Рассчитать полный коэффициент газового усиления пропорционального счетчика. Большая советская энциклопедия - пропорциональный счетчик. Детекторы нейтронов и гамма-квантов

02.11.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Пропорциональный счётчик, газоразрядный прибор для регистрации ионизирующих излучении , создающий сигнал, амплитуда которого пропорциональна энергии регистрируемой частицы, теряемой в его объеме на ионизацию. Заряженная частица, проходя через газ, наполняющий П. с., создаёт на своём пути пары ион - электрон, число которых зависит от энергии, терямой частицей в газе. При полном торможении частицы в П. с. импульс пропорционален энергии частицы. Как и в ионизационной камере , под действием электрического поля электроны движутся к аноду, ионы - к катоду. В отличие от ионизационной камеры вблизи анода П. с. поле столь велико, что электроны приобретают энергию, достаточную для вторичной ионизации. В результате вместо каждого первичного электрона на анод приходит лавина электронов и полное число электронов, собранных на аноде П. с., во много раз превышает число первичных электронов. Отношение полного числа собранных электронов к первоначальному количеству называется коэффициентом газового усиления (в формировании импульса участвуют также и ионы). В П. с. обычно катодом служит цилиндр, а анодом - тонкая (10-100 мкм ) металлическая нить, натянутая по оси цилиндра (см. рис. ). Газовое усиление осуществляется вблизи анода на расстоянии, сравнимом с диаметром нити, а весь остальной путь электроны дрейфуют под действием поля без «размножения». П. с. заполняют инертными газами (рабочий газ не должен поглощать дрейфующие электроны) с добавлением небольшого количества многоатомных газов, которые поглощают фотоны, образующиеся в лавинах.

Типичные характеристики П. с.: коэффициент газового усиления 10 3 -10 4 (но может достигать 10 6 и больше); амплитуда импульса 10 - 2 в при ёмкости П. с. около 20 пкф ; развитие лавины происходит за время 10 - 9 - 10 - 8 сек, однако момент появления сигнала на выходе П. с. зависит от места прохождения ионизующей частицы, т. е. от времени дрейфа электронов до нити. При радиусе 1 см и давлении 1 атм время запаздывания сигнала относительно пролёта частицы 10 - 6 сек. По энергетическому разрешению П. с. превосходит сцинтилляционный счётчик , но уступает полупроводниковому детектору . Однако П. с. позволяют работать в области энергий < 1 кэв , где полупроводниковые детекторы неприменимы.

П. с. используются для регистрации всех видов ионизирующих излучений. Существуют П. с. для регистрации a - частиц, электронов, осколков деления ядер и т.д., а также для нейтронов, гамма- и рентгеновских квантов. В последнем случае используются процессы взаимодействия нейтронов, g - и рентгеновских квантов с наполняющим счётчик газом, в результате которых образуются регистрируемые П. с. вторичные заряженные частицы (см. Нейтронные детекторы ). П. с. сыграл важную роль в ядерной физике 30-40-х гг. 20 в., являясь наряду с ионизационной камерой практически единственным спектрометрическим детектором.

Второе рождение П. с. получил в физике частиц высоких энергий в конце 60-х гг. в виде пропорциональной камеры, состоящей из большого числа (10 2 -10 3) П. с., расположенных в одной плоскости и в одном газовом объёме. Такое устройство позволяет не только измерять ионизацию частицы в каждом отдельном счётчике, но и фиксировать место её прохождения. Типичные параметры пропорциональных камер: расстояние между соседними анодными нитями 1-2 мм, расстояние между анодной и катодной плоскостями 1 см ; разрешающее время 10 - 7 сек. Развитие микроэлектроники и внедрение в экспериментальную технику ЭВМ позволили создать системы, состоящие из десятков тыс. отдельных нитей, соединённых непосредственно с ЭВМ, которая запоминает и обрабатывает всю информацию от пропорциональной камеры. Т. о., она является одновременно быстродействующим спектрометром и трековым детектором.

В 70-х гг. появилась дрейфовая камера, в которой для измерения места пролёта частицы используется дрейф электронов, предшествующий образованию лавины. Чередуя аноды и катоды отдельных П. с. в одной плоскости и измеряя время дрейфа электронов, можно измерить место прохождения частицы через камеру с высокой точностью (0,1 мм ) при числе нитей в 10 раз меньше, чем в пропорциональной камере. П. с. применяются не только в ядерной физике, но и в физике космических лучей , астрофизике, в технике, медицине, геологии, археологии и т.д. Например, с помощью установленного на «Луноходе-1» П. с. по рентгеновской флюоресценции производился химический элементный анализ вещества поверхности Луны.

