Производство циркония ядерной чистоты. Цирконий: производство в России

09.10.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

В промышленности цирконий и гафний выпускают, как в форме металла (ковкий и порошки), сплавов, так и в форме различных их соединений, в зависимости от того, где в дальнейшем будут использовать циркониевую продукцию.

Области применения циркония, его сплавов и химических соединений достаточно разнообразны. Основные области в настоящее время:

1) атомная энергетика;
2) электроника;
3) пиротехника и производство боеприпасов;
4) машиностроение;
5) производство сталей и сплавов с цветными металлами;
6) производство огнеупоров, керамики, эмалей и стекла;
7) литейное производство.

В первых четырех областях используют металлический цирконий или сплавы на его основе.

Примерное распределение циркония по областям потребления: литейное производство – 42%, огнеупоры – 30%, керамика – 12%, металл и сплавы с цветными металлами – 12%.

Литейное производство. В этой области используют цирконовые концентраты (ZrSiO 4) для изготовления литейных форм и присыпок, с целью получения хорошей поверхности отливок.

Производство огнеупоров, фарфора, эмалей, глазурей и стекла . В этой области, используют минералы (циркон и бадделеит) и химические соединения циркония (диоксид циркония, цирконаты, диборид циркония).
Недостаток чистого диоксида циркония как огнеупорного материала - термическая неустойчивость, проявляющаяся в растрескивании нагретых до высокой температуры изделий из него при охлаждении. Это явление обусловлено полиморфными превращениями диоксида циркония. Растрескивание устраняют, добавляя стабилизаторы - оксиды магния или кальция, которые, растворяясь в диоксиде циркония, образуют твердый раствор с кубической кристаллической решеткой, сохраняющейся и при высоких и при низких температурах.
Из диоксида циркония или минералов бадделеита и циркона изготовляют огнеупорный кирпич для металлургических печей, тигли для плавки металлов и сплавов, огнеупорные трубы и другие изделия.
Циркониевые минералы или диоксид циркония добавляют в некоторые сорта фарфора, идущего на изготовление изоляторов в линиях электропередач высокого напряжения, высокочастотных установках, запальных свечах двигателей внутреннего сгорания. Циркониевый фарфор обладает высокой диэлектрической постоянной и малым коэффициентом расширения.
Диоксид циркония и циркон (очищенный от примеси железа) нашли широкое применение в качестве составной части эмалей. Они сообщают эмали белый цвет и кислотостойкость и вполне заменяют используемый для этих целей дефицитный оксид олова. Циркон и диоксид циркония вводят также в состав некоторых сортов стекла. Добавки Zr0 2 повышают устойчивость стекла против действия растворов щелочей.



Конструкционная керамика. Это наиболее перспективная область использования диоксида циркония. В Японии организована программа по конструкционной керамике: высокопрочная – для высокотемпературных двигателей; коррозионностойкая – для использования в активных высокотемпературных средах; износостойкая – при высоких температурах и больших скоростях. Керамические материалы на основе диоксида циркония используют в деталях автомобилей и автомобильных двигателей. Создан дизельный двигатель с керамическими поршнями и лопатками турбин. Он не требует водяного охлаждения, потребляет вдвое меньше топлива, а выходная мощность у него выше на 30%.

Производство сталей и сплавов с цветными металлами. Присадки циркония широко используют в производстве сталей с целью раскисления, очистки стали от азота, а также связывания серы. Цирконий, кроме того, - ценный, легирующий элемент; его вводят в некоторые сорта броневых сталей, сталей для орудийных поковок, нержавеющих и жаропрочных сталей. Для введения в стали используют ферросиликоцирконий (40- 45% Zr, 20-24% Si, остальное железо).

Цирконий входит в состав ряда сплавов на основе цветных металлов (меди, магния, свинца, никеля). Сплавы меди с цирконием, содержащие от 0,1 до 5% Zr, способны к упрочнению, которое достигается термической обработкой. Предел прочности при растяжении возрастает до 50 кг/мм 2 , что на 50% выше прочности неотожженной меди. Добавки циркония повышают температуру отжига изделий из меди (проволока, листы) до 500° С. Небольшие добавки циркония к меди, повышая ее прочность, лишь в незначительной степени снижают электропроводность. Цирконий вводят в медь в виде лигатурного сплава, содержащего 12-14% Zr, остальное медь. Из сплавов меди с цирконием изготовляют электроды точечной сварки и электропроводы в тех случаях, где требуется высокая их прочность.
Получили распространение сплавы магния, легированные цирконием. Небольшие добавки циркония способствуют получению мелкозернистых магниевых отливок, что приводит к повышению прочности металла. Высокой прочностью обладают магниевые сплавы, легированные цирконием и цинком (4-5% Zn и 0,6-0,7% Zr). Они рекомендованы как конструкционные материалы для реактивных двигателей.
Цирконий добавляют (в виде кремнециркониевого сплава) в свинцовистые бронзы. Он обеспечивает дисперсное распределение свинца и полностью предотвращает сегрегацию свинца в сплаве. Высокой прочностью и электропроводностью отличаются меднокадмиевые сплавы, содержащие до 0,35% Zr.
Цирконий входит в состав некоторых антикоррозионных сплавов. Так, сплав, состоящий из 54% Nb, 40% Та и 6-7% Zr, предложен как заменитель платины.

В последние годы разработаны сверхпроводящие сплавы, содержащие цирконий. Их используют для электромагнитов с высоким напряжением магнитного поля. Один из таких сплавов, содержащий 75% Nb и 25% Zr, при 4,2° К выдерживает нагрузку до 100 000 а/см 2 .

Атомная энергетика. В 1950 г. в связи с развитием атомной энергетики цирконий привлек к себе внимание как конструкционный материал для энергетических ядерных реакторов. Это вызвало организацию промышленного производства пластичного циркония и сплавов на его основе. Ценность циркония как конструкционного материала для атомной техники определяется тем, что цирконий имеет малое сечение захвата тепловых нейтронов (~0,18 барн), высокую антикоррозионную стойкость, хорошие механические свойства.
Для использования циркония в атомной технике потребовалось решить сложную задачу очистки циркония от его химического аналога - гафния, который обладает высоким сечением захвата нейтронов - 115 барн. Из циркония и сплавов на его основе изготовляют защитные оболочки для урановых тепловыделяющих элементов, каналы, в которых циркулирует теплопередающая жидкость, и другие детали конструкций ядерных реакторов. Жаропрочность циркония и стойкость его против действия воды и пара можно повысить добавками олова (1,4-1,6%), а также малыми присадками железа (0,1- 0,15%), хрома (0,08-0,12%), никеля (0,04-0,06%). Сплав, содержащий перечисленные выше легирующие добавки, носит название циркаллой-2.

Подобно молибдену, цирконий применяют для легирования урана с целью повышения его механической прочности и стойкости против коррозии.

