акустических, теплофизических, прочностных и других характеристик орбитального корабля, моделированием работы систем и динамики полета орбитального корабля на полноразмерном стенде оборудования и на пилотажных стендах, разработкой новых материалов, отработкой методов и средств автоматической посадки на самолетах - летающих лабораториях, летными испытаниями в атмосфере пилотируемого самолета-аналога (в моторном варианте) БТС-02, натурными испытаниями теплозащиты на экспериментальных аппаратах БОР-4 и БОР-5, выводившихся на орбиту и возвращаемых с нее методом аэродинамического спуска, и т. д.

Всего по программе "Энергия-Буран" было построено три летных корабля (третий не достроен), заложены еще два (задел по которым после закрытия программы был уничтожен), и девять технологических макетов в различной комплектации для проведения различных испытаний

М н о г о р а з о в а я к о с м и ч е с к а я с и с т е м а в ц е л о м

Стартовая масса МКС, т

2380

2380

2410

2380

2000

Суммарная тяга двигателй при старте, тс

2985

2985

3720

4100

2910

Начальная тяговооруженность

1,25

1,25

1,54

1,27

1,46

Максимальная высота на старте, м

56,0

56,0

73,58

56,1

Максимальный поперечный размер, м

22,0

22,0

16,57

23,8

Время подготовки к очередному полету, сутки

н/д

Многократность применения:

Орбитальный корабль

I ступень

Центральный блок

До 100 раз с заменой ДУ через 50 полетов

До 20 раз

До 100 раз

До 20 раз

1 (с потерей двигателей II ступени)

Н/д

До 20 раз

1 (с ДУ II ступени)

100 раз с заменой ДУ через 50 п-тов

До 20 раз

Затраты на один полет (без амортизации орбитального корабля), млн. руб. (долл.)

15,45

н/д

н/д

$10,5

Начало ЛКИ:

I ступени в составе РН 11К77 ("Зенит")

Кислородно-водородного блока II ступени в составе МКС с грузовым транспортным контейнером

Автономные испытания ОК в атмосфере

МКС в целом

1978 год

1981 год

1981 год

1983-85 годы

1978 год

1981 год

1981 год

1983-84 годы

1978 год

1981 год

1983 год

4 кв. 1977 г.

3 кв. 1979 г.

Стоимость разработки, млрд. руб. (долл.)

н/д

н/д

$5,5

Р а к е т а - н о с и т е л ь

Обозначение

РЛА-130

РЛА-130

РЛА-130

РЛА-130В

Компоненты и масса топлива:

I ступень (жидкий О 2 + керосин РГ-1), т

II ступень (жидкий О 2 + жидкий H 2 ), т

4×330

4×330

4×310

6×250

984 (масса ТТУ)

Размеры блоков ракеты-носителя:

I ступень, длина×диаметр, м

II ступень, длина×диаметр, м

40,75×3,9

н/д × 8,37

40,75×3,9

н/д × 8,37

25,705×3,9

37,45×8,37

45,5×3,7

н/д × 8,50

Двигатели:

I ступень: ЖРД (КБЭМ НПО "Энергия")

Тяга: на уровне моря, тс

В вакууме, тс

В вакууме, сек

РДТТ (I ступень у "Шаттла"):

Тяга, на уровне моря, тс

Удельный импульс, на уровне моря, сек

В вакууме, сек

II ступень: ЖРД разработки КБХА

Тяга, в вакууме, тс

Удельный импульс, на уровне моря, сек

В вакууме, сек

РД-123

4×600

4×670

11Д122

3×250

РД-123

4×600

4×670

11Д122

3×250

РД-170

4×740

4×806

308,5

336,2

РД-0120

4×190

349,8

РД-123

6×600

6×670

11Д122

2×250

2×1200

SSME

3×213

Продолжительность активного участка выведения, сек

н/д

н/д

н/д

н/д

О р б и т а л ь н ы й к о р а б л ь

Размеры орбитального корабля:

Общая длина, м

Максимальная ширина корпуса, м

Размах крыла, м

Высота по килю, м

Размеры отсека полезного груза, длина×ширина, м

Объем гермокабины экипажа, м 3

Объем шлюзовой камеры, м 3

37,5

22,0

17,4

18,5×4,6

н/д

34,5

22,0

15,8

18,5×4,6

н/д

34,0

н/д

н/д × 5,5

37,5

23,8

17,3

18,3×4,55

н/д

Стартовая масса корабля (с РДТТ САС), т

155,35

116,5

н/д

Масса корабля после отделения РДТТ САС, т

119,35

Масса полезного груза, выводимого ОК на орбиту высотой 200 км и наклонением:

I=50,7 ° , т

I=90,0 ° , т

I =97,0 ° , т

н/д

н/д

26,5

Максимальная масса полезного груза, возвращаемая с орбиты, т

14,5

Посадочная масса корабля, т

89,4

67-72

66,4

84 (с грузом 14,5т)

Посадочная масса корабля при аварийной посадке, т

99,7

н/д

н/д

Сухая масса орбитального корабля, т

79,4

68,1

Запас топлива и газов, т

н/д

10,5

12,8

Запас характеристической скорости, м/с

Тяга корректирующе-тормозных двигателей, тс

н/д

2х14=28

2х8,5=17,0

н/д

Тяга двигателей ориентации, тс

40×0,4

16×0,08

в носовой части 16×0,4 и 8×0,08

в хвостовой части 24×0,4 и 8×0,08

впереди 18×0,45

сзади 16×0,45

н/д

Время пребывания на орбите, сутки

7-30

7-30

н/д

7-30

Боковой маневр при спуске с орбиты, км

± 2200

± 2200 (с учетов ВРД ± 5100)

± 800…1800

± 2100

Тяга воздушно-реактивных двигателей

Д-30КП, 2×12 тс

АЛ-31Ф, 2×12,5 тс

Возможность посадки орбитального корабля на территорию своей страны с Нкр=200км (~ 16 витков в сутки):

I = 28,5°

I = 50,7°

I = 97°

Посадка на ВПП старта

с семи витков, кроме 6-14

с пяти витков, кроме 2-6,10-15

Посадка на любые аэродромы гражданского воздушного флота 1 класса

Со всех витков, кроме 8,9

со всех витков

Посадка на подготовленные грунтовые спецплощадки

Ø 5км

Со всех витков, кроме 8,9

со всех витков

Посадка на базах Эдвардс, Канаверал, Ванденберг

с девяти витков, кроме 7-13

с десяти витков, кроме 2-4, 9-12

Потребная длина и класс посадочной полосы

4 км, специальная ВПП

2,5-3 км, все аэродромы 1 класса

Спец.площадка

Ø 5км

4 км, специальная ВПП

Посадочная скорость орбитального корабля, км/ч

посадка на парашютах

Двигатели системы аварийного спасения (САС), тип и тяга, тс

Масса топлива, т

Масса снаряженного двигателя, т

Удельный импульс, на земле/в вакууме

РДТТ, 2×350

2×14

2×18-20

235 / 255 сек

РДТТ, 1×470

н/д

1×24,5

н/д

РДТТ, 1×470

н/д

1×24,5

н/дн/д

Экипаж, чел.

Средства для транспортировки орбитального корабля и летной отработки:

Ан-124 (проект)

Ан-22 или автономно

Ан-22, 3М или автономно

н/д

Боинг-747

В итоге был создан корабль с уникальными характеристиками, способный доставить на орбиту груз массой 30 т и вернуть на Землю 20 т. Имея возможность взять на борт экипаж из 10 человек, он мог весь полет выполнять в автоматическом режиме.
Но мы не будем подробно останавливаться на описании "Бурана ", ведь ему и посвящен весь , для нас важнее другое - еще до его полета конструкторы уже думали о разработке многоразовых кораблей следующего поколения.


