В чем измеряется энергетическая светимость. Характеристики теплового излучения (поток, энергетическая светимость, спектральная плотность энергетической светимости)

21.09.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

ТЕПЛОВОЕ ИЗЛУЧЕНИЕ Закон Стефана Больцмана Связь энергетической светимости R e и спектральной плотности энергетической светимости абсолютно черного тела Энергетическая светимость серого тела Закон смещения Вина (1-ый закон) Зависимость максимальной спектральной плотности энергетической светимости черного тела от температуры (2-ой закон) Формула Планка


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 1. Максимум спектральной плотности энергетической светимости Солнца приходится на длину волны = 0,48 мкм. Считая, что Солнце излучает как черное тело, определить: 1) температуру его поверхности; 2) мощность, излучаемую его поверхностью. Согласно закону смещения Вина Мощность, излучаемая поверхностью Солнца Согласно закону Стефана Больцмана,


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 2. Определить количество теплоты, теряемое 50 см 2 с поверхности расплавленной платины за 1 мин, если поглощательная способность платины А Т = 0,8. Температура плавления платины равна 1770 °С. Количество теплоты, теряемое платиной равно энергии, излучаемой ее раскаленной поверхностью Согласно закону Стефана Больцмана,


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 3. Электрическая печь потребляет мощность Р = 500 Вт. Температура ее внутренней поверхности при открытом небольшом отверстии диаметром d = 5,0 см равна 700 °С. Какая часть потребляемой мощности рассеивается стенками? Полная мощность определяется суммой Мощность, выделяемая через отверстие Мощность рассеиваемая стенками Согласно закону Стефана Больцмана,


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 4 Вольфрамовая нить накаливается в вакууме током силой I = 1 А до температуры T 1 = 1000 К. При какой силе тока нить накалится до температуры Т 2 = 3000 К? Коэффициенты поглощения вольфрама и его удельные сопротивления, соответствующие температурам T 1, Т 2 равны: a 1 = 0,115 и a 2 = 0,334; 1 = 25, Ом м, 2 = 96, Ом м Мощность излучаемая равна мощности потребляемой от электрической цепи в установившемся режиме Электрическая мощность выделяемая в проводнике Согласно закону Стефана Больцмана,


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 5. В спектре Солнца максимум спектральной плотности энергетической светимости приходится на длину волны.0 = 0,47 мкм. Приняв, что Солнце излучает как абсолютно черное тело, найти интенсивность солнечной радиации (т. е. плотность потока излучения) вблизи Земли за пределами ее атмосферы. Сила света (интенсивность излучения) Световой поток Согласно законам Стефана Больцмана и Вина


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 6. Длина волны 0, на которую приходится максимум энергии в спектре излучения черного тела, равна 0,58 мкм. Определить максимальную спектральную плотность энергетической светимости (r,T) max, рассчитанную на интервал длин волн = 1 нм, вблизи 0. Максимальная спектральная плотность энергетической светимости пропорциональна пятой степени температуры и выражается 2-ым законом Вина Температуру Т выразим из закона смещения Вина значение С дано в единицах СИ, в которых единичный интервал длин волн =1 м. По условию же задачи требуется вычислить спектральную плотность энергетической светимости, рассчитанную на интервал длин волн 1 нм, поэтому выпишем значение С в единицах СИ и пересчитаем его на заданный интервал длин волн:


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 7. Исследование спектра излучения Солнца показывает, что максимум спектральной плотности энергетической светимости соответствует длине волны =500 нм. Принимая Солнце за черное тело, определить: 1) энергетическую светимость R e Солнца; 2) поток энергии Ф е, излучаемый Солнцем; 3) массу электромагнитных волн (всех длин), излучаемых Солнцем за 1 с. 1. Согласно законам Стефана Больцмана и Вина 2. Световой поток 3. Массу электромагнитных волн (всех длин), излучаемых Солнцем за время t=1 с, определим, применив закон пропорциональности массы и энергии Е=мс 2. Энергия электромагнитных волн, излучаемых за время t, равна произведению потока энергии Ф e ((мощности излучения) на время: E=Ф e t. Следовательно, Ф е =мс 2, откуда m=Ф е /с 2.

1. Характеристики теплового излучения.

2. Закон Кирхгофа.

3. Законы излучения черного тела.

4. Излучение Солнца.

5. Физические основы термографии.

6. Светолечение. Лечебное применение ультрафиолета.

7. Основные понятия и формулы.

8. Задачи.

Из всего многообразия электромагнитных излучений, видимых или невидимых человеческим глазом, можно выделить одно, которое присуще всем телам - это тепловое излучение.

Тепловое излучение - электромагнитное излучение, испускаемое веществом и возникающее за счет его внутренней энергии.

Тепловое излучение обусловливается возбуждением частиц вещества при соударениях в процессе теплового движения или ускоренным движением зарядов (колебания ионов кристаллической решетки, тепловое движение свободных электронов и т.д.). Оно возникает при любых температурах и присуще всем телам. Характерной чертой теплового излучения является сплошной спектр.

Интенсивность излучения и спектральный состав зависят от температуры тела, поэтому не всегда тепловое излучение воспринимается глазом как свечение. Например, тела, нагретые до высокой температуры, значительную часть энергии испускают в видимом диапазоне, а при комнатной температуре почти вся энергия испускается в инфракрасной части спектра.

26.1. Характеристики теплового излучения

Энергия, которую теряет тело вследствие теплового излучения, характеризуется следующими величинами.

Поток излучения (Ф) - энергия, излучаемая за единицу времени со всей поверхности тела.

Фактически, это мощность теплового излучения. Размерность потока излучения - [Дж/с = Вт].

Энергетическая светимость (Re) - энергия теплового излучения, испускаемого за единицу времени с единичной поверхности нагретого тела:

Размерность этой характеристики - [Вт/м 2 ].

И поток излучения, и энергетическая светимость зависят от строения вещества и его температуры: Ф = Ф(Т), Re = Re(T).