Лит.: Векслер В., Грошев Л., Исаев Б., Ионизационные методы исследования излучений, М. - Л., 1949; Принципы и методы регистрации элементарных частиц, пер. с англ., М., 1963; Калашникова В. И., Козодаев М. С., Детекторы элементарных частиц, М., 1966 (Экспериментальные методы ядерной физики, [ч. 1]).

В. С. Кафтанов, А. В. Стрелков.

Схема пропорционального счетчика: а - область дрейфа электронов; б - область газового усиления.

Большая Советская Энциклопедия М.: "Советская энциклопедия", 1969-1978

Проанализируем сначала поведение газонаполненных газоразрядных трубок, которые схематически изображены на рис. 6.4. Что произойдет, если увеличивать напряжение между центральной проволочкой и корпусом камеры? Выходной сигнал меняется в зависимости от приложенного напряжения (рис. 6.5). На графике показан выходной сигнал устройства при прохождении через него электрона и -частицы. При этом различные участки кривых отражают следующее:

Рис. 6.4. Газонаполненный детектор и устройство для регистрации импульсов тока от ионизирующих частиц, проходящих через газовый объем .

Рис. 6.5. Выходной импульс газонаполненного детектора, показанного на рис. 6.4, как функция напряжения Штриховая горизонтальная линия - уровень дискриминации для счетчика Гейгера - Мюллера. Две кривые являются откликом на быстрый электрон и ядро гелия а. Диапазоны описаны в тексте .

Рис. 6.6. Принцип устройства пропорционального счетчика, используемого в рентгеновской астрономии.

A. Имеется заметная рекомбинация, так что не все свободные электроны, появившиеся в результате прохождения заряженной частицы, достигают анода.

B. Напряжение достигло достаточной величины, чтобы рекомбинация стала незначительной.

C. Это очень важная область. При таких напряжениях свободные электроны, достаточно близко подошедшие к аноду, приобретают энергию, достаточную для образования новых электрон-ионных пар. Это может привести к очень сильному увеличению амплитуды импульса напряжения на выходе, который далее регистрируется электронной схемой счетчика. На практике стараются подавать на эти устройства как можно более высокое напряжение. Его поднимают до тех пор, пока сохраняется линейность выходного сигнала счетчика, т.е. прка полное число вторичных электрон-ионных пар пропорционально числу электрон-ионных пар, образовавшихся при прохождении космической частицы. Этот участок называют областью пропорциональности, а устройства, работающие в таком режиме, - пропорциональными счетчиками.

D. Пропорциональность исчезает.

E. При самых высоких напряжениях любая частица, производящая даже минимальную ионизацию, даст на выходе импульс большой амплитуды. В этом случае устройство работает в режиме насыщения.

Пропорциональные счетчики по своей важности стоят далеко впереди всех таких устройств. Правда, из-за малости их размеров по сравнению с пробегами энергичных частиц они редко используются для регистрации заряженных частиц (хотя, конечно, они срабатывают, когда частица космических лучей проходит через их чувствительный объем). Они находят применение главным образом как детекторы рентгеновского излучения в области энергии Именно с помощью таких детекторов было сделано большинство последних крупнейших открытий в рентгеновской астрономии (см. ниже). Рассмотрим более подробно конструкцию, чувствительность и частотную характеристику детекторов, устанавливаемых на спутниках и ракетах (рис. 6.6). Рентгеновский фотон проникает через входное

окно в объем внутри корпуса и поглощается вследствие фотоэффекта в газе, выбивая фотоэлектрон. Возбужденный атом переходит в основное состояние, излучив флуоресцентный рентгеновский квант, либо испустив электрон Оже. Фотоэлектрон обладает достаточной энергией, чтобы ионизовать другие атомы газа, так что в конце концов, как и в случае ионизационных потерь, на каждые энергии падающего рентгеновского фотона образуется одна электрон-ионная пара. Эти пары дрейфуют в область большой напряженности, где число пар увеличивается в раз, после чего регистрируется сигнал. Такой коэффициент усиления достаточен, чтобы возник ощутимый для регистрации электронной схемой сигнал.

Рассмотрим энергетическую функцию отклика детектора. Вероятность поглощения фотона с энергией Ни в газе счетчика равна

где коэффициенты поглощения, толщина окна и глубина газового промежутка соответственно. Рассмотрим процесс поглощения на -оболочки атомов различных материалов. Типичная кривая массового коэффициента поглощения показана на рис. 4.1. Между пределами

Рис. 6.7. Вероятность поглощения рентгеновского фотона в базовом объеме пропорционального счетчика с аргоновым наполнением без учета поглощения в окне; сечение фотоэлектрического поглощения, толщина слоя газа.