Но сначала упомянем о проекте одноступенчатого воздушно-космического самолета, прорабатывавшегося в НИИ-4 (затем ЦНИИ-50) Министерства обороны группой под руководством Олега Гурко. Первоначальный проект аппарата был оборудован силовой установкой, состоящих из нескольких комбинированных прямоточных жидкостных ракетных двигателей, использующих на этапах атмосферного полета (взлет и посадка) атмосферный воздух в качестве рабочего тела. Основное отличие прямоточных ЖРД от классических ПВРД (прямоточных воздушно-реактивных двигателей) заключалось в том, что если в ПВРД набегающий поток воздуха сначала сжимается за счет кинетической энергии набегающего потока, а затем разогревается при сжигании топлива и выполняет полезную работу, истекая через сопло, то в прямоточном ЖРД воздух разогревается струей ЖРД, помещенного в воздушный тракт прямоточного двигателя. Помимо многорежимности (и возможности работы в безвоздушном пространстве как обычный ЖРД) комбинированный ЖРД на атмосферном участке создает дополнительную тягу за счет возникновения инжекционного эффекта. В качестве топлива предусматривался жидкий водород.
В 1974 году у Гурко возникла новая техническая идея, позволяющая существенно снизить расход топлива за счет размещения в воздушном тракте теплообменника, нагревающего воздух теплом от бортового ядерного реактора. Благодаря такому техническому решению появилась возможность в принципе исключить расход топлива при полете в атмосфере и соответствующие выбросы в атмосферу продуктов сгорания.
Окончательный вариант аппарата, получивший обозначение МГ-19 (Мясищев-Гурко, М-19, "гурколет" ), был выполнен по схеме несущий корпус, обеспечивающей высокое весовое совершенство аппарата, и был оснащен комбинированной двигательной установкой в составе ядерного реактора и комбинированного прямоточного водородного ЖРД.


В первой половине 1970-х годов МГ-19 рассматривался как серьезный конкурент МКС "Энергия-Буран", однако ввиду меньшей степени проработки и большей степени технического риски при реализации, а также из-за отсутствия зарубежного аналога, проект МГ-19 дальнейшего развития не получил. Тем не менее этот проект до сих пор не рассекречен, и информация о нем и по сей день крайне скудна.

"После-бурановские" проекты. Многоцелевая авиационно-космическая система (МАКС)

В 1981-82 гг. в НПО "Молния" был предложен проект авиационно-космической системы "49" в составе самолета-носителя Ан-124 "Руслан", выполнявшего роль I ступени - воздушного космодрома, и II ступени в составе двухступенчатого ракетного ускорителя и пилотируемого орбитального самолета, выполненного по схеме "несущий корпус". В 1982 году появляется новый проект - "Бизань" и его беспилотный аналог "Бизань-Т", отличающийся от "49" одноступенчатым ракетным ускорителем. Начало эксплуатации самого большого и грузоподъемного самолета в мире Ан-225 "Мрия" позволило "Молнии " разработать проект Многоцелевой авиационно-космической системы (МАКС) , где роль I ступени выполняет дозвуковой самолет-носитель "Мрия", а вторая ступень образована орбитальным самолетом, "сидящим верхом" на сбрасываемом топливном баке. "Изюминкой" проекта является применение двух маршевых трехкомпонентных ЖРД РД-701 на орбитальном самолете и дифференциально отклоняемые консоли крыла, как у орбитального самолета "Спираль" .

НПО "Энергия", используя задел по МКС "Энергия-Буран", также предложило целый ряд частично или полностью многоразовых ракетно-космических систем с вертикальным стартом с использованием РН "Зенит-2", "Энергия-М" и многоразовой крылатой разгонной ступени вертикального старта на базе "Бурана" . Наибольший интерес вызывает проект полностью многоразового носителя ГК-175 ("Энергия-2") на базе РН "Энергия" со спасаемыми крылатыми блоками обеих ступеней.

Также в НПО "Энергия" велись работы и над перспективным проектом одноступенчатого воздушно-космического самолета (ВКС).

Конечно, отечественные авиационные фирмы не могли отстать и предложили свои концепции многоразовых транспортных космических систем в рамках научно-исследовательской темы "Орел" под эгидой Росавиакосмоса по созданию РАКСа - Российского авиакосмического самолета . Одноступенчатая "туполевская" разработка получила индекс Ту-2000, двухступенчатая "микояновская" - МиГ АКС.

Но в истории нашей космонавтики существовали и бескрылые многоразовые спускаемые аппараты с малым аэродинамическим качеством, использовавшиеся в составе одноразовых космических кораблей и орбитальных станций. Наибольшего успеха в создании таких пилотируемых аппаратов достигло ОКБ-52 Владимира Челомея. Отказавшись участвовать в разработке "Бурана", Челомей начал в инициативном порядке разрабатывать собственный крылатый корабль ЛКС (Легкий космический самолет) "малой" размерности со стартовым весом до 20 т под свой носитель "Протон" . Но программа ЛКС не получила поддержки, и в ОКБ-52 продолжили разработку трехместного возвращаемого аппарата (ВА) в многоразовом исполнении для использования в составе транспортного корабля снабжения (ТКС) 11Ф72 и военной орбитальной станции "Алмаз" (11Ф71).
ВА имел стартовую массу 7,3 т, максимальные длину 10,3 м и диаметр 2,79 м. Масса аппарата на орбите после сброса аварийной двигательной установки - более 4,8 т, при спуске с орбиты - около 3,8 м. Суммарный "обитаемый" объем ВА - 3,5 м 3 . Максимальная масса возвращаемого полезного груза при запуске ТКС с экипажем - до 50 кг, без экипажа - 500 кг. Время автономного полета ВА по орбите - 3 час; максимальное время нахождения экипажа в ВА - 31 час.
Оборудованный неотделяемым лобовым теплозащитным экраном и запущенный на орбиту второй раз 30 марта 1978 года под обозначением "Космос-997" (первый полет - 15 декабря 1976 года под именем "Космос-881"), именно ВА Челомея 009А/П2 стал первым в мире многоразовым космическим аппаратом. Однако по настоянию Д.Ф.Устинова программа "Алмаз" была закрыта, оставив обширный задел, использующийся и сегодня при изготовлении модулей российского сегмента МКС.

С начала 1985 года подобный проект - многоразовый космический корабль "Заря" (14Ф70) - разрабатывался и в НПО "Энергия" под ракету "Зенит-2" . Аппарат состоял из многоразового корабля, по форме напоминавшего увеличенный спускаемый аппарат корабля "Союз ", и сбрасываемый перед сходом с орбиты одноразовый навесной отсек. Корабль "Заря " имел диаметр 4,1 м, длину 5 м, максимальную массу около 15 т при выведении на опорную орбиту высотой до 190 км и наклонением 51,6 0 , в том числе массу доставляемых и возвращаемых грузов соответственно 2,5 т и 1,5-2 т при экипаже из двух космонавтов; 3 т и 2-2,5 т при полете без экипажа, или экипажа до восьми космонавтов. Возвращаемый корабль мог эксплуатироваться в течение 30-50 полетов. Многоразовость достигалось за счет применения "бурановских" теплозащитных материалов и новой схемы вертикальной посадки на Землю с помощью многоразовых ЖРД для гашения вертикальной и горизонтальной скоростей посадки и сотового амортизатора корпуса корабля для исключения его повреждений. Отличительной особенностью "Зари " было размещение посадочных двигателей (24 ЖРД тягой 1,5 тс каждый, работающих на компонентах перекись водорода - керосин, и 16 однокомпонентных ЖРД тягой 62 кгс каждый для управления спуском) внутри прочного корпуса корабля.
Проект "Зари " был доведен до стадии завершения выпуска рабочей документации, но в январе 1989 года был закрыт из-за отсутствия финансирования.