Распределение энергетической светимости по спектру теплового излучения характеризует ее спектральная плотность. Обозначим энергию теплового излучения, испускаемого единичной поверхностью за 1 с в узком интервале длин волн от λ до λ + dλ, через dRe.

Спектральной плотностью энергетической светимости (r) или испускательной способностью называется отношение энергетической светимости в узком участке спектра (dRe) к ширине этого участка (d λ):

Примерный вид спектральной плотности и энергетичекая светимость (dRe) в интервале волн от λ до λ + dλ, показаны на рис. 26.1.

Рис. 26.1. Спектральная плотность энергетической светимости

Зависимость спектральной плотности энергетической светимости от длины волны называют спектром излучения тела. Знание этой зависимости позволяет рассчитать энергетическую светимость тела в любом диапазоне длин волн:

Тела не только испускают, но и поглощают тепловое излучение. Способность тела к поглощению энергии излучения зависит от его вещества, температуры и длины волны излучения. Поглощательную способность тела характеризует монохроматический коэффициент поглощения α.

Пусть на поверхность тела падает поток монохроматического излучения Φ λ с длиной волны λ. Часть этого потока отражается, а часть поглощается телом. Обозначим величину поглощенного потока Φ λ погл.

Монохроматическим коэффициентом поглощения α λ называется отношение потока излучения, поглощенного данным телом, к величине падающего монохроматического потока:

Монохроматический коэффициент поглощения - величина безразмерная. Его значения лежат между нулем и единицей: 0 ≤ α ≤ 1.

Функция α = α(λ,Τ), выражающая зависимость монохроматического коэффициента поглощения от длины волны и температуры, называется поглощательной способностью тела. Ее вид может быть весьма сложным. Ниже рассмотрены простейшие типы поглощения.

Абсолютно черное тело - такое тело, коэффициент поглощения которого равен единице для всех длин волн: α = 1. Оно поглощает все падающее на него излучение.

По своим поглощательным свойствам к абсолютно черному телу близки сажи, черный бархат, платиновая чернь. Очень хорошей моделью абсолютно черного тела является замкнутая полость с небольшим отверстием (O). Стенки полости зачернены рис. 26.2.

Луч, попавший в это отверстие, после многократных отражений от стенок поглощается практически полностью. Подобные устройства

Рис. 26.2. Модель абсолютно черного тела

применяют в качестве световых эталонов, используют при измерениях высоких температур и т.п.

Спектральная плотность энергетической светимости абсолютно черного тела обозначается ε(λ,Τ). Эта функция играет важнейшую роль в теории теплового излучения. Ее вид сначала был установлен экспериментально, а затем получен теоретически (формула Планка).

Абсолютно белое тело - такое тело, коэффициент поглощения которого равен нулю для всех длин волн: α = 0.

Истинно белых тел в природе нет, однако существуют тела, близкие к ним по свойствам в достаточно широком диапазоне температур и длин волн. Например, зеркало в оптической части спектра отражает почти весь падающий свет.

Серое тело - это тело, для которого коэффициент поглощения не зависит от длины волны: α = const < 1.

Некоторые реальные тела обладают этим свойством в определенном интервале длин волн и температур. Например, «серой» (α = 0,9) можно считать кожу человека в инфракрасной области.

26.2. Закон Кирхгофа

Количественная связь между излучением и поглощением установлена Г. Кирхгофом (1859).

Закон Кирхгофа - отношение испускательной способности тела к его поглощательной способности одинаково для всех тел и равно спектральной плотности энергетической светимости абсолютно черного тела:

Отметим некоторые следствия этого закона.

1. Если тело при данной температуре не поглощает какое-либо излучение, то оно его и не испускает. Действительно, если для

26.3. Законы излучения черного тела

Законы излучения абсолютно черного тела были установлены в следующей последовательности.

В 1879 г. Й. Стефан экспериментально, а в 1884 г. Л. Больцман теоретически определили энергетическую светимость абсолютно черного тела.

Закон Стефана-Больцмана - энергетическая светимость абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры:

Значения коэффициентов поглощения для некоторых материалов приведены в табл. 26.1.

Таблица 26.1. Коэффициенты поглощения

Немецкий физик В. Вин (1893) установил формулу для длины волны, на которую приходится максимум испускательной способности абсолютно черного тела. Соотношение, которое он получил, было названо его именем.

При повышении температуры максимум испускательной способности смещается влево (рис. 26.3).

Рис. 26.3. Иллюстрация закона смещения Вина

В табл. 26.2 указаны цвета в видимой части спектра, соответствующие излучениям тел при различных температурах.

Таблица 26.2. Цвета нагретых тел

Используя законы Стефана-Больцмана и Вина, можно определить температуры тел посредством измерения излучения этих тел. Например, так определяют температуру поверхности Солнца (~6000 К), температуру в эпицентре взрыва (~10 6 К) и т.д. Общее название этих методов - пирометрия.

В 1900 г. М. Планк получил формулу для расчета испускательной способности абсолютно черного тела теоретически. Для этого ему пришлось отказаться от классических представлений о непрерывности процесса излучения электромагнитных волн. По представлениям Планка, поток излучения состоит из отдельных порций - квантов, энергии которых пропорциональны частотам света:

Из формулы (26.11) можно теоретически получить законы Стефана-Больцмана и Вина.

26.4. Излучение Солнца

В пределах Солнечной системы Солнце - самый мощный источник теплового излучения, обусловливающий жизнь на Земле. Солнечное излучение обладает лечебными свойствами (гелиотерапия), используется как средство закаливания. Оно же может оказывать и негативное воздействие на организм (ожог, тепловой

Спектры солнечного излучения на границе земной атмосферы и у поверхности Земли различны (рис. 26.4).

Рис. 26.4. Спектр солнечного излучения: 1 - на границе атмосферы, 2 - у поверхности Земли

На границе атмосферы спектр Солнца близок к спектру абсолютно черного тела. Максимум испускательной способности приходится на λ 1max = 470 нм (синий цвет).