Рис. 6.8. Вероятность поглощения рентгеновского фотона в газовом объеме пропорционального счетчика (рис. 6.7) с окном из органического материала, такого, как майлар.

поглощения сечение поглощения о пропорционально а поэтому для входного окна подбирается материал с малым а газ - с максимально возможным

Рассмотрим теперь как функцию энергии для детектора, наполненного аргоном, и входного окна, изготовленного из майлара (органической пластмассы). Если учитывать только аргон, то выходной сигнал имел бы вид, показанный на рис. 6.7. Поглощение в окне влияет на его форму и он имеет вид, как на рис. 6.8. Мы наблюдаем скачок, когда подходим к Копределу поглощения углерода, но в остальном выходной сигнал детектора в значительной мере определяется типом газа и материалом входного окна. Можно изготовить майларовую пленку толщиной до что составит толщина слоя аргона может достигать При производстве таких устройств, конечно, возникают значительные проблемы, например неизбежная для таких тонких окон утечка газа. Для работы на спутниках приходится использовать более толстые окна, что ограничивает рабочий диапазон энергий, так как для наблюдений доступны только фотоны с энергией выше Иногда окна изготавливаются из бериллиевой фольги. Для работы на самых низких энергиях, применяются очень тонкие окна, в этом случае необходима газопроточная система, поддерживающая давление газа в детекторе постоянным. Энергетическое разрешение можно улучшить с помощью фильтров, и, конечно, поскольку счетчик пропорциональный, мы получаем информацию об энергии каждого приходящего фотона по амплитуде выходного сигнала. Точность определения энергии фотона ограничена статистическими флуктуациями числа выбиваемых электронов. К примеру, при энергии фотона даже если бы эффективность детектора достигала 100%, образуется около 300 электрон-ионных пар, а статистическая точность должна быть хуже, чем т.е. в самом лучшем случае 5%. Обычно она несколько хуже.

Отметим, что устройства заполняются инертными газами, а это означает, что большая часть энергии фотона переходит в кинетическую энергию электронов. Если бы использовался молекулярный газ, то какая-то часть его энергии перераспределялась между уровнями, соответствующими колебательным и вращательным степеням свободы.

В пропорциональных счетчиках облако электронов довольно компактно, поэтому можно придумать такую схему прибора, которая позволяла бы определять место регистрации каждого рентгеновского кванта. Это осуществляется в позиционно-чувствительных детекторах. Положение точки, в которой облако электронов достигает анода, можно измерить по отношению зарядов, снимаемых с каждого конца проволочки, так как заряд, растекаясь вдоль проволочки в противоположных направлениях, распределяется обратно пропорционально длине отрезка от точки собирания до конца проволочки. Чтобы определить вторую координату места регистрации, можно использовать многопроволочные аноды, и та проволочка, по которой течет заряд, как раз и дает координату в направлении, ортогональном аноду. Альтернативной схемой является установка двух плоскостей взаимно перпендикулярных анодных и катодных проволочек, по которым локализуется каждое событие.

Такая модификация особенно важна для рентгеновских телескопов, в которых производится фокусировка рентгеновских лучей в фокальной плоскости и регистрируется двумерное изображение рентгеновского неба.