Электроника. В производстве электровакуумных приборов используют свойство циркония поглощать газы, что позволяет поддерживать высокий вакуум в электронных приборах. Для этой цели порошок циркония наносят на поверхность анодов, сеток и других нагреваемых деталей электровакуумного прибора или плакируют детали циркониевой фольгой. Нанесение циркония на поверхность сетки в радиолампах способствует подавлению эмиссии сетки.

Циркониевую фольгу применяют в рентгеновских трубках с молибденовыми антикатодами. Фольга служит здесь фильтром для повышения монохроматичности излучения.

Пиротехника и производство боеприпасов. В этой области используют порошкообразный цирконий, отличающийся низкой температурой воспламенения и высокой скоростью сгорания. Порошки циркония служат воспламенителем в смесях для капсюлей-детонаторов, а также в смесях для фотовспышек. В смеси с окислителями (нитратом бария или бертолетовой солью) порошки циркония образуют бездымный порох.

Машиностроение. До последнего времени пластичный цирконий и сплавы на его основе применялись преимущественно в атомной технике. Однако с дальнейшим расширением его производства и снижением стоимости цирконий может быть эффективно использован в химическом машиностроении как кислотостойкий материал, для изготовления деталей центрифуг, насосов, конденсаторов, испарителей; в общем машиностроении (поршни, шатуны, тяги и др.); в турбостроении (лопасти турбин и другие детали).

Прочие области применения . Среди других областей следует упомянуть использование сульфатов циркония (двойного сульфата циркония с сульфатом аммония и др.) в качестве дубителя в кожевенной промышленности; применение хлорида и оксихлорида циркония для приготовления катализаторов, используемых в синтезе органических соединений.

Областей применения гафния по сравнению с цирконием значительно меньше, но и объемы его производства существенно ниже, чем циркония. Это в основном атомная энергетика, производство тугоплавких и жаропрочных материалов и сварка газовых труб большого диаметра.

Атомная энергетика. Начало промышленного производства гафния и его соединений относится к 1950-1951 гг. Интерес к его применению возник в первую очередь в атомной технике, поскольку в отличие от циркония гафний, хотя и является его химическим аналогам, имеет его высокое сечение захвата тепловых нейтронов – 115 барн. Это дает возможность использования гафния и его соединений (HfO 2 , HfB 2) в качестве материалов регулирующих стержней ядерных реакторов.

Производство тугоплавких и жаропрочных материалов. В этой области используют карбид гафния (t° пл 3890°С), твердый раствор карбидов гафния и тантала (75% карбида тантала) плавящейся при температуре 4200°С. Высокой жаропрочностью характеризуются некоторые сплавы гафния с другими тугоплавкими металлами. Так, сплав ниобия и тантала, содержащий 2-10% Hf и 8-10% W, сохраняет высокую прочность до 2000°С, хорошо обрабатывается и коррозионностоек. Эти свойства материалов позволяют использовать их для изготовления деталей реактивных двигателей, а также тиглей для плавки тугоплавких металлов.

Таким образом, основные соединения циркония, которые нашли широкое применение это цирконовый концентрат и диоксид циркония.

Цирконовый концентрат.

Мировое потребление цирконового концентрата постепенно растет, так в середине 90-х гг. оно оценивалось в 920 тыс. т. , а в 2001 г. составило уже 1,07 млн т. Основные потребители цирконового концентрата - страны Западной Европы (Италия, Испания, Германия и др.) - 366 тыс. т в 2001 г., а также Китай - 150–170 тыс. т, США - 120–130 тыс. т, Япония - 110–120 тыс. т и страны Юго-Восточной Азии.

Большая часть цирконового концентрата используется в керамике (500 тыс. т/год), литейном производстве (170 тыс. т/год) и огнеупорах (155 тыс. т/год), а также в производстве диоксида циркония и других химических соединений (94 тыс. т). Структура потребления цирконового концентрата в различных странах неодинакова. В США наибольшее его количество используют в производстве литейных смесей, в Японии - огнеупоров, в Италии, Испании и Китае - строительной и сантехнической керамики.

В последнее время потребление огнеупоров из циркона сократилось, что связано с ростом спроса на высококачественные легированные стали, производство которых не требует использования цирконовых огнеупоров. Постепенно уменьшается и потребление циркона в литейном производстве из-за появления более экономичных заменителей.

Однако в мире в целом это сокращение с лихвой было компенсировано ростом спроса на циркон в производстве керамики и общим ростом потребления в Китае (с 10 до 160 тыс. т в период 1989–2001 гг.). На производство керамических изделий теперь приходится около половины мирового потребления циркона (в 1980 г. всего 25 %).

Прирост потребления циркона в производстве керамики в 2001 г. составил 9 %, тогда как в целом его использование увеличилось на 5 %. Интенсивно росло потребление в производстве экранов мониторов и телевизоров (8 %), а также химических соединений циркония (7 %).

Диоксид циркония.

Потребление диоксида циркония постоянно растет. В конце 90-х гг. оно составляло 36 тыс. т, из которых половина использовалась в производстве огнеупоров, по 6 тыс. т - керамических пигментов, металла и химических соединений, остальное - в абразивах, электронике, катализаторах, конструкционной керамике и других областях. В 2000–2001 гг. наблюдался значительный рост потребления стабилизированного диоксида циркония, а также порошка оксида циркония для электронной промышленности. Стабилизированный диоксид циркония – уникальный материал, имеющий очень широкий спектр промышленных применений: инженерная (промышленная) керамика, термобарьерные покрытия, электрокерамика, высокотемпературные магнитогидродинамические электроды, топливные элементы, сенсоры на кислород и многое другое. Это разнообразие областей применения базируется на использовании комбинации механических, электрических, термических и других свойств материалов на основе на основе диоксида циркония.

Значительно меньше используют металлический цирконий.

Металлический цирконий.

Потребление металлического циркония в мире стабильно и составляет 4–5 тыс. т.

Цены на цирконий постоянно растут, т.к. растет спрос на эти металлы. Так цены в США на циркониевую губку в 1990 году составляли 19,8 – 26,4$/кг, а на гафниевую губку - 165 – 300$/кг. На циркониевый концентрат: в 1986 году – 209$ /т, в 1989 году – 468$ /т. Поскольку диоксид циркония в различных областях необходим различного качества, то и цены на него должны различаться. Ниже приведены цены на диоксид циркония различного качества. Таблица 4.

Динамка цен на диоксид циркония (долл/т)

(ЕС, США, Япония)

Основные производители циркония и его соединений.