Логика развития пилотируемой космонавтики и экономические реалии России поставили задачу разработки нового пилотируемого корабля - вместительного, недорогого и эффективного транспортного средства для ближнего космоса. Таким и стал проект космического корабля "Клипер ", вобравшего в себя опыт проектирования многоразовых кораблей. Будем надеяться, что у России хватит разума (а главное, средств!) реализовать новый проект и " " В.Лебедева;
- статью "Как родился проект "Энергия-Буран ", автор - В.Глад кий;
- статью "Многоразовый корабль с вертикальной посадкой " И.Афанасьева;

- фоторепортаж самолет-аналог БТС-02 ГЛИ на авиасалоне МАКС-99;
- "л етающие аналоги ОК "Буран" и рассказ о передаче в лизинг БТС-02 и репортаж об отправке

При создании этой страницы были использованы материалы из статьи С.Александрова "Вершина" в журнале "Техника Молодежи", N2/1999 стр 17-19, 24-25

До сих пор не утихают споры, а вообще, был ли нужен Буран"? Встречаются даже мнения, что Советский Союз погубили две вещи — война в Афганистане и непомерные расходы на «Буран». Так ли это? Зачем и для чего создавался« Буран», и кому он был нужен? Почему он так похож на заокеанский« Шаттл»? Как он был устроен? Чем является« Буран» для нашей космонавтики — «тупиковой ветвью» или техническим прорывом, намного опередившим свое время? Кто его создавал и что он мог дать нашей стране? Ну и конечно, самый главный вопрос — почему он не летает? Мы открываем рубрику в нашем журнале, в которой постараемся ответить на эти вопросы. Кроме« Бурана» мы расскажем и о других многоразовых космических кораблях, как летающих сегодня, так и не ушедших дальше конструкторских кульманов.

Создатель «Энергии» Валентин Глушко

«Отец» «Бурана» Глеб Лозино-Лозинский

КА «Бор-4» после полета

Так мог бы стыковаться «Буран» с МКС

Предполагавшиеся полезные нагрузки «Бурана» в несостоявшемся пилотируемом полете

Пятнадцать лет назад, 15 ноября 1988 года, совершил свой полет, закончившийся не повторенной до сих пор автоматической посадкой на посадочную полосу Байконура, советский многоразовый космический корабль «Буран». Самый масштабный, самый дорогой и продолжительный проект отечественной космонавтики был прекращен после триумфального единственного полета. По количеству затраченных материально-технических и финансовых ресурсов, человеческой энергии и интеллекта программа создания «Бурана» превосходит все предыдущие космические программы СССР, не говоря уже о сегодняшней России.

Предыстория

Несмотря на то, что впервые идея космического корабля-аэроплана была высказана русским инженером Фридрихом Цандером в 1921 году, идея крылатых многоразовых космических кораблей не вызывала особого энтузиазма у отечественных конструкторов — решение получалось чрезмерно сложным. Хотя для первого космонавта наряду с «гагаринским» «Востоком» ОКБ-256 Павла Цыбина проектировало крылатый космический корабль классической аэродинамической схемы — ПКА (Планирующий Космический Аппарат). Утвержденный в мае 1957 года эскизный проект предусматривал трапециевидное крыло и нормальное хвостовое оперение. Стартовать ПКА должен был на королевской ракете-носителе Р-7. Аппарат имел длину 9,4 м, размах крыла — 5,5 м, ширину фюзеляжа — 3 м, стартовую массу 4,7 т, посадочную — 2,6 т и был рассчитан на 27 часов полета. Экипаж состоял из одного космонавта, который перед посадкой аппарата должен был катапультироваться. Особенностью проекта было складывание крыла в аэродинамическую «тень» фюзеляжа на участке интенсивного торможения в атмосфере. Успешные испытания «Востока», с одной стороны, и нерешенные технические проблемы с крылатым кораблем — с другой, вызвали прекращение работ по ПКА и надолго определили облик советских космических аппаратов.

Работы же по крылатым космическим кораблям разворачивались только в ответ на американский вызов, при активной поддержке военных. Например, в начале 60-х в США начались работы по созданию небольшого одноместного возвращаемого ракетоплана Dyna-Soar (Dynamic Soaring). Советским ответом стало развертывание работ по созданию отечественных орбитальных и воздушно-космических самолетов в авиационных конструкторских бюро. В ОКБ Челомея были разработаны проекты ракетопланов Р-1 и Р-2, в КБ Туполева — Ту-130 и Ту-136.

Но наибольших успехов из всех авиационных фирм добилось ОКБ-155 Микояна, в котором во второй половине 60-х годов под руководством Глеба Лозино-Лозинского были развернуты работы по проекту «Спираль», ставшему предтечей «Бурана».

Проект предусматривал создание двухступенчатой авиационно-космической системы, состоящей из гиперзвукового самолета-разгонщика и орбитального самолета, выполненного по схеме «несущий корпус», выводимого в космос с помощью двухступенчатой ракетной ступени. Работы завершились атмосферными полетами пилотируемого самолета-аналога орбитального самолета, названного ЭПОС (Экспериментальный Пилотируемый Орбитальный Самолет). Проект «Спираль» значительно опередил свое время, и наш рассказ о нем еще впереди.

В рамках «Спирали», уже фактически на стадии закрытия проекта, для проведения натурных испытаний были выполнены ракетные запуски на орбиту искусственных спутников Земли и суборбитальные траектории аппаратов «БОР» (Беспилотный Орбитальный Ракетоплан), которые сначала представляли собой уменьшенные копии ЭПОСа («БОР-4»), а затем и масштабные макеты космического корабля «Буран» («БОР-5»). Падение интереса американцев к космическим ракетопланам повлекло фактическое прекращение работ по этой тематике и в СССР.

Страх перед неизвестным

К 70-м годам стало окончательно ясно, что военное противостояние перенесется в космос. Возникла потребность в средствах не только для построения орбитальных систем, но и для их обслуживания, профилактики, восстановления. Особенно это касалось орбитальных ядерных реакторов, без которых не могли бы существовать боевые системы будущего. Советские конструкторы склонялись к хорошо зарекомендовавшим себя одноразовым системам.

Но 5 января 1972 года президент США Ричард Никсон утвердил программу создания многоразовой космической системы (МКС) Space Shuttle, разрабатывавшейся с участием Пентагона. Автоматически проснулся интерес к таким системам и в Советском Союзе — уже в марте 1972 года обсуждение МКС состоялось на Комиссии Президиума Совета Министров СССР по военно-промышленным вопросам (ВПК). В конце апреля этого же года состоялось расширенное обсуждение этой темы с участием главных конструкторов. Общие выводы сводились к следующему:

— МКС для вывода полезных грузов на орбиту не эффективны и существенно уступают по стоимости одноразовым ракетам-носителям;

— серьезных задач, требующих возврата грузов с орбиты, — нет;

— создаваемая американцами МКС не несет военной угрозы.

Стало очевидно, что США создают систему, не представляющую непосредственной угрозы, но могущую угрожать безопасности страны в будущем. Именно неизвестность будущих задач «Шаттла» с одновременным пониманием его потенциала и обусловили в дальнейшем стратегию его копирования для обеспечения аналогичных возможностей для адекватного ответа будущим вызовам вероятного противника.

В чем заключались «будущие вызовы»? Советские ученые дали волю своей фантазии. Исследования, проведенные в институте прикладной механики АН СССР (теперь институт имени М.В.Келдыша), показали, что «Спейс Шаттл» дает возможность, осуществляя маневр возврата с полу- или одновитковой орбиты по традиционной к тому времени трассе, проходящей с юга над Москвой и Ленинградом, сделав некоторое снижение (нырок), в их районе сбросить ядерный заряд и парализовать систему боевого управления Советского Союза. Другие исследователи, анализируя размеры транспортного отсека шаттла, пришли к выводу, что челнок может «красть» с орбиты целые советские космические станции, прямо как в фильмах про Джеймса Бонда. Простые аргументы, что для противодействия такой «краже» достаточно разместить на космическом объекте пару килограммов взрывчатки, почему-то не работали.