Которого пропорциональна энергии регистрируемой частицы , теряемой в его объеме на ионизацию. Заряженная частица, проходя через газ , наполняющий . с., создает на своем пути пары ион - электрон , число которых зависит от энергии, терямой частицей в газе. При полном торможении частицы в П. . импульс пропорционален энергии частицы. Как и в ионизационной камере, под действием электрического поля электроны движутся к аноду, ионы - к катоду. В отличие от ионизационной камеры вблизи анода П. с. поле столь велико, что электроны приобретают энергию, достаточную для вторичной ионизации. В результате вместо каждого первичного электрона на анод приходит лавина электронов и полное число электронов, собранных на аноде П. с., во много раз превышает число первичных электронов. Отношение полного числа собранных электронов к первоначальному количеству называется коэффициентом газового усиления (в формировании импульса участвуют также и ионы). В П. с. обычно катодом служит цилиндр , а анодом - тонкая (10-100 мкм) металлическая нить, натянутая по оси цилиндра (см. рис.). Газовое усиление осуществляется вблизи анода на расстоянии, сравнимом с диаметром нити, а весь остальной путь электроны дрейфуют под действием поля без «размножения». П. с. заполняют инертными газами (рабочий газ не должен поглощать дрейфующие электроны) с добавлением небольшого количества многоатомных газов, которые поглощают фотоны, образующиеся в лавинах. Типичные характеристики П. с.: коэффициент газового усиления Пропорциональный счетчик 103-104 (но может достигать 106 и больше); амплитуда импульса Пропорциональный счетчик 10-2 в при емкости П. с. около 20 пкф; развитие лавины происходит за время Пропорциональный счетчик 10-9-10-8 сек, однако момент появления сигнала на выходе П. с. зависит от места прохождения ионизующей частицы, т. . от времени дрейфа электронов до нити. При радиусе Пропорциональный счетчик 1 см и давлении Пропорциональный счетчик 1 атм время запаздывания сигнала относительно пролета частицы Пропорциональный счетчик 10-6 сек. По энергетическому разрешению П. с. превосходит сцинтилляционный счетчик, но уступает полупроводниковому детектору. Однако П. с. позволяют работать в области энергий она является одновременно быстродействующим спектрометром и трековым детектором. В 70-х гг. появилась дрейфовая камера , в которой для измерения места пролета частицы используется дрейф электронов, предшествующий образованию лавины. Чередуя аноды и катоды отдельных П. с. в одной плоскости и измеряя время дрейфа электронов, можно измерить место прохождения частицы через камеру с высокой точностью (Пропорциональный счетчик 0,1 мм) при числе нитей в 10 раз меньше, чем в пропорциональной камере. П. с. применяются не только в ядерной физике, но и в физике космических лучей, астрофизике, в технике, медицине, геологии, археологии и т.д. Например, с помощью установленного на «Луноходе-1» П. с. по рентгеновской флюоресценции производился химический элементный анализ вещества поверхности Луны. Лит.: Векслер В., Грошев Л., Исаев Б., Ионизационные методы исследования излучений, . - Л., 1949; Принципы и методы регистрации элементарных частиц, пер. с англ., М., 1963; Калашникова . И., Козодаев М. С., Детекторы элементарных частиц, М., 1966 (Экспериментальные методы ядерной физики, . 1). В. С. Кафтанов, . В. Стрелков.

Газоразрядный детектор ч-ц, создающий , амплитуда к-рого пропорц. энергии, выделенной в его объёме, регистрируемой ч-цей. При полном торможении ч-цы в П. с. его пропорц. энергии ч-цы. В отличие от ионизационной камеры, вблизи анода П. с. электрич. Е столь велико, что первичные эл-ны приобретают энергию, достаточную для вторичной ионизации. В результате на приходит лавина эл-нов. Отношение полного числа собранных эл-нов к первоначальному их числу наз. к о э ф ф и ц и е н т о м г а з о в о г о у с и л е н и я М, к-рый тем больше, чем больше величина Е/р (р - газа; в формировании импульса участвуют и ионы). В П. с. обычно используют коаксиальные электроды: катод - цилиндр, анод - тонкая (10-100 мкм) нить, натянутая по оси цилиндра (рис.). Газовое усиление осуществляется вблизи анода на расстоянии, сравнимом с диаметром нити, а весь остальной путь эл-ны дрейфуют в поле Е без «размножения». П. с., как правило, заполняют инертными газами с добавлением небольшого кол-ва многоатомных газов.

Схема пропорц. счётчика: а - область дрейфа электронов; б - область газового усиления.

Типичные хар-ки П. с.: M=103-104 (но может достигать 106); амплитуда импульса =10-2 В при электрич. -ёмкости самого П. с. ок. 20 пФ; развитие лавины происходит за =10-9-10-8 с, однако момент появления сигнала на выходе П. с. зависит -от места прохождения ионизующей ч-цы, т. е. от времени дрейфа первичных эл-нов до анода. При радиусе =1 см и давлении 1 атм время срабатывания П. с. относительно пролёта ч-цы =10-7-10-8 с достигает 10-6 с.

П. с. используются для регистрации всех видов ч-ц: a-частиц, эл-нов, осколков деления атомных ядер и т. д., а также для нейтронов, гамма- и рентг. квантов. В случае незаряж. ч-ц регистрируются вторичные заряж. ч-цы, возникающие в процессе вз-ствия нейтральных ч-ц с наполняющим счётчик газом (эл-ны, протоны отдачи и др.).

П. с. сыграл важную роль в развитии яд. физики довоенного времени, являясь наряду с ионизац. камерой практически единств. электронным спектрометрич. детектором.