У поверхности Земли спектр солнечного излучения имеет более сложную форму, что связано с поглощением в атмосфере. В частности, в нем отсутствует высокочастотная часть ультрафиолетового излучения, губительная для живых организмов. Эти лучи практически полностью поглощаются озоновым слоем. Максимум испускательной способности приходится на λ 2max = 555 нм (зелено-желтый), что соответствует наилучшей чувствительности глаз.

Поток теплового излучения Солнца на границе земной атмосферы определяет солнечная постоянная I.

Поток, достигающий земной поверхности, значительно меньше вследствие поглощения в атмосфере. При самых благоприятных условиях (солнце в зените) он не превышает 1120 Вт/м 2 . В Москве в момент летнего солнцестояния (июнь) - 930 Вт/м 2 .

От высоты Солнца над горизонтом самым существенным образом зависит как мощность солнечного излучения у земной поверхности, так и его спектральный состав. На рис. 26.5 приведены сглаженные кривые распределения энергии солнечного света: I - за пределами атмосферы; II - при положении Солнца в зените; III - при высоте 30° над горизонтом; IV - при условиях, близких к восходу и закату (10° над горизонтом).

Рис. 26.5. Распределение энергии в спектре Солнца при различных высотах над горизонтом

Различные составляющие солнечного спектра по-разному проходят через земную атмосферу. На рисунке 26.6 показана прозрачность атмосферы при большой высоте стояния Солнца.

26.5. Физические основы термографии

Тепловое излучение человека составляет существенную долю его тепловых потерь. Излучательные потери человека равны разности испущенного потока и поглощенного потока излучения окружающей среды. Мощность излучательных потерь рассчитывается по формуле

где S - площадь поверхности; δ - приведенный коэффициент поглощения кожи (одежды), рассматриваемой как серое тело; Т 1 - температура поверхности тела (одежды); Т 0 - температура окружающей среды.

Рассмотрим следующий пример.

Рассчитаем мощность излучательных потерь раздетого человека при температуре окружающей среды 18°С (291 К). Примем: площадь поверхности тела S = 1,5 м 2 ; температура кожи Т 1 = 306 К (33°С). Приведенный коэффициент поглощения кожи найдем по табл. 26.1 = 5,1*10 -8 Вт/м 2 К 4). Подставив эти значения в формулу (26.11), получим

Р = 1,5*5,1*10 -8 * (306 4 - 291 4) ≈122 Вт.

Рис. 26.6. Прозрачность земной атмосферы (в процентах) для различных участков спектра при большой высоте стояния Солнца.

Тепловое излучение человека может быть использовано как диагностический параметр.

Термография - диагностический метод, основанный на измерении и регистрации теплового излучения поверхности тела человека или его отдельных участков.

Распределение температуры на небольшом участке поверхности тела можно определить с помощью специальных жидкокристаллических пленок. Такие пленки чувствительны к небольшим изменениям температуры (меняют цвет). Поэтому на пленке возникает цветной тепловой «портрет» участка тела, на который она наложена.

Более совершенный способ состоит в использовании тепловизоров, преобразующих инфракрасное излучение в видимый свет. Излучение тела с помощью специального объектива проецируется на матрицу тепловизора. После преобразования на экране формируется детальный тепловой портрет. Участки с различными температурами отличаются цветом или интенсивностью. Современные методы позволяют фиксировать различие в температурах до 0,2 градуса.

Тепловые портреты используются в функциональной диагностике. Различные патологии внутренних органов могут образовывать на поверхности кожные зоны с измененной температурой. Обнаружение таких зон указывает на наличие патологии. Термографический метод облегчает дифференциальный диагноз между доброкачественными и злокачественными опухолями. Этот метод является объективным средством контроля за эффективностью терапевтических методов лечения. Так, при термографическом обследовании больных псориазом было установлено, что при наличии выраженной инфильтрации и гиперемии в бляшках отмечается повышение температуры. Снижение температуры до уровня окружающих участков в большинстве случаев свидетельствует о регрессии процесса на коже.

Повышенная температура часто является показателем инфекции. Чтобы определить температуру человека, достаточно взглянуть через инфракрасное устройство на его лицо и шею. Для здоровых людей отношение температуры лба к температуре в области сонной артерии лежит в диапазоне от 0,98 до 1,03. Это отношение и можно использовать при экспресс-диагностике во время эпидемий для проведения карантинных мероприятий.

26.6. Светолечение. Лечебное применение ультрафиолета

Инфракрасное излучение, видимый свет и ультрафиолетовое излучение находят широкое применение в медицине. Напомним диапазоны их длин волн:

Светолечением называют применение в лечебных целях инфракрасного и видимого излучений.

Проникая в ткани, инфракрасные лучи (как и видимые) в месте своего поглощения вызывают выделение теплоты. Глубина проникновения инфракрасных и видимых лучей в кожу показана на рис. 26.7.

Рис. 26.7. Глубина проникновения излучения в кожу

В лечебной практике в качестве источников инфракрасного излучения используются специальные облучатели (рис. 26.8).

Лампа Минина представляет собой лампу накаливания с рефлектором, локализующим излучение в необходимом направлении. Источником излучения служит лампа накаливания мощностью 20-60 Вт из бесцветного или синего стекла.

Светотепловая ванна представляет собой полуцилиндрический каркас, состоящий из двух половин, соединенных подвижно между собой. На внутренней поверхности каркаса, обращенной к пациенту, укреплены лампы накаливания мощностью 40 Вт. В таких ваннах на биологический объект действуют инфракрасное и видимое излучения, а также нагретый воздух, температура которого может достигать 70°С.

Лампа Соллюкс представляет собой мощную лампу накаливания, помещенную в специальный рефлектор на штативе. Источником излучения служит лампа накаливания мощностью 500 Вт (температура вольфрамовой нити 2 800°С, максимум излучения приходится на длину волны 2 мкм).

Рис. 26.8. Облучатели: лампа Минина (а), светотепловая ванна (б), лампа Соллюкс (в)

Лечебное применение ультрафиолета

Ультрафиолетовое излучение, применяемое в медицинских целях, подразделяют на три диапазона:

При поглощении ультрафиолетового излучения в тканях (в коже) происходят различные фотохимические и фотобиологические реакции.