Страх перед неизвестным оказался сильнее реальных страхов: 27 декабря 1973 года было принято решение ВПК, предписывавшее разработать технические предложения по МКС в трех вариантах — на базе лунной ракеты Н-1, ракеты-носителя «Протон"и на базе «Спирали». Работы по «Спирали» не пользовались поддержкой первых лиц государства, курировавших космонавтику, и фактически были свернуты к 1976 году. Такая же участь постигла и ракету Н-1.

Ракетные летательные аппараты

В мае 1974 года бывшие королевские КБ и заводы объединяют в новое НПО «Энергия», а Директором и Генеральным конструктором назначают Валентина Глушко, горящего желанием поставить победную точку в давнем споре с Королевым по поводу конструкции «лунной» суперракеты и взять реванш, войдя в историю как создатель лунной базы.

Сразу после утверждения в должности Глушко приостанавливает деятельность отдела по МКС — он был принципиальным противником «многоразовой» тематики! Рассказывают даже, что сразу после прибытия в Подлипки Глушко высказался конкретно: «Не знаю пока, чем мы с вами будем заниматься, но точно знаю, чего мы делать НЕ будем. Не будем копировать американский «Шаттл»!" Глушко небезосновательно считал, что работа над многоразовым кораблем закроет лунные программы (что впоследствии и получилось), затормозит работы по орбитальным станциям и помешает созданию его семейства новых тяжелых ракет. Через три месяца, 13 августа, Глушко предлагает свою космическую программу, основанную на разработке серии тяжелых ракет, получивших индекс РЛА (Ракетные Летательные Аппараты), которые создавались путем параллельного соединения различного числа унифицированных блоков диаметром 6 м. На каждом блоке предполагалось установить новый мощный четырехкамерный кислородно-керосиновый ЖРД тягой более 800 тс в пустоте. Ракеты отличались друг от друга количеством одинаковых блоков в составе первой ступени: РЛА-120 грузоподъемностью 30 тонн на орбите (первая ступень — 2 блока) для решения военных задач и создания постоянной орбитальной станции; РЛА-135 грузоподъемностью 100 тонн (первая ступень — 4 блока) для создания лунной базы; РЛА-150 грузоподъемностью 250 тонн (первая ступень — 8 блоков) для полетов на Марс.

Волевое решение

Однако опала многоразовых систем продолжалась на «Энергии» менее года. Под давлением Дмитрия Устинова вновь появилось направление МКС. Работы были начаты в рамках подготовки «Комплексной ракетно-космической программы», предусматривавшей создание унифицированного ряда ракетных летательных аппаратов для высадки пилотируемой экспедиции на Луну и постройки лунной базы. Пытаясь сохранить свою программу создания тяжелых ракет, Глушко предложил использовать будущую ракету РЛА-135 в качестве носителя многоразового корабля. Новый том программы — 1Б — назывался «Многоразовая космическая система «Буран».

Программу с самого начала раздирали противоположные требования: с одной стороны, разработчики постоянно испытывали жесткое давление «сверху», направленное на копирование «Шаттла» с целью снижения технического риска, сроков и стоимости разработки, с другой — Глушко жестко пытался сохранить свою программу унифицированных ракет.

При формировании облика «Бурана» на начальном этапе рассматривались два варианта: первый — самолетная схема с горизонтальной посадкой и расположением маршевых двигателей второй ступени в хвостовой части (аналог «Шаттла»); второй — бескрылая схема с вертикальной посадкой. Основное ожидаемое преимущество второго варианта — сокращение сроков разработки за счет использования опыта по КК «Союз».

Вариант бескрылого корабля состоял из кабины экипажа в передней конической части, цилиндрического грузового отсека в центральной части и конического хвостового отсека с запасом топлива и двигательной установкой для маневрирования на орбите. Предполагалось, что после запуска (корабль располагался сверху ракеты) и работы на орбите корабль входит в плотные слои атмосферы и совершает управляемый спуск и парашютную посадку на лыжи с использованием пороховых двигателей мягкой посадки. Проблема дальности планирования решалась приданием треугольной (в сечении) формы корпусу корабля.

В результате дальнейших исследований для «Бурана» была принята самолетная схема с горизонтальной посадкой как наиболее отвечающая требованиям, предъявляемым военными. В целом для ракеты выбрали вариант с боковым расположением полезного груза при размещении неспасаемых маршевых двигателей на центральном блоке второй ступени носителя. Основными факторами в выборе такой компоновки была неуверенность в возможности разработки многоразового водородного ракетного двигателя в сжатые сроки и желание сохранить полноценную универсальную ракету-носитель, способную самостоятельно выводить в космос не только многоразовый орбитальный корабль, но и другие полезные грузы больших масс и габаритов. Забегая вперед, отметим, что такое решение себя оправдало: «Энергия» обеспечивала выведение в космос аппаратов массой в пять раз больше, чем ракета-носитель «Протон», и в три раза — чем «Спейс Шаттл».

Работы

Широкомасштабные работы развернулись после выхода секретного постановления Совета Министров СССР в феврале 1976 года. В Министерстве авиационной промышленности организовывалось НПО «Молния» под руководством Глеба Лозино-Лозинского для создания космического корабля с разработкой всех средств спуска в атмосфере и посадки. Изготовление и сборка планера «Буранов» были поручены Тушинскому машиностроительному заводу. Авиационщики также отвечали за строительство посадочного комплекса с необходимым оборудованием.

Опираясь на свой опыт, Лозино-Лозинский совместно с ЦАГИ предложил для корабля использовать схему «несущий корпус» с плавным сопряжением крыла с фюзеляжем на основе увеличенного орбитального самолета «Спирали». И хотя такой вариант имел явные компоновочные преимущества, решили не рисковать — 11 июня 1976 года Совет главных конструкторов «волевым порядком» окончательно утвердил вариант корабля с горизонтальной посадкой — моноплана со свободнонесущим низкорасположенным крылом двойной стреловидности и двумя воздушно-реактивными двигателями в хвостовой части, обеспечивавшими глубокое маневрирование при посадке.

Действующие лица определились. Оставалось только сделать корабль и носитель.

Многоразовый орбитальный корабль (по терминологии Минавиапрома - орбитальный самолет) "Буран"

(изделие 11Ф35)

"Буран " - советский крылатый орбитальный корабль многоразового использования. Предназначен для решения ряда оборонных задач , выведения на орбиту вокруг Земли различных космических объектов и их обслуживания; доставки модулей и персонала для сборки на орбите крупногабаритных сооружений и межпланетных комплексов; возврата на Землю неисправных или выработавших свой ресурс спутников; освоения оборудования и технологий космического производства и доставки продукции на Землю; выполнения других грузопассажирских перевозок по маршруту Земля-космос-Земля.

Внутренняя компоновка , конструкция . В носовой части "Бурана" расположены герметичная вставная кабина объемом 73 кубических метров для экипажа (2 - 4 чел.) и пассажиров (до 6 чел.), отсеки бортового оборудования и носовой блок двигателей управления.

Среднюю часть занимает грузовой отсек с открывающимися вверх створками, в котором размещаются манипуляторы для выполнения погрузочно-разгрузочных и монтажно-сборочных работ и различных операций по обслуживанию космических объектов. Под грузовым отсеком расположены агрегаты систем энергоснабжения и обеспечения температурного режима. В хвостовом отсеке (см. рис.) установлены агрегаты двигательной установки , топливные баки, агрегаты гидросистемы . В конструкции "Бурана" использованы алюминиевые сплавы, титан, сталь и другие материалы. Чтобы противостоять аэродинамическому нагреванию при спуске с орбиты, внешняя поверхность ОК имеет теплозащитное покрытие , рассчитанное на многоразовое использование.

На менее подверженную нагреву верхнюю поверхность устанавливается гибкая теплозащита , а другие поверхности покрыты теплозащитными плитками, изготовленными на основе волокон кварца и выдерживающими температуру до 1300ºС. В особо теплонапряженных зонах (в носках фюзеляжа и крыла, где температура достигает 1500º - 1600ºС) применен композиционный материал типа углерод-углерод. Этап наиболее интенсивного нагревания ОК сопровождается образованием вокруг него слоя воздушной плазмы, однако конструкция ОК не прогревается к концу полета более чем до 160ºС. Каждая из 38600 плиток имеет конкретное место установки , обусловленное теоретическими обводами корпуса ОК. Для снижения тепловых нагрузок выбраны также большие значения радиусов затупления носков крыла и фюзеляжа. Расчетный ресурс конструкции - 100 орбитальных полетов.