В кон, 60-х гг. в физике ч-ц высоких энергий начала применяться п р о п о р ц и о н а л ь н а я к а м е р а, состоящая из большого числа (102-103) П. с., расположенных в одной плоскости и часто в одном газовом объёме. Такая геометрия позволяет по регистрации ч-ц в отдельных П. с. определить место прохождения ч-цы. Расстояние между соседними анодными нитями. =1-2 мм, расстояние между анодной и катодной плоскостями =1 см, разрешающее время =10-7 с. Развитие микроэлектроники и внедрение в эксперим. технику позволили создать камеры, состоящие из десятков тыс. нитей, соединённых -с ЭВМ, к-рая запоминает и обрабатывает всю информацию от пропорц. камеры. Такая камера - одновременно быстродействующий и трековый детектор.

В 70-х гг. появилась д р е й ф о в а я к а м е р а, в к-рой для измерения координаты места пролёта ч-цы используется дрейф эл-нов, предшествующий образованию лавины. Чередуя аноды и катоды отд. П. с. в одной плоскости и измеряя время дрейфа эл-нов, можно измерить место прохождения ч-цы через камеру с высокой точностью (=0,1 мм) при числе нитей в =10 раз меньше, чем в пропорц. камере.

П. с. применяются в яд. физике и в физике ч-ц высоких энергий (в экспериментах на ускорителях и в косм. лучах), а также в астрофизике, геологии, археологии и др. С помощью П. с., установленного на «Луноходе-1», по спектру рентг. флюоресценции был произведён хим. элементный анализ в-ва поверхности Луны.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

Газоразрядный детектор частиц, создающий сигнал, амплитуда к-рого пропорциональна энергии, выделенной в его объёме регистрируемой частицей. При полном торможении частицы в объёме П. с. амплитуда сигнала пропорциональна энергии частицы, т. е. П. с. является одновременно и спектрометром. П. с., как и др. газоразрядные , представляет собой газовый объём (от неск. см 3 до неск. л) с 2 электродами. От конструкции ионизационной камеры П. с. отличает форма анода в виде тонкой нити или острия для обеспечения вблизи анода значительно большей напряжённости электрич. поля, чем в остальном пространстве между анодом и катодом. Наиб. распространены ци-линдрич. П. с., где катодом является металлич. цилиндр (корпус счётчика), внутри к-рого аксиально протянута тонкая проволока - анод (рис. 1).


Рис. 1. Схема пропорционального счётчика: И - источник частиц.

Заряж. частица с энергией создаёт в газе п 0 =/W электрон-ионных , где - ионизаци онные потери энергии частицы, W - ср. образования электрон-ионной пары. Импульс тока (напряжения), возникающий на сопротивлении Л, пропорционален импульс (1-100 мВ) усиливается и поступает в регистрирующее (анализирующее или запоминающее) электронное устройство.

Газовое усиление. Первичные электроны, образованные заряж. частицей в результате ионизации газа, под действием электрич. поля перемещаются к аноду, по пути многократно сталкиваясь с атомами (рис. 2). Эти соударения частично неупругие, т. к. электроны теряют значит. часть своей энергии и не могут набрать энергию, достаточную для ионизации атомов газа (20-30 эВ). В цилиндрич. П. с. электрич. поле E ~ , где - расстояние частицы до нити (рис. 3). Поэтому между двумя последоват. столкновениями электроны, приближаясь к аноду, получают всё возрастающие значения кинетич. энергии, и на нек-ром расстоянии от нити энергия становится достаточной для ионизации. Образующиеся вторичные электроны вместе с первичными участвуют в последующей лавинной ионизации газа (га-зовое усиление). Коэф. газового усиления М - отношение кол-ва электронов, пришедших на нить, к числу первичных электронов. Форма электронно-ионной лавины вблизи анода сильно зависит от значения М: при 10 < М < 100 лавина приобретает форму капли в направлении прихода электронов на анод; при 10 2 < М<10 4 . лавина становится сердцеобразной, вытянутой в направлении прихода электронов; при М >10 4 лавина полностью охватывает анод - тогда и нарушается пропорциональность между п 0 и амплитудой сигнала. Размер лавины вдоль проволочного анода растёт с увеличением М от долей мм до неск. мм.


Рис. 2. Механизм работы пропорционального счётчика:-- зона дрейфа первичных электронов;-- зона лавин.

При столкновениях образуются также возбуждённые атомы, к-рые "высвечиваются" (УФ-излучение) за время ~10 -8 с. Энергия фотонов почти всегда превосходит работу выхода электронов с поверхности катода, поэтому вырванные (с вероятностью ~10 -4) фотоэлектроны также движутся к аноду, усложняя картину разряда и образуя лавинные серии - последовательно затухающую цепочку импульсов, отстоящих друг от друга на время дрейфа электронов от катода к аноду. Фотоэлектронную эмиссию можно ослабить, если в состав газа кроме инертных (Аг, Кг, Хе) ввести многоатомные газы (СН 2 , С 2 Н 2 , СO 2 и т. д.), поглощающие УФ-излучение. Т. к. электроны поглощают газы и пары со сродством к электрону (О 2 , Н 2 О, галогены), то их в смеси П. с. должно быть мин. кол-во ( O 2 ~10 -5 см 3).