В настоящее время крупными производителями ядерно-чистого циркония в мире являются такие компании: AREVA NP (CEZUS + Zircotube, которые находятся в ее составе), (Франция); АО ТВЭЛ (Россия); Westinghouse (США); GNF (США + Япония); NFC (Индия). Кроме этих компаний циркониевую продукцию выпускают также: Sandvik Steel (Швеция + отделение в США (Sandvik Special Metals) и отделение в Великобритании (Sandvik Steel UK) Nu Tech (Канада, есть отделение в США); Zircatec (Канада); Franco Corradi (Италия); General Electric Canada (Канада); FAESA (Fabrica de Aleaciones Ecpeciales), находящаяся в собственности компании Combustibles Nucleares Argentonos SA,Аргентина)

Полный металлургический цикл от цирконового концентрата до готовых изделий имеют четыре крупных компании: AREVA NP, объем производства примерно 2200 т циркониевой губки в год; АО ТВЭЛ, объем производства примерно 900 т циркония в год; Westinghouse, объем производства примерно 800 т циркония в год, Teledyne Wah Chang, США, объем производства примерно 1000 т циркония в год.
Государственная компания NFC (Индия) также имеет полный металлургический цикл с объемом производства около 250 т циркония в год.

Китайская компания Chaoyang Baisheng Titanium&Zirconim Co, Ltd (Chaoyang, провинция Liaoning) имеет мощности по производству рафинированного тетрахлорида циркония, что позволяет ей выпускать циркониевой губки (150 т для ядерной энергетики).

В настоящее время в Китае идет строительство еще одного завода по выпуску циркония, которое осуществляет совместное предприятие американской компании Westinghouse и китайской компании SNZ.

Основными продуктами гафниевого производства являются кристаллический гафний и оксид гафния. Областей применения гафния по сравнению с цирконием значительно меньше, но и объемы его производства существенно ниже, чем циркония. Это в основном атомная энергетика, производство тугоплавких и жаропрочных материалов и сварка газовых труб большого диаметра.

Цены на гафний (99 %) в 2011 году составляли в среднем $900 за килограмм. За последние полгода из-за финансового кризиса произошло некоторое снижение стоимости.

Самыми крупными производителями гафния являются США, Франция и Германия (предприятия компании CEZUS). В США выпуск гафния осуществляют два предприятия - Wah Chang Albany (компания Allegheny Technologies Inc.) и Western Zirconium (компания Westinghouse Electric, которая в настоящее время контролируется японской корпорацией Toshiba).

Кроме этого гафний производится в Украине Государственным научно-производственным предприятием «Цирконий» г.Днепродзержинск. Предприятие производит следующую гафниевую продукцию: гафний металлический ядерночистый и гафний кальциетермический (КТГ-НР) лигатуру гафний-никель (ГФН-10), гидроксид гафния; оксид гафния.

Так как потенциально гафний является сопутствующим продуктом при выпуске циркония, то он может производиться в различных формах в Индии и Китае. Это такие компании как: NFC (производственная единица Департамента атомной энергии Индии в Хайдерабаде); китайская компания Chaoyang Baisheng Titanium&Zirconim Co, Ltd (Chaoyang, провинция Liaoning) и строящееся совместное предприятие американской компании Westinghouse и китайской компании SNZ.

Сырьевые источники циркония и гафния.

Известно около 20 циркониевых и цирконийсодержащих минералов, однако промышленное значение имеют только два: циркон и бадделеит . На долю первого приходится не менее 97% общего производства циркониевого сырья.

Циркон – наиболее распространенный минерал циркония, представляющий собой ортосиликат циркония – ZrSiO 4 . Содержание гафния в цирконе колеблется от 0,5 до 4%. Кроме этого циркон содержит железо, титан, алюминий, кальций, магний, РЗЭ(0,8%), скандий (0,02-0,08%).

Бадделит – представляет собой практически чистый диоксид циркония (ZrO 2). Всегда содержат гафний (от 0,5% до 2-5%), очень часто торий (0,2%), иногда уран (до 1%), скандий (до 0,06%).

Исследуются возможности промышленного использования таких циркониевых минералов, как эвдиалит – сложный силикат циркония и редких земель иттриевой подгруппы, содержащего 10-16% ZrO 2 и в эвколите ((Na, Ca, Fe) 6 Zr(Si 3 O 9) 2).

Для гафния единственным минеральным источником его получения являются циркониевые концентраты, который содержат от 0,5 до 2,0% HfO 2 .

Циркон и бадделеит накапливаются в корах выветривания и продуктах их переотложения – россыпях ближнего сноса, тесно ассоциирующих с первичными коренными источниками, и в россыпях дальнего переноса, не имеющих прямой связи с коренными источниками. К числу коренных источников относятся современные и древние россыпи прибрежно-морского типа (пляжные, шельфовые, дюнные и др.), с которыми связаны крупные месторождения циркона (совместно с рутилом, ильменитом, монацитом и другими минералами).

Цирконий практически не образует собственных крупных и богатых месторождений, а заключён в коренных рудах и россыпях вместе с титаном, железом, медью, танталом, ниобием, редкими землями, где является одним из основных или попутным полезным компонентом. Добыча циркония из недр всегда тесно связана с титаном и оценивается по отношению к нему как 1:5.

Освоенность минерально-сырьевой базы циркония России крайне низкая: в настоящее время разрабатывается только одно Ковдорское месторождение бадделеита. В Российской Федерации производство цирконовых концентратов практически не осуществляется, хотя имеются значительные запасы месторождений. Чепецкий механический завод (ЧМЗ), г. Глазов. А в странах СНГ подавляющий объём производства цирконовых концентратов приходится на Украину.

По оценке Геологической службы США (USGS) общие мировые запасы циркония (в пересчёте на ZrO 2) составляют около 33,5 млн т (без учёта России и стран СНГ) (табл.5). Цирконий в рудах и россыпях представлен в основном цирконом, бадделеитом, калдаситом и эвдиалитом. Месторождения руд и россыпей, содержащих цирконий, разведаны в Австралии, США, Южно-Африканской Республике, Бразилии, Индии, Китае и других странах.

Исходя из данных по запасам, можно отметить, что разведанные запасы циркония в мире распределяются следующим образом (в %): Австралия - 45, ЮАР - 21, Бразилия - 7, США - 8, Китай - 5,6, Индия-5,7. Освоенность минерально-сырьевой базы циркония России крайне низкая: в настоящее время разрабатывается только одно Ковдорское месторождение бадделеита. В Российской Федерации производство цирконовых концентратов практически не осуществляется. А в странах СНГ подавляющий объём производства цирконовых концентратов приходится на Украину. Украина по запасам циркониевых песков занимает одно из ведущих мест в мире и первое среди стран СНГ.
Разведанные запасы циркона в Украине сосредоточены на действующем Малышевском месторождении в Вольногорске Днепропетровской области. Руда перерабатывается на Верхнеднепровском горно-металлургическом комбинате, производственные мощности которого по переработке составляют 30 тыс. т концентрата в год.

Таблица 5.