Внутренняя компоновка "Бурана" на плакате НПО "Энергия" (ныне - Ракетно-космическая корпорация "Энергия"). Пояснение по обозначению корабля: все орбитальные корабли имели шифр 11Ф35. Окончательными планами планировалось построить пять летных кораблей, двумя сериями . Будучи первым, "Буран" имел авиационное (на НПО "Молния" и Тушинском машиностроительном заводе) обозначение 1.01 (первая серия - первый корабль) . В НПО "Энергия" существовала другая система обозначений, согласно которой "Буран" идентифицировался как 1К - первый корабль. Так как в каждом полете корабль должен был выполнять разные задачи, то к индексу корабля добавлялся номер полета - 1К1 - первый корабль, первый полет.

Двигательная установка и бортовое оборудование. Объединенная двигательная установка (ОДУ) обеспечивает довыведение ОК на опорную орбиту, выполнение межорбитальных переходов (коррекций), точное маневрирование вблизи обслуживаемых орбитальных комплексов, ориентацию и стабилизацию ОК, его торможение для схода с орбиты. ОДУ состоит из двух двигателей орбитального маневрирования (на рис.справа), работающих на углеводородном горючем и жидком кислороде, и 46 двигателей газодинамического управления, сгрупированных в три блока (один носовой блок и два хвостовых). Более 50 бортовых систем, включающих радиотехнические, ТВ и телеметрические комплексы, системы жизнеобеспечения, терморегулирования, навигации, энергоснабжения и другие, объединены на основе ЭВМ в единый бортовой комплекс , который обеспечивает продолжительность пребывания "Бурана" на орбите до 30 суток.

Теплота, выделяемая бортовым оборудованием, с помощью теплоносителя подводится к радиационным теплообменникам, установленным на внутренней стороне створок грузового отсека, и излучается в окружающее пространство (в полете на орбите створки открыты).

Геометрические и весовые характеристики . Длина "Бурана" составляет 35,4 м, высота 16,5 м (при выпущенном шасси), размах крыла около 24 м, площадь крыла 250 квадратных метров, ширина фюзеляжа 5,6 м, высота 6,2 м; диаметр грузового отсека 4,6 м, его длина 18 м. Стартовая масса ОК до 105 т, масса груза, доставляемого на орбиту, до 30 т, возвращаемого с орбиты - до 15 т. Максимальный запас топлива до 14 т.

Большие габаритные размеры "Бурана" затрудняют использование наземных средств транспортировки, поэтому на космодром он (так же, как и блоки РН) доставляется по воздуху модифицированным для этих целей самолетом ВМ-Т Экспериментального машиностроительного завода им. В.М.Мясищева (при этом с "Бурана" снимается киль и масса доводится до 50 т) или многоцелевым транспортным самолетом Ан-225 в полностью собранном виде.

Корабли второй серии являлись венцом инженерного искусства нашего авиастроения, вершиной отечественной пилотируемой космонавтики. Эти корабли должны были стать по-настоящему всепогодными и круглосуточными пилотируемыми орбитальными самолетами с улучшенными летно-техническими характеристиками и значительно возросшими возможностями за счет множества конструктивных изменений и доработок. В частности, на них увеличилось количество маневровых двигателей за счет нового - Узнать гораздо больше про крылатые космические корабли вы сможете из нашей книги (см. обложку слева) "Космические крылья", (М.:ООО "ЛенТа странствий", 2009. - 496с.:ил.) На сегодняшний день - это самое полное русскоязычное энциклопедическое повествование о десятках отечественных и зарубежных проектах. Вот как об этом сказано в аннотации книги:
"
Книга посвящена этапу возникновения и развития крылатых ракетно-космических систем, которые рождались на "стыке трех стихий" - авиации, ракетной техники и космонавтики, и вобрали в себя не только конструктивные особенности данных видов техники, но и весь ворох сопровождающих их технических и военно-политических проблем.
Подробно излагается история создания воздушно космических аппаратов мира - от первых самолетов с ракетными двигателями времен II Мировой войны до начала реализации программ Space Shuttle (США) и "Энергия-Буран" (СССР).
Книга, рассчитанная на широкий круг читателей, интересующихся историей авиации и космонавтики, особенностями конструкции и неожиданными поворотами судьбы первых проектов авиационно-космических систем, содержит на 496 страницах около 700 иллюстраций, значительная часть которых публикуется впервые."
Содействие в подготовке публикации оказали такие предприятия авиационно-космического комплекса России, как НПО " Молния" , НПО машиностроения, ФГУП РСК " МиГ" , ЛИИ имени М.М.Громова, ЦАГИ, а также музей Морского космического флота. Вступительная статья написана генералом В.Е.Гудилиным , легендарной личностью нашей космонавтики.
Получить более полное представление о книге, ее цене и возможностях приобретения можно на отдельной странице . Там же можно познакомиться с ее содержанием, оформлением, вступительной статьей Владимира Гудилина , предисловием авторов и выходными данными издания.

... Космодром Байконур 15 ноября 1988 г. На старте универсальная транспортная ракетно-космическая система "Энергия-Буран".

К этому дню готовились более 12 лет. И еще 17 дней из-за отмены старта 29 октября 1988 г., когда за 51 секунд до него не прошло нормальное отведение площадки с приборами прицеливания и была выдана команда на отмену старта. А затем слив компонентов топлива, профилактика, выявление причин отказа и их устранение. "Не торопиться! - предупреждал председатель Государственной комиссии В.Х.Догужиев. - Прежде всего безопасность!"

Все происходило на глазах миллионов телезрителей... Очень высоко напряжение ожидания...

В 05:50, после десятиминутного разогрева двигателей, с ВПП аэродрома Юбилейный в воздух взлетает самолет оптико-телевизионного наблюдения (СОТН) МиГ-25 - борт 22. Самолет пилотирует Магомед Толбоев , во второй кабине - телеоператор Сергей Жадовский. В задачу экипажа СОТН входит ведение телерепортажа переносной телекамерой и наблюдение старта "Бурана" выше слоев облачности. К этому моменту в воздухе на разных высотных эшелонах уже находятся несколько самолетов - на высоте около 5000 метров и удалении 4-6 км от стартового комплекса патрулирует Ан-26 и несколько выше его, следуя по заранее спланированным маршрутам (зонам) на удалении 60 км от старта, дежурит самолет метеоразведки.

На удалении 200-300 км от старта барражирует самолет-лаборатория Ту-134БВ, контролируя с воздуха радиотехнические средства системы автоматической посадки. Утром, до старта, Ту-134БВ уже выполнил два контрольных полета на удалении 150-200 км от старта, по которым было выдано заключение о готовности посадочного комплекса.

Ровно за десять минут до старта нажатием кнопки испытатель лаборатории комплекса автономного управления Владимир Артемьев выдает команду "Пуск" - дальше всем управляет только автоматика.

За одну минуту 16 секунд до старта весь комплекс "Энергия-Буран" переходит на автономное энергопитание. Теперь все готово к старту...

Примечание: в

случае появления сообщения "Файл... не найден" начинайте воспроизведение видеофайла, кликнув на соответствующий значок


"Буран" стартовал в свой единственный триумфальный полет точно по циклограмме - команда "Контакт подъема", фиксирующая разрыв последних коммуникаций между ракетой и стартовым комплексом (к этому моменту ракета успевает подняться на высоту 20 см), прошла в 6:00:1.25 по московскому времени.