В качестве источников излучения используют лампы высокого давления (дуговые, ртутные, трубчатые), люминесцентные лампы, газоразрядные лампы низкого давления, одной из разновидностей которых являются бактерицидные лампы.

А-излучение оказывает эритемное и загарное действие. Оно используется при лечении многих дерматологических заболеваний. Некоторые химические соединения фурокумаринового ряда (например, псорален) способны сенсибилизировать кожу этих больных к длинноволновому ультрафиолетовому излучению и стимулировать образование в меланоцитах пигмента меланина. Совместное применение данных препаратов с А-излучением является основой метода лечения, называемого фотохимиотерапией или ПУВА-терапией (PUVA: Р - псорален; UVA - ультрафиолетовое излучение зоны А). Облучению подвергают часть или все тело.

В-излучение оказывает ватиминообразующее, антирахитное действие.

С-излучение оказывает бактерицидное действие. При облучении происходит разрушение структуры микроорганизмов и грибов. С-излучение создается специальными бактерицидными лампами (рис. 26.9).

Некоторые лечебные методики используют С-излучение для облучения крови.

Ультрафиолетовое голодание. Ультрафиолетовое излучение необходимо для нормального развития и функционирования организма. Его недостаток приводит к возникновению ряда серьезных заболеваний. С ультрафиолетовым голоданием сталкиваются жители крайнего

Рис. 26.9. Бактерицидный облучатель (а), облучатель для носоглотки (б)

Севера, рабочие горнорудной промышленности, метрополитена, жители крупных городов. В городах недостаток ультрафиолета связан с загрязнением атмосферного воздуха пылью, дымом, газами, задерживающими УФ-часть солнечного спектра. Окна помещений не пропускают УФ-лучи с длиной волны λ < 310 нм. Значительно снижают УФ-поток загрязненные стекла и занавеси (тюлевые занавески снижают УФ-излучение на 20 %). Поэтому на многих производствах и в быту наблюдается так называемая «биологическая полутьма». В первую очередь страдают дети (возрастает вероятность заболевания рахитом).

Вредность ультрафиолетового облучения

Воздействие избыточных доз ультрафиолетового облучения на организм в целом и на отдельные его органы приводит к возникновению ряда патологий. В первую очередь это относится к последствиям бесконтрольного загорания: ожоги, пигментные пятна, повреждение глаз - развитие фотоофтальмии. Действие ультрафиолета на глаз подобно эритеме, так как оно связано с разложением протеинов в клетках роговой и слизистой оболочек глаза. Живые клетки кожи человека защищены от деструктивного действия УФ лучей «мертвы-

ми» клетками рогового слоя кожи. Глаза лишены этой защиты, поэтому при значительной дозе облучения глаз после скрытого периода развивается воспаление роговой (кератит) и слизистой (конъюнктивит) оболочек глаза. Этот эффект обусловлен лучами с длиной волны меньше 310 нм. Необходимо защищать глаз от таких лучей. Особо следует рассмотривать бластомогенное действие УФ-радиации, приводящее к развитию рака кожи.

26.7. Основные понятия и формулы

Продолжение таблицы

Окончание таблицы

26.8. Задачи

2. Определить, во сколько раз отличаются энергетические светимости участков поверхности тела человека, имеющих температуры 34 и 33°С соответственно?

3. При диагностике методом термографии опухоли молочной железы пациентке дают выпить раствор глюкозы. Через некоторое время регистрируют тепловое излучение поверхности тела. Клетки опухолевой ткани интенсивно поглощают глюкозу, в результате чего их теплопродукция возрастает. На сколько градусов при этом меняется температура участка кожи над опухолью, если излучение с поверхности возрастает на 1% (в 1,01 раза)? Начальная температура участка тела равна 37°С.

6. Насколько увеличилась температура тела человека, если поток излучения с поверхности тела возрос на 4%? Начальная температура тела равна 35°С.

7. В комнате стоят два одинаковых чайника, содержащие равные массы воды при 90°С. Один из них никелированный, а другой темный. Какой из чайников быстрее остынет? Почему?

Решение

По закону Кирхгофа отношение испускательной и поглощательной способностей одинаково у всех тел. Никелированный чайник отражает почти весь свет. Следовательно, его поглощательная способность мала. Соответственно мала и испускательная способность.

Ответ: быстрее остынет темный чайник.

8. Для уничтожения жучков-вредителей зерно подвергают действию инфракрасного облучения. Почему жучки погибают, а зерно нет?

Ответ: жучки имеют черный цвет, поэтому интенсивно поглощают инфракрасное излучение и гибнут.

9. Нагревая кусок стали, мы при температуре 800°С будем наблюдать яркое вишнево-красное каление, но прозрачный стерженек плавленого кварца при той же температуре совсем не светится. Почему?

Решение

См. задачу 7. Прозрачное тело поглощает малую часть света. Поэтому и его испускательная способность мала.

Ответ: прозрачное тело практически не излучает, даже будучи сильно нагретым.

10. Почему в холодную погоду многие животные спят, свернувшись в клубок?

Ответ: при этом уменьшается открытая поверхность тела и соответственно уменьшаются потери на излучение.

Итак, что такое тепловое излучение?

Тепловое излучение - это электромагнитное излучение, которое возникает за счет энергии вращательного и колебательного движения атомов и молекул в составе вещества. Тепловое излучение характерно для всех тел, которые имеют температуру, превышающую температуру абсолютного нуля.

Тепловое излучение тела человека относится к инфракрасному диапазону электромагнитных волн. Впервые такое излучение было открыто английским астрономом Вильямом Гершелем. В 1865 английский физик Дж. Максвелл доказал, что ИК - излучение имеет электромагнитную природу и представляет собой волны длиной от 760нм до 1-2мм . Чаще всего весь диапазон ИК - излучения делят на области: ближнюю (750нм -2.500нм ), среднюю (2.500нм - 50.000нм ) и дальнюю (50.000нм -2.000.000нм ).