Если пренебречь влиянием на лавину пространственного заряда от положит. ионов, прилипанием электронов и фотоэлектронной эмиссией, то


где - число ионизац. соударений электрона на пути 1 см (первый коэф. Таунсенда), зависит от напряжённости поля E, давления r и рода газа. В приближении Роуза - Корфа, где a = N К (К - характеристика газа, N - плотность газа, - энергия электронов),

Здесь С= - ёмкость счётчика на единицу длины, - напряжение на электродах, - напряжение, соответствующее началу лавины. При

(рис. 4). Ввиду статистич. природы лавинного процесса V c не является чёткой характеристикой П. с., поэтому V c определяется по пересечению прямолинейного участка зависимости lnM(F 0) с осью абсцисс. Линейная зависимость продолжается до М ~ 10 4 . При дальнейшем повышении F 0 зависимость перестаёт быть линейной (гл. обр. из-за влияния фотоэлектронной эмиссии и пространственного заряда ионов).


Область М ~ 10 4 -10 6 наз. областью ограниченной пропорциональности. Большие М могут привести к пробою (рис. 5). Чтобы не допустить пробоя, применяют гасящие примеси - органич. газы (СН 4 , пропан, изобутан, С 2 Н 5 ОН, метилаль и т. п.), к-рые обладают большим сечением фотопоглощения, диссоциации и передачи возбуждения сложной молекуле. Добавка органич. газа стабилизует процесс газового усиления в широком диапазоне V 0 , хо-тя само напряжение, необходимое для требуемого М, возрастает.

Формирование сигнала. Вклад в амплитуду импульса за счёт перемещения первичных ионов и электронов мал.


Время развития лавины <10 -9 с, однако вследствие того, что электроны в лавине проходят сравнительно малые расстояния (большинство электронов рождаются только на последних стадиях лавины), вклад электронной в полную амплитуду импульса 10%. Положит. ионы, большинство к-рых расположено от поверхности нити на расстоянии ср. пробега электронов в лавине (15 мкм), после окончания лавины начинают двигаться к катоду, индуцируя изменение потенциала на нём во времени t :

Здесь е - заряд электрона, - подвижность ионов (см. Подвижность электронов и ионов), n 0 - число первичных ионов. Величина DV, вызванная движением ионов, сначала растёт прямолинейно, затем логарифмически; достигает макс. значения (DV макс = еМп 0 /С) в момент прихода всех положит. ионов на спустя (15)·10 -3 с с момента образования лавины (рис. 6). Половины значения от своего максимума импульс достигает за (15)·10 -6 с, поэтому для получения высокого временного разрешения во входных цепях усилителя стоят дифференцирующие цепи (= RC ) или линии задержки. Т. о., в случае траектории частицы (трека), параллельной аноду, удаётся получить импульсы длительностью < 10 -7 с. При произвольной ориентации трека ширина импульса определяется разностью во временах дрейфа первичных электронов от начала ( А )и конца ( В )трека до анода (рис. 2). Эти времена могут достигать 0,1-10 мкс. Такого же порядка и время задержки импульса на выходе П. с. с момента первичной ионизации, что ограничивает возможности использования П. с. в совпадений методе.

Рис. 6. Временное развитие сигнала при различных .


Энергетическое разрешение. Статистич. в кол-ве первичных ионов n 0 , а также флуктуации М "размывают" амплитуду импульсов и определяют предельно достижимое энергетич. разрешение П. с. (эти компоненты приблизительно равны по величине друг другу). Энергетич. разрешение приближённо выражается соотношением

Увеличение разброса амплитуды импульсов могут вызывать конструкционные несовершенства, приводящие к искажению распределения электрич. поля у анода, причём наиб. важным является постоянство по длине П. с., напр. 1 мкм может вызвать разброс амплитуд ~50%. Большое влияние на энергетич. разрешение оказывают стабильность V 0 (0,05%) и чистота газа. Для инертных газов, СO 2 , СН 4 и т. д. не наблюдается прилипания электронов, но присутствие даже незначит. кол-ва (<0,1%) электроотрицат. молекул Н 2 О, СО, О 2 , С 2 и т. д. приводит к значит. ухудшению энергетич. разрешения, т. к. амплитуда импульса становится зависимой от места образования первичных электронов. Добавки нек-рых газов с потенциалом ионизации, меньшим потенциала ионизации осн. газа, могут приводить к уменьшению ср. энергии, затраченной на образование пары ионов, следовательно к улучшению разрешения.