Мировые запасы циркония по оценке Геологической службы США (без учета России и стран СНГ)

Отличительной чертой структуры мировых запасов является превалирующая доля титано-циркониевых россыпных месторождений. Основные промышленные мировые запасы циркония (свыше 95%) заключены в прибрежно-морских россыпях (ПМР), где циркон находится вместе с титановыми (ильменит, рутил) и редкоземельными минералами. Среднее содержание циркона в песках ПМР варьирует в широких пределах – от сотых долей процента до трёх процентов (редко достигая 8%). Запасы и ресурсы циркона прибрежно-морских россыпей характеризуются крупными масштабами - до нескольких миллионов тонн двуокиси циркония в отдельных месторождениях.

На долю бадделеитсодержащих руд приходится около 5% мировых промышленных запасов циркония. Его запасы исчисляются первыми сотнями тысяч тонн. По данным "Mining Annual Review", в настоящее время единственным в мире источником бадделеита остается комплексное Ковдорское месторождение, расположенное на юго-западе Кольского п-ова в России. Годовое производство бадделеита здесь превышает 6,5 тыс. т.

Таким образом в настоящее время мировое производство цирконий содержащих концентратов превысило 1,4 млн т. и обеспеченность стран-производителей достоверными запасами циркониевого сырья, рассчитанная по уровню действующих мощностей по добыче, в целом превышает 80 лет.


Переработка циркона.

Поскольку основным сырьевым источником циркония и гафния является циркон, то и технологию производства циркония и его соединений целесообразно начинать с переработки циркона.

Первой стадией переработки циркона, как и для большинства редкометального сырья является обогащение. Обычно руды, содержащие циркон, обогащают гравитационными методами, а для отделения минералов железа применяют магнитную сепарацию. После обогащения цирконовые концентраты содержат ~65% ZrO 2 (концентрат 1-го сорта). Концентраты поступают на стадию разложения.

Cтраница 1


Применение циркония, так же как и титана, в последнее время сильно развивается, несмотря на сложность переработки его руд. Сплавы циркония с кобальтом и никелем обладают кислотоупорными свойствами. Цирконий является одним из лучших материалов для ядерных реакторов.  

Применение циркония для изготовления эксплуатирующихся при высоких температурах деталей (или их отдельных частей) ртутных газоразрядных приборов обеспечивает связывание следов кислорода в газовом наполнении и устраняет образование черных налетов на внутренней поверхности их оболочек, которое обусловлено окислением ртути.  

Применение циркония в металлургии обусловлено тем, что он является одним из энергичнейших раскислителей стали. Кроме того, связывая в прочные соединения азот и серу, цирконий, нейтрализует их вредное влияние на сталь. В сочетании с другими легирующими присадками цирконий повышает вязкость, прочность, износостойкость и свариваемость стали. Различают два основных типа месторождений циркония: коренные и россыпи. Важнейшее значение имеют современные и древние прибрежно-морские россыпи, которые обычно представляют собой комплексные руды циркония и титана, реже содержащие также торий, уран и другие ценные элементы. Наиболее крупные месторождения циркония находятся в США, Индии, Бразилии и Австралии. Запасы циркониевых руд в СССР обеспечивают потребность отечественной промышленности в цирконии и его сплавах. Кроме того, циркониевый концентрат может содержать торий и уран, суммарно в эквиваленте не более 0 1 % тория.  

Применению циркония в первое время препятствовали его высокая стоимость и недостаточная / коррозионная стойкость в воде и водяном паре, особенно при температурах выше 400 С.  

Известно также применение циркония для производства стали, которая содержит 0 35 % Zr, 3 % Ni и отличается повышенной прочностью и хорошей свариваемостью; благодаря этим свойствам циркониевые стали получили широкое применение в судостроении. Было, кроме того, установлено, то добавки 0 08 - 0 1 % Zr увеличивают сопротивление сжатию, ударную вязкость и пластичность конструкционных сталей, а присадки 11 - 10 % Zr - износоустойчивость быстрорежущей стали.  

Известно также применение циркония для производства стали, которая содержит 0 35 % Zr, 3 % Ni и отличается повышенной прочностью и хорошей свариваемостью; благодаря этим свойствам циркониевые стали получили широкое применение в судостроении. Было кроме того установлено, что добавки 0 08 - 0 1 % Zr увеличивают сопротивление сжатию, ударную вязкость и пластичность конструкционных сталей, а присадка 1 - 10 % Zr - износоустойчивость быстрорежущей стали.  

В области применения циркония в химическом оборудовании накоплен пока небольшой опыт, не позволяющий в полной мере оценить преимущества и недостатки этого металла. Пока нет оснований ожидать, что при использовании циркония в этой отрасли промышленности придется столкнуться с более серьезными проблемами, чем при использовании широко распространенных материалов (таких как титан или нержавеющая сталь), стойкость которых связана с формированием поверхностных защитных пленок.  

Наиболее широкой областью применения циркония в настоящее время являются атомные реакторы, где он выступает в качестве основного конструкционного материала. Это обусловлено малым поперечным сечением поглощения тепловых нейтронов циркония, сочетающимся с высокой коррозионной стойкостью, высокой пластичностью и хорошей его обрабатываемостью.  

Сделан вывод о возможности и определены условия применения циркония и титана вместо тантала для ковденсаторов узла синтеза йодистого метила.  

Как уже было сказано, главной областью применения циркония является ядерная техника.  

У фирмы нет пока заводского опыта по применению циркония, но в Амстердамской лаборатории недавно начаты работы по сварке и испытанию этого металла. Ожидается полезное использование его во многих областях химической промышленности. С конструктивной точки зрения желательно детали сваривать аргоно-дуговым способом без добавочного сложного и дорогого сварочного оборудования.  

Химическое машиностроение является также одной из главных областей применения циркония, где используется его исключительно высокая коррозионная стойкость как к минеральным и органическим кислотам, так и к концентрированным растворам щелочей.  

Необходимость разделения циркония и гафния возникла в связи с применением циркония в качестве конструкционного материала в ядерной технике. Примесь гафния, эффективное сечение захвата нейтронов у которого составляет 160 барн, делает материал непригодным в реакторо-строении.  

Таким образом, в наши дни определились совершенно новые направления в применении циркония, а гафний - этот придаток к цирконию, с присутствием которого в прежних областях применения циркония не нужно было считаться, приобрел неожиданно большое значение, с одной стороны, как яд для цир-кония-в ядерных установках, а, с другой, - как самостоятельный конструкционный материал.  

Она разрабатывалась преимущественно в научных целях, так как в любой из известных тогда областей применения циркония и его соединений постоянное присутствие примеси гафния совершенно не сказывалось. Самостоятельное же использование гафния и его соединений ничего особенно нового не сулило.  

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Производство циркония ядерной чистоты

ВВЕДЕНИЕ

цирконий примесь металлический

Все большее количество стран -- и развитых, и развивающихся, -- сегодня приходят к необходимости начала освоения мирного атома. Сегодня в мире обозначилась тенденция, получившая название «ядерный ренессанс». Самые сдержанные прогнозы говорят о том, что в перспективе 2030 года на планете будет эксплуатироваться до 500 энергоблоков (для сравнения, сейчас их насчитывается 435).