Рассмотрим случай, когда тело А расположено в полости Б, которая ограничена идеальной отражающей (непроницаемой для излучения) оболочкой С (рис.1). В результате многократного отражения от внутренней поверхности оболочки излучение будет сохраняться в пределах зеркальной полости и частично поглощаться телом А. При таких условиях система полость Б - тело А не будет терять энергию, а будет лишь происходить непрерывный обмен энергией между телом А и излучением, которое заполняет полость Б.

Рис.1 . Многократное отражение тепловых волн от зеркальных стенок полости Б

Если распределение энергии остается неизменным для каждой длины волны, то состояние такой системы будет равновесным, а излучение также будет равновесным. Единственным видом равновесного излучения является тепловое. Если по какой-то причине равновесие между излучением и телом сместится, то начинают протекать такие термодинамические процессы, которые вернут систему в состояние равновесия. Если тело А начинает излучать больше, чем поглощает, то тело начинает терять внутреннюю энергию и температура тела (как мера внутренней энергии) начнет падать, что уменьшит количество излучаемой энергии. Температура тела будет падать до тех пор, пока количество излучаемой энергии не станет равным количеству энергии, поглощаемой телом. Таким образом, наступит равновесное состояние.

Равновесное тепловое излучение имеет такие свойства: однородное (одинаковая плотность потока энергии во всех точках полости), изотропное (возможные направления распространения равновероятны), неполяризованное (направления и значения векторов напряженностей электрического и магнитного полей во всех точках полости изменяются хаотически).

Основными количественными характеристиками теплового излучения являются:

- энергетическая светимость - это количество энергии электромагнитного излучения во всем диапазоне длин волн теплового излучения, которое излучается телом во всех направлениях с единицы площади поверхности за единицу времени: R = E/(S·t), [Дж/(м 2 с)] = [Вт/м 2 ] Энергетическая светимость зависит от природы тела, температуры тела, состояния поверхности тела и длины волны излучения.

- спектральная плотность энергетической светимости - энергетическая светимость тела для данных длин волн (λ + dλ) при данной температуре (T + dT): R λ,T = f(λ, T).

Энергетическая светимость тела в пределах каких-то длин волн вычисляется интегрированием R λ,T = f(λ, T) для T = const:

- коэффициент поглощения - отношение поглощенной телом энергии к падающей энергии. Так, если на тело падает излучение потока dФ пад, то одна его часть отражается от поверхности тела - dФ отр, другая часть проходит в тело и частично превращается в теплоту dФ погл, а третья часть после нескольких внутренних отражений - проходит через тело наружу dФ пр: α = dФ погл /dФ пад.

Коэффициент поглощения α зависит от природы поглощающего тела, длины волны поглощаемого излучения, температуры и состояния поверхности тела.

- монохроматический коэффициент поглощения - коэффициент поглощения теплового излучения данной длины волны при заданной температуре: α λ,T = f(λ,T)

Среди тел есть такие тела, которые могут поглощать все тепловое излучение любых длин волн, которое падает на них. Такие идеально поглощающие тела называются абсолютно черными телами . Для них α =1.

Есть также серые тела, для которых α<1, но одинаковый для всех длин волн инфракрасного диапазона.

Моделью АЧТ является малое отверстие полости с теплонепроницаемой оболочкой. Диаметр отверстия составляет не более 0,1 диаметра полости. При постоянной температуре из отверстия излучается некоторая энергия, соответствующая энергетической светимости абсолютно черного тела. Но АЧТ - это идеализация. Но законы теплового излучения АЧТ помогают приблизиться к реальным закономерностям.

2. Законы теплового излучения

1. Закон Кирхгофа. Тепловое излучение является равновесным - сколько энергии излучается телом, столь ее им и поглощается. Для трех тел, находящихся в замкнутой полости можно записать:

Указанное соотношение будет верным и тогда, когда одно из тел будет АЧ:

Т.к. для АЧТ α λT .
Это закон Кирхгофа: отношение спектральной плотности энергетической светимости тела к его монохроматическому коэффициенту поглощения (при определенной температуре и для определенной длины волны) не зависит от природы тела и равно для всех тел спектральной плотности энергетической светимости при тех же самых температуре и длине волны.

Следствия из закона Кирхгофа:
1. Спектральная энергетическая светимость АЧТ является универсальной функцией длины волны и температуры тела.
2. Спектральная энергетическая светимость АЧТ наибольшая.
3. Спектральная энергетическая светимость произвольного тела равна произведению его коэффициента поглощения на спектральную энергетическую светимость абсолютно черного тела.
4. Любое тело при данной температуре излучает волны той же длины волны, которое оно излучает при данной температуре.

Систематическое изучение спектров ряда элементов позволило Кирхгофу и Бунзену установить однозначную связь между спектрами поглощения и излучения газов и индивидуальностью соответствующих атомов. Так был предложен спектральный анализ , с помощью которого можно выявить вещества, концентрация которых составляет 0,1нм.

Распределение спектральной плотности энергетической светимости для абсолютно черного тела, серого тела, произвольного тела. Последняя кривая имеет несколько максимумов и минимумов, что указывает на избирательность излучения и поглощения таких тел.

2. Закон Стефана-Больцмана.
В 1879 году австрийские ученые Йозеф Стефан (экспериментально для произвольного тела) и Людвиг Больцман (теоретически для АЧТ) установили, что общая энергетическая светимость во всем диапазоне длин волн пропорциональна четвертой степени абсолютной температуры тела:

3. Закон Вина.
Немецкий физик Вильгельм Вин в 1893 году сформулировал закон, который определяет положение максимума спектральной плотности энергетической светимости тела в спектре излучения АЧТ в зависимости от температуры. Согласно закону, длина волны λ max , на которую приходится максимум спектральной плотности энергетической светимости АЧТ, обратно пропорционален его абсолютной температуре Т: λ max = в/t, где в = 2,9*10 -3 м·К- постоянная Вина.