(Звукозапись старта wav /MP3 )

Картина старта была яркой и скоротечной. Свет прожекторов на стартовом комплексе исчез в клубах выхлопных газов, из которых, подсвечивая это огромное бурлящее рукотворное облако огненно-красным светом, медленно поднялась ракета, как комета со сверкающим ядром и хвостом, направленным к земле! Обидно коротким было это зрелище! Через несколько секунд только затухающее пятно света в покрове низких облаков свидетельствовало о неистовой силе, которая несла "Буран" через облака. К завываниям ветра добавился мощный низкий рокочущий звук и, казалось, будто он идет отовсюду, что он исходит от низких свинцовых облаков .

Через 5 секунд начался разворот комплекса "Энергия-Буран" по тангажу, еще через секунду - разворот на 28.7 º по крену.

Дальше только несколько человек непосредственно наблюдали за полетом "Бурана" - это был экипаж транспортного самолета Ан-26, взлетевшего с аэродрома "Крайний" (командир Александр Борунов), с борта которого через боковые иллюминаторы тремя (!) операторами Центрального телевидения велась съемка, и экипаж СОТН МиГ-25, который вел репортаж из стратосферы, засняв момент отделения параблоков первой ступени.

Зал в бункере управления замер, казалось, сгустившееся напряжение можно было потрогать...

На 30-й секунде полета началось дросселирование двигателей РД-0120 до 70% тяги, на 38-ой секунде, при прохождении участка максимального скоростного напора - двигателей РД-170 .

Система управления вела ракету точно внутри расчетной трубки (коридора) допустимых траекторий , без каких-либо отклонений.

Все присутствующие в зале управления, затаив дыхание, следят за полетом. Волнение нарастает...

77-я секунда - кончилось дросселирование тяги двигателей блока Ц и они плавно переходят на основной режим .

На 109-й секунде снижается тяга двигателей для ограничения перегрузки до 2.95g , и через 21 сек начинается перевод двигателей блоков А первой ступени на режим на конечной ступени (49,5%) тяги.

Проходит еще 13 секунд, и по громкой связи раздается: "Есть выключение двигателей первой ступени!" Фактически команда на выключение двигателей блоков 10А и 30А прошла на 144-й секунде полета, а на выключение двигателей блоков 20А и 40А еще через 0,15 секунд. Разновременное выключение противоположных боковых блоков предотвратило возникновение возмущающих моментов при движении ракеты и обеспечило отсутствие резких продольных перегрузок за счет более плавного падения суммарной тяги.

Через 8 сек, на высоте 53,7 км при скорости 1,8 км/сек, произошло отделение параблоков, которые спустя 4 с половиной минуты упали в 426 км от старта.

На четвертой минуте полета с правого экрана в Главном зале подмосковного ЦУПа, который на участке выведения просто наблюдал за происходящим, исчезла картинка с изображением основных этапов маневра возврата - после 190-й секунды полета в случае возникновения нештатной ситуации реализация маневра возврата с посадкой корабля на ВПП Байконура стала невозможной.

Сразу после выхода комплекса из низкой облачности телекамера "Бурана", расположенная на верхнем иллюминаторе контроля стыковки и обозревающая верхнюю полусферу корабля , начала передавать в Центр управления полетом картинку, обошедшую все мировые информационные агентства. Из-за постоянно увеличивающегося в процессе выведения угла тангажа "Буран" с течением времени все больше как бы "ложился на спину", поэтому камера, установленная у него "на затылке", уверенно показывала черно-белое изображение проплывающей под ним земной поверхности. На 320-секунде камера зафиксировала пролетевший мимо кабины корабля небольшой фрагмент сантиметрового размера , который, скорее всего, был отколовшимся осколком теплозащитного покрытия второй ступени .

На 413-й секунде началось дросселирование двигателей второй ступени ; еще через 28 секунд они переводятся на конечную ступень тяги. Томительные 26 секунд и... на 467-й секунде полета оператор сообщает: "Есть выключение двигателей второй ступени !"

В течение 15 секунд "Буран" уже своими двигателями "успокоил" всю связку и на 482-й секунде полета (импульсом управляющих двигателей 2 м/с) отделился от блока Ц , выйдя на орбиту с высотой условного перигея -11.2 км и апогея 154.2 км. С этого момента управление кораблем передается с командного центра на Байконуре в подмосковный ЦУП.

В зале, по заведенной традиции, ни шума, ни восклицаний. В соответствии с жестким указанием технического руководителя пуском Б.И.Губанова все присутствующие на командном пункте остаются на своих рабочих местах - только у ракетчиков горят глаза. Под столом они пожимают друг другу руки - задача носителя выполнена. Теперь все дело за кораблем.

Через три с половиной минуты "Буран", в апогее своей траектории, находясь в положении "лежа на спине", выдал первый 67-секундный корректирующий импульс, получив приращение орбитальной скорости 66.7 м/сек и оказавшись на промежуточной орбите с высотой перигея 114 км и апогеем 256 км. Управленцы на Земле вздохнули с облегчением: "Будет первый виток!"

На втором витке, на 67-й минуте полета, вне зоны радиосвязи, "Буран" начал готовится к посадке - в 7:31:50 с магнитной ленты бортового магнитофона перезагрузилась оперативная память бортового вычислительного комплекса для работы на участке спуска и началась перекачка топлива из носовых баков в кормовые для обеспечения требуемой посадочной центровки.

В 07:57 на ВПП выкатили вновь заправленный СОТН МиГ-25 (ЛЛ-22), и в 08:17 М.Толбоев и С.Жадовский снова заняли свои места в раздельных кабинах самолета. После буксировки МиГ-25 на ВПП на рулежных дорожках начала выстраиваться техника комплекса средств наземного обслуживания (КСНО).

В это время в космосе орбитальный корабль построил ориентацию для выдачи тормозного импульса, снова повернувшись в положение "спиной" к Земле, но на этот раз хвостом "вперед-вверх". В 8:20, находясь над Тихим океаном в точке 45 º ю.ш. и 135 º з.д., в зоне видимости кораблей слежения "Космонавт Георгий Добровольский" и "Маршал Неделин", "Буран" включил на 158 секунд один из двигателей орбитального маневрирования для выдачи тормозного импульса 162.4 м/с. После этого корабль построил посадочную ("самолетную") ориентацию, развернувшись "по полету" и подняв "нос" на 37,39 º к горизонту для обеспечения входа в атмосферу с углом атаки 38,3 º . Снижаясь, высоту 120 км корабль прошел в 08:48:11.

Вход в атмосферу (с условной границей на высоте Н=100 км) произошел в 08:51 под углом -0.91 º со скоростью 27330 км/ч над Атлантикой в точке с координатами 14.9 º ю.ш. и 340.5 º з.д. на расстоянии 8270 км от посадочного комплекса Байконура.

Погода в районе аэродрома посадки существенно не улучшилась. По-прежнему дул сильный, порывистый ветер. Спасало то, что ветер дул почти вдоль посадочной полосы - направление ветра 210 º , скорость 15 м/сек, порывы до 18-20 м/сек. Ветер (его уточненные скорость и направление были переданы на борт корабля перед выдачей тормозного импульса) однозначно определил направление захода на посадку с северо-восточного направления, на ВПП посадочного комплекса (аэродрома Юбилейный) № 26 (истинный посадочный курс № 2 с азимутом 246 º 36"22""). Таким образом, ветер для планирующего корабля становился встречным (под 36 º слева). Та же полоса при заходе на нее с юго-западного направления имела уже другой номер - № 06.

В 08:47 запускаются двигатели МиГ-25, и в 08:52 Толбоев получает разрешение на взлет. Через несколько минут (в 08:57) самолет второй раз за это утро стремительно взлетает в хмурое небо, и, после крутого левого виража исчезает в облаках, уходя на встречу с "Бураном".