Ежегодно атомные станции в Европе позволяют избежать эмиссии 700 миллионов тонн СО2, а в Японии -- 270 миллионов тонн СO2. Действующие АЭС России ежегодно предотвращают выброс в атмосферу 210 млн тонн углекислого газа. По этому показателю наша страна находится лишь на четвертом месте в мире.

Больше всего АЭС (63 АЭС, 104 энергоблока) эксплуатируется в США. На втором месте идет Франция (58 энергоблоков), на третьем -- Япония (50 блоков).

Россия обладает технологией атомной энергетики полного цикла: от добычи урановых руд до выработки электроэнергии; обладает значительными разведанными запасами руд, а также запасами в оружейном виде.

В настоящее время в России на 10 действующих АЭС эксплуатируется 33 энергоблока общей чистой мощностью 23 643 МВт (25 242 МВт номинальной), из них 17 реакторов с водой под давлением -- 11 ВВЭР-1000, 6 ВВЭР-440; 15 канальных кипящих реакторов -- 11 РБМК-1000 и 4 ЭГП-6; 1 реактор на быстрых нейтронах -- БН-600. В процессе ввода в промышленную эксплуатацию находится 1 энергоблок - БН-800

1. СХЕМЫ ПРОИЗВОДСТВА ЦИРКОНИЯ ЯДЕРНОЙ ЧИСТОТЫ

Сплав Э110 является базовым материалом действующих украинских реакторов. Параллельно ведутся работы по промышленному внедрению более радиационно- и коррозионно-стойкого сплава Э635с целью повышения выгорания и ресурса активныхзон. Характерной особенностью этих сплавов является наличие ниобия, основного легирующего элемента как для бинарного, так и для многокомпонентного сплавов. Базовые циркониевые сплавы западного производства (циркалой-2 и 4) легированы оловом, железом, хромом и никелем. В последнее время на Западе появились новые перспективные циркониевые сплавы, легированные в основном или в том числе ниобием (Zirlo, M4, M5, NDA, MDA). Составы циркониевых сплавов, используемых в активных зонах атомных реакторов, приведены в табл. 1 . Как видно из таблицы, российский сплав циркония с 1% ниобия (Э110) по составу аналогичен французскому сплаву М5, но методы их производства существенно различаются. Рассмотрим более подробно особенности этих методов.

Производство ядерно-чистого циркония включает более 25 этапов, которые можно объединить в четыре основные стадии .

1. Разложение (вскрытие) цирконовой руды.

2. Получение сырьевых составляющих для очистки от гафния: (ZrCl4+HfCl4) или (K2ZrF6+K2HfF6). Перед очисткой сырье обычно содержит ~1,5…2,5 мас.% гафния.

3. Разделение соединений циркония и гафния, получение ZrCl4 или K2ZrF6 с низким содержанием гафния.

4. Восстановление соединений циркония и получение металлического циркония с низким содержанием гафния (<0,05 мас.%).

Каждый этап на этих стадиях может изменяться со временем с целью уменьшения себестоимости или упрощения операций. Следовательно, вид и количество примесей, участвующих в процессе получения сплава, также изменяются и могут влиять на изменение свойств сплава. Основным процессом вскрытия (разложения) цирконовой руды, который используется при производстве металла для сплава Э110, является фторидная химия, т.е. конверсия руды во фторцирконат калия по реакции :

ZrO2·SiO2 + 2KF·SiF4 = K2ZrF6 +2SiO2. (1)

Эта операция, обычно осуществляемая при 700…800 °С, приводит к загрязнению циркония фтором -наиболее вероятно в виде ZrF4.

В западных странах основным процессом вскрытия цирконовой руды, используемой для производства циркониевых сплавов М5, Zirlo, циркалой-2 и 4, является хлоридная химия . В этом процессе смесь ZrO2·SiO2 и графита хлорируется SiCl4, TiCl4 или AlCl4. Циркон превращается в ZrCl4 и SiCl4 при температуре >1150 °С. Тетрахлорид циркония содержит некоторое количество тетрахлорида гафния, поэтому их разделяют метилизобутилкетоном (МИБК). Разделение циркония и гафния необходимо потому, что поперечное сечение поглощения тепловых нейтронов гафния (105 барн) почти в 600 раз больше, чем у циркония. Ограничение по содержанию гафния объясняется необходимостью обеспечения минимального содержания в активной зоне реактора материалов с повышенным коэффициентом захвата нейтронов. Существует несколько методов разделения циркония и гафния, но наиболее часто применимы три: метилизобутилкетоновый процесс , экстракционная дистилляция и дробная кристаллизация солей циркония и гафния . Метод дробной кристаллизации применяется при производстве ядерно-чистого циркония, необходимого для производства реакторных сплавов Э110 и Э635 в Российской Федерации. Полученный после вскрытия циркона фторцирконат калия (K2ZrF6) содержит 1,5…2,5 мас.% фторгафната калия (K2HfF6) как примесь. Суть метода дробной кристаллизации основана на том, что растворимость K2HfF6 в дистиллированной воде немного выше, чем растворимость K2ZrF6. Когда смесь растворена в воде при температуре <90 °С, происходит небольшое накопление гафния в растворе и его концентрация в нерастворенной смеси K2ZrF6 и K2HfF6 немного уменьшается. Затем раствор медленно охлаждается, и происходит дробная кристаллизация компонентов с различными скоростями. В результате проведения дробной кристаллизации (~15 циклов) концентрация K2HfF6 в окончательной смеси уменьшается и составляет 0,04…0,05 мас.%. Полученный таким образом K2ZrF6 восстанавливают в металл электролитическим методом.

Более простым и традиционным методом очистки от гафния, применяемым при производстве циркалоев М5 и Zirlo в западных странах, является МИБК процесс. Он начинается с получения смеси ZrCl4 + HfCl4 при вскрытии цирконовой руды и имеет несколько этапов:

1. Превращение смеси ZrCl4 + HfCl4 в ZrОCl2 + HfОCl2 в воде.

2. Превращение оксихлоридных компонентов в ZrО(SCN)2 + HfО(SCN)2 при использовании сернокислого раствора NH4SCN.

3. Удаление HfО(SCN)2 методом жидкостной экстракции, используя МИБК.

4. Обработка ZrО(SCN)2 соляной кислотой (HCl), превращение его в ZrОCl2.

5. Превращение ZrОCl2 в Zr(ОН)4, используя гидрооксид аммония (NH4ОН) и серную кислоту (H2SО4).

6. Получение ZrО2, используя гидрооксид циркония и кальций, по реакции:

Zr(OH)4+Ca=ZrO2+Ca(OH)2.

7. Хлорирование ZrО2 и превращение его в ZrCl4.