Таким образом, при увеличении температуры изменяется не только полная энергия излучения, но и сама форма кривой распределения спектральной плотности энергетической светимости. Максимум спектральной плотности при увеличении температуры смещается в сторону более коротких длин волн. Поэтому закон Вина называют законом смещения.

Закон Вина применяется в оптической пирометрии - метода определения температуры по спектру излучения сильно нагретых тел, которые отдалены от наблюдателя. Именно этим методом впервые была определена температура Солнца (для 470нм Т=6160К).

Представленные законы не позволяли теоретически найти уравнения распределения спектральной плотности энергетической светимости по длинам волн. Труды Релея и Джинса, в которых ученые исследовали спектральный состав излучения АЧТ на основе законов классической физики, привели к принципиальным трудностям, названных ультрафиолетовой катастрофой. В диапазоне УФ-волн энергетическая светимость АЧТ должна была достигать бесконечности, хотя в опытах она уменьшалась к нулю. Эти результаты противоречили закону сохранения энергии.

4. Теория Планка. Немецкий ученый в 1900 году выдвинул гипотезу о том, что тела излучают не непрерывно, а отдельными порциями - квантами. Энергия кванта пропорциональна частоте излучения: E = hν = h·c/λ , где h = 6,63*10 -34 Дж·с постоянная Планка.

Руководствуясь представлениями о квантовом излучении АЧТ, он получил уравнение для спектральной плотности энергетической светимости АЧТ:

Эта формула находится в соответствии с опытными данными во всем интервале длин волн при всех температурах.

Солнце - основной источник теплового излучения в природе. Солнечное излучение занимает широкий диапазон длин волн: от 0,1нм до 10м и более. 99% солнечной энергии приходится на диапазон от 280 до 6000нм . На единицу площади Земной поверхности приходится в горах от 800 до 1000 Вт/м 2 . До земной поверхности доходит одна двухмиллиардная часть тепла - 9,23 Дж/см 2 . На диапазон теплового излучения от 6000 до 500000нм приходится 0,4% энергии Солнца. В атмосфере Земли большая часть ИК-излучения поглощается молекулами воды, кислорода, азота, диоксида углерода. Радиодиапазон тоже большей частью поглощается атмосферой.

Количество энергии, которую приносят солнечные лучи за 1с на площадь в 1 кв.м, расположенную за пределами земной атмосферы на высоте 82 км перпендикулярную солнечным лучам называется солнечной постоянной. Она равна 1,4*10 3 Вт/м 2 .

Спектральное распределение нормальной плотности потока солнечного излучения совпадает с таким для АЧТ при температуре 6000 градусов. Поэтому Солнце относительно теплового излучения - АЧТ.

3. Излучение реальных тел и тела человека

Тепловое излучение с поверхности тела человека играет большую роль в теплоотдаче. Существуют такие способы теплоотдачи: теплопроводность (кондукция), конвекция, излучение, испарение. В зависимости от условий, в которых окажется человек, каждый из этих способов может иметь доминирующее значение (так, например, при очень высоких температурах среды ведущая роль принадлежит испарению, а в холодной воде - кондукции, причем температура воды 15 градусов является смертельной средой для обнаженного человека, и через 2-4 часа наступает обморок и смерть вследствие переохлаждения мозга). Доля излучения в общей теплоотдаче может составлять от 75 до 25%. В нормальных условиях около 50% при физиологическом покое.

Тепловое излучение, которое играет роль в жизни живых организмов делится на коротковолновую (от 0,3 до 3 мкм) и длинноволновую (от 5 до 100мкм ). Источником коротковолнового излучения служат Солнце и открытое пламя, а живые организмы являются исключительно реципиентами такого излучения. Длинноволновая радиация и излучается, и поглощается живыми организмами.

Величина коэффициента поглощения зависит от соотношения температур среды и тела, площади их взаимодействия, ориентации этих площадей, а для коротковолнового излучения - от цвета поверхности. Так у негров происходит отражение лишь 18% коротковолнового излучения, тогда как у людей белой расы около 40% (скорее всего, цвет кожи негров в эволюции не имел отношение к теплообмену). Для длинноволнового излучения коэффициент поглощения приближен к 1.

Расчет теплообмена излучением - очень трудная задача. Для реальных тел использовать закон Стефана-Больцмана нельзя, поскольку у них более сложная зависимость энергетической светимости от температуры. Оказывается, она зависит от температуры, природы тела, формы тела и состояния его поверхности. Со сменой температуры изменяется коэффициент σ и показатель степени температуры. Поверхность тела человека имеет сложную конфигурацию, человек носит одежду, которая изменяет излучение, на процесс влияет поза, в которой находится человек.

Для серого тела мощность излучения во всем диапазоне определяется по формуле: P = α с.т. σ·T 4 ·S Считая с определенными приближениями реальные тела (кожа человека, ткани одежды) близкими к серым телам, можно найти формулу для вычисления мощности излучения реальными телами при определенной температуре: P = α·σ·T 4 ·S В условиях разных температур излучающего тела и окружающей среды: P = α·σ·(T 1 4 - T 2 4)·S
Существуют особенности спектральной плотности энергетической светимости реальных тел: при 310К , что соответствует средней температуре тела человека, максимум теплового излучения приходится на 9700нм . Любое изменение температуры тела приводит к изменению мощности теплового излучения с поверхности тела (0,1 градус достаточно). Поэтому исследование участков кожи, через ЦНС связанных с определенными органами, способствует выявлению заболеваний, в результате которых температура изменяется довольно значительно (термография зон Захарьина-Геда ).

Интересен метод бесконтактного массажа биополем человека (Джуна Давиташвили). Мощность теплового излучения ладони 0,1Вт , а тепловая чувствительность кожи 0,0001 Вт/см 2 . Если действовать на вышеупомянутые зоны, можно рефлекторно стимулировать работу этих органов.

4. Биологическое и терапевтическое действие тепла и холода

Тело человека постоянно излучает и поглощает тепловое излучение. Этот процесс зависит от температур тела человека и окружающей среды. Максимум ИК-излучения тела человека приходится на 9300нм.