Штурман-оператор Валерий Корсак начал выводить его в зону ожидания для встречи орбитального корабля. Предстояло выполнить не совсем обычное наведение "перехватчика" на воздушную цель. В практике противовоздушной обороны принято, что перехватчик догоняет цель. Здесь же цель сама должна была догнать "перехватчик", причем ее скорость все время уменьшалась, изменяясь в широких пределах. К этому следует добавить и постоянное уменьшение высоты с большой вертикальной скоростью, и переменчивый курс цели, но самое главное - это большая степень неопределенности траектории после выхода корабля из участка плазмы и на снижении. Со всеми этими сложностями самолет следовало вывести на дальность визуальной видимости корабля - 5 км, ведь бортовая РЛС отсутствовала, так как это все-таки была летающая лаборатория на базе МиГ-25, а не полноценный строевой перехватчик...

В этот момент "Буран" огненной кометой пронзает верхние слои атмосферы. В 8:53 на высоте 90 километров из-за образования облака плазмы на 18 минут с ним прекратилась радиосвязь (д вижение "Бурана" в плазме более чем в три раза продолжительнее, чем при спуске одноразовых космических кораблей типа "Союз" ) .

Полет

"Бурана" на участке гиперзвукового планирования, в облаке высокотемпературной плазмы (другие иллюстрации полета см. в нашем фотоархиве).

В период отсутствия радиосвязи контроль за полетом "Бурана" осуществлялся национальными средствами системы предупреждения о ракетном нападении. Для этого использовались радиолокационные средства контроля космического пространства с "загоризонтными" РЛС, которые через командный пункт Ракетных войск стратегического назначения Голицино-2 (в подмосковном г.Краснознаменск) постоянно передавали информацию о параметрах траектории снижения "Бурана" в верхних слоях атмосферы с прохождением заданных рубежей. В 08:55 была пройдена высота 80 км, в 09:06 - 65 км.

В процессе снижения для рассеивания кинетической энергии "Буран" за счет программного изменения крена выполнил протяженную S -образную "змейку", одновременно реализуя боковой маневр в 570 км вправо от плоскости орбиты. При перекладке максимальная величина крена достигала 104 º влево и 102 º вправо. Именно в момент интенсивного маневрирования с крыла на крыло (скорость перекладки по крену доходила до 5,7 град/сек) в поле зрения бортовой телекамеры попал некий фрагмент, падающий сверху-внизв межкабинном пространстве, заставивший понервничать некоторых специалистов на Земле: "Ну все, корабль начал разваливаться!" Еще через несколько секунд камера даже засняла частичное разрушение плитки рядом с верхним контуром иллюминатора...

На участке аэродинамического торможения датчики в носовой части фюзеляжа зарегистрировали температуру 907 º С, на носках крыла 924 º С. Максимальные расчетные температуры нагрева не были достигнуты из-за меньшего запаса запасенной кинетической энергии (стартовая масса корабля в первом полете была 79,4 т при расчетной 105 т) и меньшей интенсивности торможения (величина реализованного бокового маневра в первом полете была в три раза меньше максимально возможных 1700 км). Тем не менее, бортовая телекамера зафиксировала попадание на лобовое остекление ошметков теплозащиты в виде клякс, которые затем в течение нескольких десятков секунд полностью выгорали и уносились встречным воздушным потоком. Это были "брызги" от выгорающего лакокрасочного покрытия теплозащитного покрытия (ТЗП) , попадающие на лобовые стекла из-за снижения угла атаки по мере спуска в атмосфере: после падения скорости до М=12 угол атаки начал плавно уменьшаться до α=20 º при М=4,1 и до α=10 º при М=2.

Послеполетный анализ показал, что в диапазоне высот 65...20 км (М=17,6...2) фактические значения коэффициента подъемной силы С у постоянно превышали расчетные на 3...6%, оставаясь, тем не менее, в допустимых пределах. Это привело к тому, что при совпадении реального коэффициента сопротивления с расчетным фактическое значение балансировочного качества у "Бурана" при скоростях М=13...2 оказалось на 5...7% выше расчетного, находясь на верхней границе допустимых значений. Проще говоря, "Буран" летал лучше, чем от него ожидали, и это после многолетних продувок масштабных моделей в аэродинамических трубах и суборбитальных полетов "БОРов-5 "!

После прохождения участка плазмообразования в 09:11, на высоте 50 км и удалении от посадочной полосы 550 км, "Буран" вышел на связь со станциями слежения в районе посадки. Его скорость в этот момент в 10 раз превышала скорость звука. В ЦУПе по громкой связи прошли доклады: "Есть прием телеметрии!", "Есть обнаружение корабля средствами посадочных локаторов!", "Системы корабля работают нормально!"

В диапазоне скоростей М=10...6 было отмечено максимальное отклонение балансировочного щитка - система управления старалась разгрузить элероны для интенсивного маневрирования.До посадки оставалось чуть больше 10 минут...

Рубеж высоты 40 км корабль прошел в 09:15. Снижаясь, на высоте 35 км, в районе восточной береговой линии Аральского моря (на расстоянии 189 км до точки посадки), "Буран" прошел над воздушным коридором международной авиатрассы Москва-Ташкент, с юго-запада огибающей границы района аэроузла "Ленинский", включающего в себя зоны управления воздушным движением и использования воздушного пространства в окрестностях стартовых комплексов Байконура , посадочного комплекса "Бурана" (аэродрома "Юбилейный") , аэродрома г.Ленинска ("Крайний") и аэропорта г.Джусалы.

В этот момент корабль находился в зоне ответственности Кзыл-Ординского районного центра единой системы управления воздушным движением СССР , контролировавшего полеты всех самолетов за пределами аэроузла "Ленинский" на высотах более 4500 метров, кроме, разумеется, "Бурана", несущегося в стратосфере с гиперзвуковой скоростью.

Границу аэроузла "Ленинский" орбитальный корабль пересек на расстоянии 108 км от точки посадки, находясь на высоте 30 км. В этот момент он проходил над участком воздушного коридора № 3 Аральск-Новоказалинск, и летел, удивляя своих создателей - в диапазоне скоростей М=3,5...2 балансировочное качество на 10% превышало ожидаемые расчетные значения!

Направление ветра в районе аэродрома "Юбилейный", переданное на борт корабля, обусловило приведение корабля на восточный цилиндр рассеивания энергии и заход на посадку с азимутом истинного посадочного курса № 2.

В 09:19 "Буран" вошел в прицельную зону на высоте 20 км с минимальными отклонениями, что было очень кстати в сложных метеоусловиях . Реактивная система управления и ее исполнительные органы отключились и только аэродинамические рули, задействованные еще на высоте 90 км, продолжали вести орбитальный корабль к следующему ориентиру - ключевой точке .

До сих пор полет проходил строго по расчетной траектории снижения - на контрольных дисплеях ЦУПа его отметка смещалась к ВПП посадочного комплекса практически в середине допустимого коридора возврата. "Буран" приближался к аэродрому несколько правее оси посадочной полосы, и все шло к тому, что он будет "рассеивать" остаток энергии на ближнем "цилиндре" . Так думали специалисты и летчики-испытатели, дежурившие на объединенном командно-диспетчерском пункте . В соответствии с циклограммой посадки включаются бортовые и наземные средства радиомаячной системы. Однако при выходе в ключевую точку с высоты 20 км "Буран" "заложил" маневр, повергший в шок всех находившихся в ОКДП . Вместо ожидавшегося захода на посадку с юго-востока с левым креном корабль энергично отвернул влево, на северный цилиндр выверки курса, и стал заходить на ВПП с северо-восточного направления с креном 45 º на правое крыло.

Предпосадочное маневрирование "Бурана" в атмосфере (другие иллюстрации полета см. в нашем фотоархиве).

На высоте 15300 м скорость "Бурана" стала дозвуковой, затем при выполнении "своего" маневра "Буран" прошел на высоте 11 км над полосой в зените радиотехнических средств обеспечения посадки, что было наихудшим случаем с точки зрения диаграмм направленности наземных антенн. Фактически в этот момент корабль вообще "выпал" из поля зрения антенн, сектор сканирования которых в вертикальной плоскости был в диапазоне всего 0,55 º -30 º над горизонтом. Замешательство наземных операторов было настолько велико , что они перестали наводить на "Буран" самолет сопровождения!