8. Восстановление ZrCl4 в металл методом Кролля.

Еще один метод очистки циркония от гафния - экстракционная дистилляция, который был разработан относительно недавно . Смесь фторцирконата калия (K2ZrF6) и 2…2,5 мас.% фторгафната калия (K2HfF6) разделяется экстракционной дистилляцией с растворителем в виде расплавленных KCl и AlCl3.

Конечный продукт этого процесса (ZrCl4), который обычно содержит <0,01 мас.% гафния, поступает на восстановление методом Кролля. На предприятиях CEZUS (Франция) разделение циркония и гафния проводят этим методом.

В США разделение осуществляется жидкостной экстракцией. В Канаде и Индии экстракция проводится из нитратных растворов трибутилфосфата. В России разделение циркония и гафния проводят методом дробной (фракционной) кристаллизации.

Металлический цирконий, используемый для производства сплавов Э110 и Э635, обычно получают сплавлением электролитического и йодидного циркония. Йодидный цирконий получают разложением тетрайодида циркония (ZrI4) на накаленной вольфрамовой или циркониевой нити, нагретой до температуры 1300 °С (метод Ван-Аркеля). Чистота полученного циркония очень высока. Электролитический цирконий получают электролизом K2ZrF6 в расплавaх KCl, NaCl, смеси KCl-NaCl или других галогенидов . Металлический цирконий, полученный этим методом, содержит примесь фтора, который попадает в цирконий на стадиях вскрытия руды, удаления гафния и электролиза.

Практически весь металлический цирконий, который используется для производства сплавов М5, Zirlo, циркалой, MDA и NDA в западных странах, получают методом Кролля . При этом чистый от гафния ZrCl4 восстанавливается расплавом магния с получением циркониевой губки: ZrCl4+2Mg=2MgCl2+Zr. (2)

Циркониевая губка содержит остаток MgCl2 и дополнительный Mg. Концентрации MgCl2 и Mg уменьшаются дегазацией в вакууме или вакуумной дистилляцией. Однако полностью удалить остатки этих веществ невозможно. Таким образом, в полученной циркониевой губке содержится Mg. Технологические схемы производства циркония в западных странах (Франция и США) и России показаны на рис. 1 и 2.

2.ПРИМЕСИ В ЦИРКОНИЕВЫХ СПЛАВАХ

Из приведенных выше данных становится ясно, что процессы получения (вскрытие цирконовой руды, очистка от гафния, металлотермическое восстановление) сплавов российского производства (Э110 и Э635) и западного производства (М5, циркалои, Zirlo) сильно отличаются. В этой связи важным является противопоставление типов примесей и механизмов их попадания в сплавы в процессе производства двух групп циркониевых сплавов. Примеси в циркониевых сплавах, связанные с процессами их получения, систематизированы в табл. 2. В ней также приведены примеси, которые могут попасть в циркониевые сплавы в процессе окончательной обработки труб из этих сплавов, т.е. обезжиривание, окончательная очистка и полировка поверхности твердыми оксидами. Примеси, связанные с обработкой труб, попадают в сплавы при температуре, близкой к комнатной, поэтому их присутствие ограничивается тонким слоем у поверхности труб.

Главные отличия между сплавами российского и западного производства по процессам получения и наличию примесей можно обобщить таким образом:

Процессам производства сплавов типа циркалой, Zirlo, M5 свойственно присутствие в конечном продукте примесей: кальция и магния (отделение гафния методом МИБК с последующим восстановлением методом Кролля) или алюминия и магния (отделение гафния экстракционной дистилляцией и последующим методом Кролля); попадание фтора в эти сплавы невозможно в процессе изготовления этих сплавов из-за отсутствия в процессе производства реагентов, содержащих фтор;

Процессу производства сплавов Э110 и Э635 не свойственно присутствие кальция, магния и алюминия в течение всего производственного цикла и, следовательно, попадание этих примесей в сплавы; в процессе производства этих сплавов используется фтор, и как следствие, - его присутствие в этих сплавах.

Высокая коррозионная стойкость циркониевых сплавов в условиях нормальной эксплуатации реакторов - это необходимое требование для всех оболочечных трубок, но нет гарантии, что эти сплавы будут показывать высокую коррозионную стойкость и при повышенных температурах в условиях потери теплоносителя (loss-of-coolant accident (LOCA)). Известно, что в условиях LOCA существенно возрастает температура оболочечных трубок (до 1200 °С ), происходит высокотемпературное паровое окисление оболочечных трубок, сопровождаемое их охрупчиванием, и возможно разрушение охрупченных оболочечных трубок.

В этой связи очень важным является установление взаимосвязи между коррозионной стойкостью циркониевых сплавов и их химическим составом, поскольку поведение сплавов российского и западного производства, содержащих различные примеси, в условиях LOCA отличаются. В работах показано, что существует зависимость коррозионной стойкости циркониевых сплавов от присутствия в них различных примесей. Основные данные приведены ниже:

Стабилизация тетрагональной формы диоксида циркония приводит к улучшению коррозионной стойкости оболочечных труб;

В этой связи все примеси в сплавах можно разделить на полезные и вредные:

Полезные примеси: Fe, Cr, Ca, Mg, Y;

Вредные примеси: C, N, F, Cl, Si, Ti, Ta, V, Mn, Pt, Cu;

По влиянию таких элементов, как Al, Ni, Mo существуют противоположные точки зрения;

Относительно кислорода многие исследователи считают, что он нейтрален по отношению к коррозионной стойкости;

Коррозия сплавов очень чувствительна к содержанию таких легирующих элементов, как Nb и Sn.

Каждый тип сплавов имеет оптимальную концентрацию легирующих элементов, обеспечивающую наилучшую коррозионную стойкость.

Из вышесказанного можно сделать вывод, что примесный состав - один из ключевых факторов, определяющих поведение сплавов Zr-Nb в высокотемпературных условиях.

3.ПРОИЗВОДСТВО МЕТАЛЛИЧЕСКОГО ЦИРКОНИЯ В РОССИИ

Промышленное получение пластичного циркония реакторной чистоты осуществляется в России электролизом фторидно-хлоридных расплавов (см. рис.2) в герметичных электролизерах мощностью 10 кА, внедренных впервые в мировой практике в производство в 1974 г. . ОАО «Чепецкий механический завод» (ОАО ЧМЗ) является единственным в мире предприятием, получающим порошок циркония через электролиз. В результате электролиза в закрытых электролизерах получают циркониевый порошок с содержанием кислорода 0,04...0,08 мас.%, который служит основой сплавов Э110, Э125 и Э635. Содержание гафния в таком цирконии составляет 0,03...0,04 мас.%. Для получения порошка циркония с содержанием гафния меньше 0,01 мас.% разработана технология, позволяющая использовать в технологической цепочке в качестве питающей соли тетрафторид циркония (ZrF4) украинского производства .