При маленьких и средних дозах облучения ИК-лучами усиливаются метаболические процессы и ускоряются ферментативные реакции, процессы регенерации и репарации.

В результате действия ИК-лучей и видимого излучения в тканях образуются БАВ (брадикинин, калидин, гистамин, ацетилхолин, в основном вазомоторные вещества, которые играют роль в осуществлении и регуляции местного кровотока).

В результате действия ИК-лучей в коже активируются терморецепторы, информация от которых поступает в гипоталамус, в результате чего расширяются сосуды кожи, увеличивается объем циркулирующей в них крови, усиливается потовыделение.

Глубина проникновения ИК-лучей зависит от длины волны, влажности кожи, наполнения ее кровью степени пигментации и т.д.

На коже человека под действием ИК-лучей возникает красная эритема.

Применяется в клинической практике для влияния на местную и общую гемодинамику, усиления потовыделения, расслабления мышц, снижения болевого ощущения, ускорения рассасывания гематом, инфильтратов и т.д.

В условиях гипертермии усиливается противоопухолевое действие лучевой терапии - терморадиотерапия.

Основные показания применения ИК-терапии: острые негнойные воспалительные процессы, ожоги и обморожения, хронические воспалительные процессы, язвы, контрактуры, спайки, травмы суставов, связок и мышц, миозиты, миалгии, невралгии. Основные противопоказания: опухоли, гнойные воспаления, кровотечения, недостаточность кровообращения.

Холод применяется для остановки кровотечений, обезболивания, лечения некоторых заболеваний кожи. Закаливание ведет к долголетию.

Под действием холода снижается частота сердечных сокращений, артериальное давление, угнетаются рефлекторные реакции.

В определенных дозах холод стимулирует заживление ожогов, гнойных ран, трофических язв, эрозий, коньюктивитов.

Криобиология - изучает процессы, которые происходят в клетках, тканях, органах и организме под действием низких, нефизиологических температур.

В медицине используются криотерапия и гипертермия . Криотерапия включает методы, основанные на дозированном охлаждении тканей, органов. Криохирургия (часть криотерапии) использует локальное замораживание тканей с целью их удаления (часть миндалины. Если вся - криотонзилоэктомия. Можно удалять опухоли, например, кожи, шейки матки и т.д.) Криоэкстракция, основанная на криоадгезии (прилипании влажных тел к замороженному скальпелю) - выделение из органа части.

При гипертермии можно некоторое время сохранить функции органов ин виво. Гипотермию с помощью наркоза используют для сохранения функции органов при отсутствии кровоснабжения, поскольку замедляется обмен веществ в тканях. Ткани становятся стойкими к гипоксии. Применяют холодовой наркоз.

Осуществляют действие тепла с помощью ламп накаливания (лампа Минина, солюкс, ванна светотепловая, лампа ИК-лучей) с использованием физических сред, имеющих высокую теплоемкость, плохую теплопроводность и хорошую теплосохранящую способность: грязи, парафин, озокерит, нафталин и т.д.

5. Физические основы термографии.Тепловизоры

Термография, или тепловидение - это метод функциональной диагностики, основанный на регистрации ИК-излучения тела человека.

Существует 2 разновидности термографии:

- контактная холестерическая термография : в методе используются оптические свойства холестерических жидких кристаллов (многокомпонентные смеси сложных эфиров и других производных холестерина). Такие вещества избирательно отражают разные длины волн, что дает возможным получать на пленках этих веществ изображения теплового поля поверхности тела человека. На пленку направляют поток белого света. Разные длины волн по-разному отражаются от пленки в зависимости от температуры поверхности, на которую нанесен холестерик.

Под действием температуры холестерики могут изменять цвет от красного до фиолетового. В результате формируется цветное изображение теплового поля тела человека, которое легко расшифровать, зная зависимость температура-цвет. Существуют холестерики, позволяющие фиксировать разницу температур 0,1 градус. Так, можно определить границы воспалительного процесса, очаги воспалительной инфильтрации на разных стадиях ее развития.

В онкологии термография позволяет выявить метастатические узлы диаметром 1,5-2мм в молочной железе, коже, щитовидной железе; в ортопедии и травматологии оценить кровоснабжение каждого сегмента конечности, например, перед ампутацией, опередить глубину ожога и т.д.; в кардиологии и ангиологии выявить нарушения нормального функционирования ССС, нарушения кровообращения при вибрационной болезни, воспалении и закупорке сосудов; расширение вен и т.д.; в нейрохирургии определить расположение очагов повреждения проводимости нерва, подтвердить место нейропаралича, вызванного апоплексией; в акушерстве и гинекологии определить беременность, локализацию детского места; диагностировать широкий спектр воспалительных процессов.

- Телетермография - базируется на превращение ИК-излучения тела человека в электрические сигналы, которые регистрируются на экране тепловизора или другом записывающем устройстве. Метод бесконтактный.

ИК-излучение воспринимается системой зеркал, после чего ИК-лучи направляются на приемник ИК-волн, основную часть которого составляет детектор (фотосопротивление, металлический или полупроводниковый болометр, термоэлемент, фотохимический индикатор, электронно-оптический преобразователь, пьезоэлектрические детекторы и т.д.).

Электрические сигналы от приемника передаются на усилитель, а потом - на управляющее устройство, которое служит для перемещения зеркал (сканирование объекта), разогревания точечного источника света ТИС (пропорционально тепловому излучению), движения фотопленки. Каждый раз пленка засвечивается ТИС соответственно температуре тела в месте исследования.

После управляющего устройства сигнал может передаваться на компьютерную систему с дисплеем. Это позволяет запоминать термограммы, обрабатывать их с помощью аналитических программ. Дополнительные возможности предоставляет цветные тепловизоры (близкие по температуре цвета обозначить контрастными цветами), провести изотермы.