Послеполетный анализ показал, что вероятность выбора такой траектории была менее 3%, однако в сложившихся условиях это было самое правильное решение бортовых компьютеров корабля! Более того, данные телеметрии свидетельствовали, что движение по поверхности условного цилиндра выверки курса в проекции на земную поверхность было не дугой окружности, а частью эллипса, но победителей не судят!

Высота - двадцать пять,
до Земли ещё четверть часа -
Возвращенье домой
из глубин его звёздной обители.
И готова давно
для посадки ему полоса,
Путь к которой лежит
под охраной крыла истребителя.

Вот прошёл через слой
так не вовремя взявшихся туч,
На Земле тишина,
все застыли в тревожном молчании.
Весь полёт его был
словно яркий космический луч
Озаривший для всех
фантастические расстояния.

Вот и всё. На Земле.
Слышно радость у всех в голосах,
И создателей все
поздравляют с бесспорной победой.
Он проделал свой путьBoeing X-37B 3 декабря 2010 г. Но с учетом того, что стартовая масса Х-37В около 5 т, то полет 80-тонного "Бурана" можно считать непревзойденным до сих пор.

Буран - снежная буря, метель в степи. (Толковый словарь русского языка. С.И.Ожегов, М.:Русский язык, 1975).

Много лет спустя Сергей Грачев, помощник старшего руководителя полетов, вспоминал : "Я нахожусь в диспетчерской и выбираю - откуда лучше наблюдать пуск? Выбежал на балкон 5-го этажа ОКДП - а там ветер грохочет в металлическом настиле - вряд ли услышишь, как взлетает "Энергия". Решил вернуться обратно в диспетчерскую и наблюдать в окно. До пуска - считанные минуты. Мысленно просчитываю: так, - расстояние 12 км, скорость звука, движение ударной волны, - если рванет на старте, - и говорю диспетчерам: смотрите, если увидите вспышку на старте - сразу падайте на пол под окна к стенке и не шевелитесь! После ухода "Энергии-Бурана" в облачность мысленно представляю - а не появится ли вдруг снова "кометный хвост" из-под облаков? Ведь были на полигоне такие случаи, были..."

Старт и разгон ракетой-носителем орбитального корабля происходит на фоне изменяющихся внешних параметров атмосферы. Эти возмущения носят случайный характер, поэтому параметры траектории имеют допустимые отклонения, изменяясь не только от полета к полету, но и в течение одного полета. В таких условиях невозможно определить фиксированную расчетную траекторию полета и приходится рассматривать только расчетную трубку траекторий , в которой с определенной вероятностью должна находиться фактическая траектория. Расчетные трубки траекторий для участка выведения "Бурана" определялись для вероятности 0,99, для траектории спуска "Бурана" из-за повышенных требований к безмоторной посадке они были еще точнее: 0,997!

Послеполетный анализ телеметрии показал, что при старте произошла засветка датчиков пожара излучением от факелов двигателей, из-за чего в хвостовом отсеке блока Ц произошло открытие крышек аварийного дренажа, предназначенных для сброса в аварийных ситуациях избыточного давления в случае пожара и/или работы системы пожаровзрывопредупреждения (СПВП). Из-за ошибочного срабатывания датчиков еще на старте СПВП начала аварийную продувку двигательного отсека блока Ц инертным газом с расходом до 15 кг/сек, из-за чего к 70-й секунде полета весь запас инертного газа был израсходован, и далее полет продолжался с неработоспособной СПВП.

Внимательно рассматривая видеозапись, можно обнаружить еще одно удивительное явление: при пролете над гористой местностью в поле зрения попадает некий темный объект, движущийся быстрее "Бурана" и благодаря этому пересекающий кадр по прямой в направлении снизу (по центру нижней границы кадра)-вверх-вправо, т.е. как бы находящийся на более низкой орбите с меньшим наклонением. Имеющаяся в распоряжении web -мастера видеозапись не позволяет достоверно привязать это событие по времени полета.
Возникает несколько вопросов: если это космический объект, то почему он выглядит слишком темным на освещенном участке орбиты? Если это насекомое, попавшее внутрь кабины "Бурана" и ползущее по внутренней поверхности иллюминатора, то почему оно ползет по прямой линии с постоянной скоростью и чем оно дышит в полностью азотной (бескислородной) атмосфере кабины? Вероятнее всего, это некий фрагмент (мусор?), летающий в невесомости внутри кабины и случайно попавший в поле зрения камеры
Вы можете сами все это увидеть,
скачав видеофрагмент . управляющих двигателей реактивной системы управления (РСУ) следующий:
Сначала, на начальной фазе спуска, в контур управления подключаются элевоны для балансировки корабля и снятия статических компонентов в командах на срабатывание управляющих двигателей РСУ . Затем по мере роста скоростного напора осуществляется переход на аэродинамические органы управления и последовательно отключаются поперечный (q=50 кгс/м 2) и продольный (q=100 кгс/м 2) каналы РСУ.Двигатели канала рысканья работают для стабилизации и управления по "обратной" схеме (создание скольжения с последующим вращением по крену) до достижения трансзвуковых скоростей.

Антон Степанов, участник описываемых событий в ОКДП, вспоминает: "В момент резкой смены курса "Бурана" одна из женщин-операторов наших ЭВМ серии ЕС закричала "Вернись!", - ее лицо надо было видеть - на нем был сразу и страх, и надежда, и переживания за корабль как за родное дитя". Удивление диспетчеров легко понять, так как в центральном зале управления воздушным движением в ОКДП для облегчения считываемой информации на круговых мониторах прямо на стеклах экранов операторы заранее нарисовали черными фломастерами ожидаемые траектории захода "Бурана" на посадку. Естественно, реальной, но наименее вероятной и поэтому совершенно неожиданной траектории нарисовано не было, и отклонение сразу стало заметно. Кадры кинохроники свидетельствуют, что и в ЦУПе на все экраны выводилась схема захода на посадку через южный цилиндр выверки курса (см. фото с экрана ЦУПа справа).

Спустя годы Владимир Ермолаев , находившийся в момент посадки в десятках метрах от ВПП, и таким образом, будучи одним из самых "близких" к вернувшемуся "Бурану" людей, вспоминал : "...Мы уставились на внезапно вывалившийся из низких облаков "Буран". Он шел уже с выпущенными шасси. Шел как-то тяжело, каменно, как приклеенный к прозрачной стеклянной глиссаде. Очень ровно. По прямой. Так казалось. Разинув рты, мы все смотрели на набегающий на нас "Буран" и летящий прямо в наши рты "МиГ" сопровождения... Касание... парашют... встал... Все... ВСЕ!!!
Мы все еще стояли ошалевшие, с открытыми ртами, оглушенные двигателями "МиГа" и овеянные каким-то теплым ветерком, принесенным "Бураном" откуда-то оттуда... От плазменного участка спуска, наверное... Бог знает..."

Для сравнения - в августе 2007 полет американского шаттла "Индевор" был сокращен на сутки из-за надвигавшегося на Космический центр им.Кеннеди тропического урагана "Дин". При принятии решения о досрочном приземлении определяющим являлось ограничение по максимальному значению бокового ветра при посадке для шаттлов - 8 м/сек.

Стихотворение "Полет Бурана" Виталия Чубатых , г.Тернополь, 1 марта 2006 г.

Данная интернет-страница создана на основе статьи web -мастера "Буран: факты и мифы", написанной к 20-летию полета "Бурана" и опубликованной в журнале "Новости космонавтики" № 11/ 2008 (стр. 66-71). Статья была признана "Лучшей статьей 2008 года" и заняла второе место в конкурсе авторов журнала "Новости космонавтики" в номинации "Самый популярный автор 2008 года среди непрофессиональных журналистов", см. грамоты справа .

Кроме этого, текст статьи без изменений был размещен на сайте Федерального космического агентства в качестве рассказа о полете "Бурана".

Последние материалы сайта