Сегодня на ОАО ЧМЗ внедряется уникальная технология производства циркониевой губки ядерной чистоты путем магниетермического восстановления (производство циркониевой губки - это экономически выгодный, менее энергоемкий и относительно быстрый процесс). В таком процессе производства циркония не используется фтор и, как следствие, - его отсутствие в полученном металле. От французского способа российский способ получения губчатого циркония отличается методом хлорирования и способом очистки полученного тетрахлорида циркония. Французская фирма CEZUS хлорирование производит в псевдоожиженном слое шихты, а российское предприятие ОАО ЧМЗ - путем хлорирования в расплаве. В качестве варианта очистки тетрахлорида циркония от простых примесей (Fe, Al, Ti, Ni, Cr и т.п.) в отличие от французской водородной очистки российские ученые разработали метод солевой очистки в расплаве солей. Далее по технологической схеме российский процесс получения губки от французского принципиально не отличается. Согласно предлагаемой технологической схеме цирконийсодержащую руду подвергают хлорированию, затем полученный тетрахлорид циркония очищают от гафния методом экстракционной ректификации в ректификационной колонне и, наконец, с помощью магниетермического восстановления и вакуумной сепарации получают металлическую губку циркония. Готовый продукт (губчатый цирконий) имеет технические характеристики, соответствующие требованиям мировых стандартов качества и может достойно соперничать по качеству с продукцией для АЭС, выпускаемой другими странами-производителями (содержание примеси гафния в сплавах циркония в три раза ниже нормы, обозначенной требованиями международного стандарта ASTM) .

Рассмотрены вопросы получения циркония ядерной чистоты на различных стадиях его переработки различными методами. Приведены особенности этих методов. Проанализированы механизмы попадания примесей в циркониевые сплавы в процессе их получения и влияние примесей на поведение сплавов в высокотемпературных условиях.

ПРИЛОЖЕНИЯ

Размещено на Allbest.ru

...

Подобные документы

    Физико–химические свойства циркония, источники сырья, области применения. Описание процесса переработки цирконового концентрата спеканием с известью. Расчет расхода соляной кислоты для отмывки спека от примесей и для разложения цирконата кальция.

    курсовая работа , добавлен 14.07.2012

    Основные свойства циркония. Способы разделения гафния и разложения цирконовых концентратов. Нахождение в природе и минералы циркония. Продукты переработки цирконовых концентратов. Расчёт процесса спекания цирконового концентрата с фторсиликатом калия.

    курсовая работа , добавлен 23.10.2013

    Сущность и преимущества золь-гель-технологии синтеза порошков диоксида циркония, стабилизированного оксидом иттрия. Технологические свойства, структура и фазовый состав полученных порошков и напыленных из них покрытий, перспективы их применения.

    статья , добавлен 05.08.2013

    Технико-экономическое обоснование проектирования предприятия. Технологическая схема производства консервов. Подбор и расчет технологического оборудования. Технохимический контроль производства. Нормализация чистоты воздуха в производственных помещениях.

    дипломная работа , добавлен 11.11.2010

    Типы атомных электростанций. Тепловые схемы АЭС. Перспективы развития ядерной и термоядерной энергетики. Будущее ядерной энергетики в Республике Беларусь. Целесообразность развития ядерной энергетики. Требования к экономическим параметрам АЭС.

    реферат , добавлен 20.03.2005

    Производство циркониевого сырья на Украине, области применения его соединений. Металлургический передел в цехе №12 ГНПП "Цирконий". Расчеты по металлургическому переделу циркония. Методы контроля газообразных элементов. Активационный анализ в цирконии.

    дипломная работа , добавлен 22.10.2014

    Разработка технологии комплексного воздействия на металлический расплав в агрегатах типа АКОС и промковше МНЛЗ с целью получения в трубной стали сверхнизких содержаний вредных примесей. Методика и инструменты очистки межузлия решётки и границ зёрен.

    дипломная работа , добавлен 22.11.2010

    Существующие методы производства хлорированных парафинов и их краткая характеристика. Описание технологической схемы производства. Выбор средств контроля и управления технологическим процессом. Технологический, тепловой и экономический расчет реактора.

    курсовая работа , добавлен 24.01.2012

    Особенности текстильного производства, технологическая схема получения пряжи. Характеристика льночесальной, лентоперегонной и прядильной машин, их назначение. Составление приближенной координационной таблицы. Координация работы оборудования между цехами.

    курсовая работа , добавлен 02.12.2010

    Характеристика и теоретические основы производимого продукта. Разработка технологической схемы производства сычужного сыра "Российского". Основное оборудование. Требования к качеству разрабатываемого продукта. Упаковка, маркировка, условия хранения.

Имеющий желтоватый оттенок. Его получают переплавкой циркониевых отходов, а также рудного концентрата.

Цирконий: цены, ГОСТ, описание

Обозначение - ГОСТ 21907-76. Это пластичный и ковкий (практически как золото) коррозионностойкий, парамагнитный, жаростойкий металл. Цирконий устойчив к действию морской и хлорированной воды, аммиака, щелочей, кислот, свои качества не теряет в условиях низких и высоких температур. В основном применяется в сплаве с другими металлами. Это не только придает ему уникальные свойства, но и повышает технологичность. Стоимость - от 5500 рублей за килограмм в зависимости от марки и фирмы-изготовителя.

На сегодняшний момент цирконий относится к самоцветам. В Средневековье его алмаза, но присущая алмазам твердость в нем отсутствует.

Геология

Цирконий - металл, который в рудных месторождениях буквально рассыпан в различных уголках планеты. Он встречается в форме солей, аморфных окислов и монокристаллов, как в США (в Северной Каролине). В месторождениях Нигерии периодически находят кристаллы весом в килограмм. Самые богатые залежи находятся на территории Австралии, ЮАР, Индии и Северной Америки.

Цирконий (металл) часто встречается в руде вместе с гафнием, который больше всего близок к нему по свойствам. В России его природные запасы оцениваются в 10% от общемировых. Этот металл в 1799 году был впервые выделен в форме двуокиси Клапротом (немецким химиком) из минерала циркона. Выплавляется он из обогащенного рудного концентрата, в котором содержание составляет 60-65%.

Цирконий (металл): применение

Сплавы рассматриваемого вещества используют в различных сферах промышленности: самолето- и ракетостроении, литейном деле, приборостроении, военном производстве.

За счет повышенной стойкости к воздействию разных сред он отыскал применение в медицинском протезировании, создании В данной сфере цирконий смог обогнать титан, поскольку его устойчивость является вечной.

Ювелирное дело

Цирконий (металл) в ювелирных изделиях используется издавна. Анодированный материал способен приобретать любой оттенок, тем самым предоставляя широкие возможности для воплощения смелых художественных замыслов. Если хотите чего-либо необычного и оригинального, вам нужно обратить внимание на различные украшения из циркония. Такие изделия элегантны и интересны своей завершённостью. Из-за этого на мировом рынке они оцениваются очень высоко.