Многие копании в последнее время признают тот факт, что «достучаться» до потенциального клиента, порой, достаточно сложно, его информационное поле настолько загружено различного рода рекламными сообщениями, что таковые просто перестают восприниматься.
Активные продажи по телефону становятся одним из наиболее эффективных способов увеличения продаж в короткие сроки. Холодные звонки направлены на привлечение клиентов, которые ранее не обращались за товаром или услугой, но по ряду факторов являются потенциальными клиентами. Набрав телефонный номер, менеджер активных продаж должен четко осознавать цель холодного звонка. Ведь телефонные переговоры требуют от sales manager особого мастерства и терпения, а так же знание техники и методики ведения переговоров.

Тепловым излучением называют электромагнитные волны, испускаемые атомами, которые возбуждаются за счет энергии их теплового движения. Если излучение находится в равновесии с веществом, его называют равновесным тепловым излучением.

Все тела при температуре Т > 0 К испускают электромагнитные волны. Разреженные одноатомные газы дают линейчатые спектры излучения, многоатомные газы и жидкости - полосатые спектры, т.е.области с практически непрерымным набором длин волн. Твердые тела излучают сплошные спектры, состоящие из всевозможных длин волн. Человеческий глаз видит излучение в ограниченном диапазоне длин волн примерно от 400 до 700 нм. Чтобы человек смог увидеть излучение тела, температура тела должна быть не ниже 700 о С.

Тепловое излучение характеризуют следующими величинами:

W - энергия излучения (в Дж);

(Дж/(с.м 2) - энергетическая светимость (DS - площадь излучающей

поверхности). Энергетическая светимость R - по смыслу –

это энергия, излучаемая единичной площадью за единицу

времени по всем длинам волн l от 0 до .

Кроме этих характеристик, называемых интегральными, используют также спектральные характеристики , которые учитывают количество излучаемой энергии, приходящейся на единичный интервал длин волн или единичный интервал

поглощательная способность (коэффициент поглощения) - это отношение поглощенного светового потока к падающему потоку, взятых в малом интервале длин волн вблизи данной длины волны.

Спектральная плотность энергетической светимости численно равна Мощности излучения с единицы площади поверхности этого тела в интервале частот единичной ширины.



Тепловое излучение и его природа. Ультрафиолетовая катастрофа. Кривая распределения теплового излучения. Гипотеза Планка.

ТЕПЛОВОЕ ИЗЛУЧЕНИЕ (температурное излучение) - эл--магн. излучение, испускаемое веществом и возникающее за счёт его внутр. энергии (в отличие, напр., от люминесценции, к-рая возбуждается внеш. источниками энергии). Т. и. имеет сплошной спектр,положение максимума к-рого зависит от темп-ры вещества. С её повышением возрастает общая энергия испускаемого Т. и., а максимум перемещается в область малых длин волн. Т. и. испускает, напр., поверхность накалённого металла, земная атмосфера и т. д.

Т. и. возникает в условиях детального равновесия в веществе (см. Детального равновесия принцип)для всех безыз-лучат. процессов, т. е. для разл. типов столкновений частиц в газах и плазме, для обмена энергиями электронного и колебат. движений в твёрдых телах и т. д. Равновесное состояние вещества в каждой точке пространства - состояние локального термодинамич. равновесия (ЛТР) - при этом характеризуется значением темп-ры, от к-рой зависит Т. и. в данной точке.

В общем случае системы тел, для к-рой осуществляется лишь ЛТР и разл. точки к-рой имеют разл. темп-ры, Т. и. не находится в термодинамич. равновесии с веществом. Более горячие тела испускают больше, чем поглощают, а более холодные-соответственно наоборот. Происходит перенос излучения от более горячих тел к более холодным. Для поддержания стационарного состояния, при к-ром сохраняется распределение темп-ры в системе, необходимо восполнять потерю тепловой энергии излучающим более горячим телом и отводить её от более холодного тела.

При полном термодинамич. равновесии все части системы тел имеют одну темп-ру и энергия Т. и., испускаемого каждым телом, компенсируется энергией поглощаемого этим телом Т. и. других тел. В этом случае детальное равновесие имеет место и для излучат. переходов, Т. и. находится в термодинамич. равновесии с веществом и наз. излучением равновесным (равновесным является Т. и. абсолютно чёрного тела). Спектр равновесного излучения не зависит от природы вещества и определяется Планка законом излучения.

Для Т. и. нечёрных тел справедлив Кирхгофа закон излучения,связывающий их испускат. и поглощат. способности с испускат. способностью абсолютно чёрного тела.

При наличии ЛТР, применяя законы излучения Кирхгофа и Планка к испусканию и поглощению Т. и. в газах и плазме, можно изучать процессы переноса излучения. Такое рассмотрение широко используется в астрофизике, в частности в теории звёздных атмосфер.

Ультрафиоле́товая катастро́фа - физический термин, описывающий парадокс классической физики, состоящий в том, что полная мощность теплового излучения любого нагретого тела должна быть бесконечной. Название парадокс получил из-за того, что спектральная плотность энергии излучения должна была неограниченно расти по мере сокращения длины волны.

По сути этот парадокс показал если не внутреннюю противоречивость классической физики, то во всяком случае крайне резкое (абсурдное) расхождение с элементарными наблюдениями и экспериментом.

Так как это не согласуется с экспериментальным наблюдением, в конце XIX века возникали трудности в описании фотометрических характеристик тел.

Проблема была решена при помощи квантовой теории излучения Макса Планка в 1900 году.

Гипо́теза Пла́нка - гипотеза, выдвинутая 14 декабря 1900 года Максом Планком и заключающаяся в том, что при тепловом излучении энергия испускается и поглощается не непрерывно, а отдельными квантами (порциями). Каждая такая порция-квант имеет энергию , пропорциональной частоте ν излучения:

где h или - коэффициент пропорциональности, названный впоследствии постоянной Планка. На основе этой гипотезы он предложил теоретический вывод соотношения между температурой тела и испускаемым этим телом излучением - формулу Планка.

Позднее гипотеза Планка была подтверждена экспериментально.

Последние материалы сайта