Временные характеристики. Макс. регистрации П. с. зависит от давления и состава газовой смеси и толщины анодной проволоки . При больших скоростях регистрации происходит ослабление электронной лавины, образовавшейся в нерелаксированном пространственном заряде от предыдущей лавины. Это ослабление распределено по случайному закону и вызывает не только уменьшение амплитуды импульсов, но и ухудшает энергетич. разрешение. При М =10 4 10 5 макс. скорость счёта составляет 10 5 - 10 6 с -1 . Для П. с. практически нельзя указать времени, в к-ром он вообще бы не реагировал на . Это обстоятельство позволяет использовать П. с. для детектирования излучения высокой интенсивности. При этом часто достаточно регистрировать не отд. импульсы, а средний ионный с помощью интегрирующих схем.

Применение. Эффективность П. с. к a-частицам, осколкам деления ядер, протонам, электронам и мягким g-квантам близка 100%. Для регистрации этих частиц в П. слюды или органич. плёнок. Иногда источник излучения помещается внутри объёма П. с. Для регистрации и с энергиями до 1 МэВ используются П. с. высокого давления (до r = 150 атм) в магн. поле. Измерение энергии g-квантов связано с фотоэффектом в наполняющем газе. Для до 1020 кэВ эффективность П. с. 80%, а для больших необходим Хе (рис. 7; см. Гамма-излучение).

При исследовании космических лучей создают большие площади регистрации. Используя большое временное разрешение П. с., удаётся отличить одну частицу от неск. ливневых частиц, проходящих через П. с.


Рис. 7. Амплитудный дифференциальный пропорцио-нального счётчика, наполненного Хе, от частоты характеристического излучения Си и источника 241 Аm.

Большие флуктуации в образовании d-электронов не позволяют получить хорошее энергетич. разрешение от малых долей энергии, оставленных в П. с. быстрой частицей.

Для регистрации нейтронов П. с. заполняется газами 3 Не или 10 BF 3 . Нейтроны захватываются ядрами 3 Не и 10 В с последующим вылетом из них заряж. частиц с энергией порядка 1 МэВ. Ионизация от этих частиц во много раз превосходит ионизацию от g-квантов, постоянно присутствующих в нейтронных потоках. Т. о., введя амплитудную дискриминацию, удаётся полностью сделать П. с. нечувствительными к g-фону. Для нейтронов с энергией ~10 кэВ с помощью П. с. можно измерить их энергию по величине смещения пика в амплитудном дифференц. спектре от захвата нейтронов ядром 3 Не либо по величине импульсов от ядер отдачи при заполнении счётчика лёгкими газами Н 2 или 4 Не (см. Нейтронные детекторы).

П. с. используется для измерения малых уд. активностей. От Гейгера счётчика его выгодно отличает способность выделять моноэнергетич. линии от отд. радионуклидов на фоне непрерывно распределённого фона в широком энергетич. интервале от 1 до 10 3 кэВ.

Как спектрометр П. с. уступает полупроводниковым детекторам, однако надёжность и простота дают возможность применять его, если не требуется высоко-энергетич. разрешение. П. с. позволяет работать в области энергий ~0,2 кэВ, где неприменим. По сравнению со сцинтилляционным детектором П. с. имеет лучшее энергетич. разрешение, меньшие , нечувствителен к магн. полю. П. с. работает в диапазоне темп-р ~10-10 3 К.

П. с. применялся при изучении бета-распада ядер (оценки массы ), исследовании тонкой структуры -спектра, изомерных состояний ядер (см. Изомерия ядерная), при обнаружении захвата ядром L -электрона (см. Электронный захват), исследовании слабых конверсионных пиков (см. Конверсия внутренняя )и в др. случаях. Он используется также в астрофизике, археологии, геологии, медицине и т. д. Нек-рое пром. применение основано на зависимости лавинного разряда от напряжённости поля у анода и чистоты наполняющего газа (контроль диаметра и качества поверхности микроприводов, газоанализатор в газовой хромографии и т. д.). С помощью установленного на "Луноходе-1" П. с. по рентг. флюоресценции производился элементный анализ вещества поверхности Луны. Лит.: Rice-Evans P., Spark, streamer, proportional and drift chambers, L., 1974; Sau1i F., Principles of operation of multiwire proportional and drift chambers, Gen., 1977; 3aневский Ю. В., Проволочные детекторы элементарных частиц, М., 1978; Sanada J., Growth the avalanche about the anode wire in a gas counter, "Nucl. Instr. and Meth.", 1982, v. 196, p. 23; Sau1i F., Basic processes in time-projection like detectors, в кн.: Time projection chamber 1-th workshop., Vancouver, 1983, N. Y., 1984; Ионизационные намерения в физике высоких энергий, М., 1988. А. П. Стрелков, Б. Ситар.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