Лечебные свойства

Нужно отметить, что его прямого биологического воздействия на человеческий организм не обнаружено, хотя в определенных сферах очень важен цирконий. Металл, лечебные свойства которого описаны в этой статье, начал применяться в медицине из-за особых химических и физических свойств:

  • применяется для изготовления инструментов, так как совершенно нейтрален к воздействию кислот, щелочей, аммиака, воды;
  • стимулирует скорое заживление ран, при этом препятствуя образованию гноя и проникновению инфекций, поскольку оказывает противомикробное действие;
  • считается прекрасным антисептиком;
  • облегчает аллергические реакции, при этом сам не является аллергеном;
  • радиационное излучение не пропускает.

Пластичность данного металла дает возможность сохранить структуру костей при сложнейших переломах, они при этом быстрее срастаются. Для изготовления нитей для швов также начали использовать цирконий (металл).

Изделия с ним могут оказывать целебное воздействие при гипертонических болезнях, кожных недугах, артритах и артрозах, хотя от официальной медицины подтверждений этого еще не поступало.

Цирконий активно используется в ортопедическом протезировании и стоматологии. Большинство сплавов металлов вызывает побочные эффекты и аллергии в ротовой полости. Цирконий абсолютно устойчив к коррозии, а также нейтрален к различным средам. Сам он при этом на ткани организма не оказывает раздражающего действия.

Суточная норма

Необходимо отметить, что ежедневная норма данного макроэлемента точно не определена, поскольку наш организм может обходиться и без него. Каждый день с едой нам поступает по 0,05 мг данного металла, но он пассивен для того, чтобы вступать в химические реакции. Вещество самостоятельно не синтезируется, хотя может накапливаться в органах.

Избыток циркония в организме

Медики до сих пор не имеют данных о летальной дозе данного элемента для человеческого организма, хотя его передозировка может вызвать негативные последствия. Избыток вызывается при работе на соответствующих производствах, использовании средств индивидуальной гигиены или при проживании около источников, которые загрязняют окружающую среду.

Нужно отметить, что проявлениями передозировки являются следующие симптомы: пневмония и раздражение покровов кожи. Цирконий - металл, который может накапливаться в органах, при этом оседая на тканях. Из продуктов получить такую большую дозу нереально.

Недостаток в организме

Недостаток такого макроэлемента, как цирконий (металл), свойства которого подробно описаны в этой статье, не приведет к каким-то нежелательным последствиям, поскольку его нет в составе клеток. При этом исследования ведутся до сих пор, и металл еще может открыть для нас множество своих качеств.

Источники

Цирконий - металл, который содержится в продуктах питания в минимальных количествах, поэтому вызвать какие-то негативные последствия не может. Ниже приведен список продуктов, с которыми мы можем получить этот элемент:

  • баранина;
  • овсянка, рис, пшеница;
  • мускатный орех, фисташки;
  • растительные масла;
  • бобовые;
  • жгучий красный перец.

Когда необходимо использовать?

Показания к использованию для лечения циркония еще не установлены, хотя в качестве отличного материала для медицинских инструментов и имплантатов он незаменим.

Указанный металл используют в химическом машиностроении в качестве стойкого к коррозии материала. Его присадки раскисляют сталь, а также удаляют из неё серу и азот. Порошкообразный цирконий используется в производстве боеприпасов и в пиротехнике. Сульфат циркония представляет собой дубитель, который активно применяется в кожевенной промышленности.

Cтраница 1


Производство циркония и его сплавов, содержащих бор, требует тщательного контроля. Так как в литературе химические методы определения бора в металлическом цирконии и его сплавах описаны не были, то целью настоящей работы явилась разработка простого химического метода определения содержания бора в металлическом цирконии и его сплавах, в частности в сплавах с небольшим содержанием ниобия.  

В производстве циркония йодидный метод имеет в отличие от производства титана промышленное значение.  

Содержится в выбросах производств циркония, катализаторов органического синтеза.  

Гафний получают только как побочный продукт производства циркония реакторного сорта. Основное его применение - изготовление регулирующих стержней в ядерных реакторах. Общее потребление не превышает в настоящее время 75 % производства. Однако исследование новых областей применения: изготовление высокотемпературных сплавов, нитей накаливания, геттеров, порошка для ламп-вспышек, детонаторов - может сущесг-венно увеличить спрос на металл. Отделение гафния от циркония - дорогостоящий процесс, причем обычно расходы по отделению распределяются поровну между стоимостью обоих металлов.  

Полной аналогии в свойствах продуктов плазменно-фторидной и экстракционно-фторидной технологий производства циркония нет, поскольку в экстракционно-фторидной технологии цирконий и гафний разделяют на гидрохимической стадии с помощью экстракции. В случае использования плазменно-фторидной технологии переработки циркона при сублимационной очистке циркония от примесей, указанных в табл. 3.4, гафний в основном следует за цирконием.  

Метод разделения циркония и гафния электролизом расплавов представляет интерес для производства циркония, так как одновременно с получением металлического циркония происходит очистка его от гафния.  

Сырьем для получения гафния служат циркониевые концентраты или продукты и полупродукты производства циркония.  


Все эти трудности вызывают необходимость тщательной очистки реагентов, применяемых при производстве циркония и гафния, особенно от кислорода, воды и азота, и ограничивают выбор мето дов, которые можно использовать для получения этих металлов.  


Металлический гафний можно получить теми же методами, которые применяются при производстве циркония. Тетрахлорид гафния подвергают очистке перегонкой в атмосфере водорода и затем восстанавливают магнием. Очистку гафниевой губки от хлорида магния производят на установках для очистки циркониевой губки, поскольку при этой операции нет серьезной опасности для загрязнения гафния цирконием или наоборот. Губчатый гафний переплавляют в дуге и разливают в медные изложницы.  

Металлический гафний получают такими же способами, которые применяются и в производстве циркония: способ Кроля, видоизмененный способ Кроля с применением натрия в качестве восстановителя и способ де Бура, или иодидный процесс.  

Иодидный процесс получения мягкого, ковкого гафния аналогичен таковому, применяемому в производстве циркония, поэтому аппаратура, с помощью которой получают иодидный гафний, примерно такая же, как и в случае получения циркония. По данным , температура осаждения гафния из тетраиодида составляет 1600 С, а циркония - 1400 С.  

Обстоятельное изучение процесса Кроля в применении к титану может дать возможность внести некоторые изменения и в технологическую схему производства циркония; в частности, это касается упрощения аппаратуры, сокращения ряда операций и увеличения размеров агрегатов.  

Для получения более чистых порошков ниобия и тантала лучше проводить восстановление газообразных хлоридов жидким магнием аналогично тому, как это делается в производстве циркония.  

Последние материалы сайта