  • Википедия
  • пропорциональный счетчик - Газоразрядный счетчик, работающий в режиме несамостоятельного газового разряда, в котором заряд в импульсе пропорционален первичной ионизации, а коэффициент газового усиления больше единицы и не зависит от первичной ионизации. [ГОСТ 19189 73]… … Справочник технического переводчика

    пропорциональный счетчик - proporcingasis skaitiklis statusas T sritis automatika atitikmenys: angl. proportional counter vok. Proportionalzähler, m rus. пропорциональный счетчик, m pranc. compteur proportionnel, m … Automatikos terminų žodynas

    пропорциональный счетчик - Детектор, использующий пропорциональное газовое усиление первоначальной ионизации … Политехнический терминологический толковый словарь - представляет прибор, служащий для определения общего количества Э. энергии, прошедшей чрез него в некоторый промежуток времени к месту потребления. Э. энергия (работа), израсходованная в известное время, определяется произведением Э. мощности… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    - (High Energy Astronomy Observatory) HEAO2/Обсерватория им. Эйнштейна Организация … Википедия

    Приборы для регистрации атомных и субатомных частиц. Чтобы частица была зарегистрирована, она должна взаимодействовать с материалом детектора. Простейшие детекторы (счетчики) регистрируют только сам факт попадания частицы в детектор; более… … Энциклопедия Кольера

Пропорциональный счётчик

Недостатком ионизационной камеры являются очень низкие токи. Этот недостаток ионизационной камеры преодолевается в ионизационных детекторах с газовым усилением. Это позволяет регистрировать частицы с энергией < 10 кэВ, в то время как сигналы от частиц таких энергий в ионизационных камерах "тонут" в шумах усилителя.
Газовое усиление это увеличение количества свободных зарядов в объёме детектора за счёт того, что первичные электроны на своём пути к аноду в больших электрических полях приобретают энергию достаточную для ударной ионизации нейтральных атомов рабочей среды детектора. Возникшие при этом новые электроны в свою очередь успевают приобрести энергию достаточную для ионизации ударом. Таким образом, к аноду будет двигаться нарастающая электронная лавина. Это “самоусиление” электронного тока (коэффициент газового усиления) может достигать 10 3 -10 4 . Такой режим работы отвечает пропорциональному счётчику (камере) . В названии отражено то, что в этом приборе амплитуда импульса тока (или полный собранный заряд) остаётся пропорциональной энергии, затраченной заряженной частицей на первичную ионизацию среды детектора. Таким образом, пропорциональный счётчик способен выполнять функции спектрометра, как и ионизационная камера. Энергетическое разрешение пропорциональных счетчиков лучше, чем у сцинтилляционных, но хуже, чем у полупроводниковых.
Конструктивно пропорциональный счётчик обычно изготавливают в форме цилиндрического конденсатора с анодом в виде тонкой металлической нити по оси цилиндра (рис.1), что обеспечивает вблизи анода напряженность электрического поля значительно бoльшую, чем в остальной области детектора. При разности потенциалов между анодом и катодом 1000 вольт напряжённость поля вблизи нити-анода может достигать 40 000 вольт/см., в то время как у катода она равна сотням в/см.

Если ещё больше увеличить разность потенциалов между анодом и катодом и увеличить коэффициент газового усиления до значений >10 4 , то начинает нарушаться пропорциональность между потерянной частицей в детекторе энергией и величиной импульса тока. Прибор переходит в режим ограниченной пропорциональности и уже не может быть использован как спектрометр, а лишь как счётчик частиц.
Временнoе разрешение пропорционального счетчика может достигать10 -7 с.
Пропорциональные счетчики используются для регистрации альфа-, бета-частиц, протонов, гамма-квантов и нейтронов. Пропорциональные счетчики чаще всего заполняют гелием или аргоном. При регистрации заряженных частиц и гамма-квантов для того, чтобы избежать потерь энергии частицами до регистрации используют тонкие входные окна. Иногда источник помещают в объём счетчика. Эффективность регистрации для мягких гамма-квантов с энергией < 20 кэВ > 80%. Для повышения эффективности регистрации более энергетичных гамма-квантов используют ксенон.
При регистрации нейтронов пропорциональные счетчики заполняются газами 3 He или 10 BF 3 . Используются реакции

Последние материалы сайта