Презентация, доклад генная инженерия. Презентация на тему: Генная инженерия Основные методы генной инженерии

22.10.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Генная Инженерия
Работу выполнил ученик 10 класса – Кириллов Роман.

Генетическая инженерия
Генетическая инжене́рия (генная инженерия) - совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.

Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.
Жители Кении проверяют, как растет новый трансгенный сорт зерновых, устойчивых к насекомым-вредителям

История развития и достигнутый уровень технологии
Во второй половине XX века было сделано несколько важных открытий и изобретений, лежащих в основе генной инженерии. Успешно завершились многолетние попытки «прочитать» ту биологическую информацию, которая «записана» в генах. Эта работа была начата английским учёным Ф. Сенгером и американским учёным У. Гилбертом (Нобелевская премия по химии 1980 г.). Как известно, в генах содержится информация-инструкция для синтеза в организме молекул РНК и белков, в том числе ферментов. Чтобы заставить клетку синтезировать новые, необычные для неё вещества, надо чтобы в ней синтезировались соответствующие наборы ферментов. А для этого необходимо или целенаправленно изменить находящиеся в ней гены, или ввести в неё новые, ранее отсутствовавшие гены. Изменения генов в живых клетках - это мутации. Они происходят под действием, например, мутагенов - химических ядов или излучений.
Фредерик Сенгер
Уолтер Гилберт

Генная инженерия человека
В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома* его потомков.
*Гено́м - совокупность всех генов организма; его полный хромосомный набор.
Нокаутные мыши


Нокаут гена. Для изучения функции того или иного гена может быть применен нокаут гена (gene knockout). Так называется техника удаления одного или большего количества генов, что позволяет исследовать последствия подобной мутации. Для нокаута синтезируют такой же ген или его фрагмент, изменённый так, чтобы продукт гена потерял свою функцию.

Применение в научных исследованиях
Искусственная экспрессия. Логичным дополнением нокаута является искусственная экспрессия, то есть добавление в организм гена, которого у него ранее не было. Этот способ генной инженерии также можно использовать для исследования функции генов. В сущности процесс введения дополнительных генов таков же, как и при нокауте, но существующие гены не замещаются и не повреждаются.

Применение в научных исследованиях
Визуализация продуктов генов. Используется, когда задачей является изучение локализации продукта гена. Одним из способов мечения является замещение нормального гена на слитый с репортёрным элементом, например, с геном зелёного флуоресцентного белка
Схема строения зелёного флуоресцентного белка.




История развития Во второй половине XX века было сделано несколько важных открытий и изобретений, лежащих в основе генной инженерии. Успешно завершились многолетние попытки «прочитать» ту биологическую информацию, которая «записана» в генах. Эта работа была начата английским учёным Ф. Сенгером и американским учёным У. Гилбертом (Нобелевская премия по химии 1980 г.). Уолтер ГилбертФредерик Сенгер


Основные этапы решения генноинженерной задачи: 1. Получение изолированного гена. 1. Получение изолированного гена. 2. Введение гена в вектор для переноса в организм. 2. Введение гена в вектор для переноса в организм. 3. Перенос вектора с геном в модифицируемый организм. 3. Перенос вектора с геном в модифицируемый организм. 4. Преобразование клеток организма. 4. Преобразование клеток организма. 5. Отбор генетически модифицированных организмов (ГМО) и устранение тех, которые не были успешно модифицированы. 5. Отбор генетически модифицированных организмов (ГМО) и устранение тех, которые не были успешно модифицированы.






С помощью генотерапии в будущем возможно изменение генома человека. В настоящее время эффективные методы изменения генома человека находятся на стадии разработки и испытаний на приматах. С помощью генотерапии в будущем возможно изменение генома человека. В настоящее время эффективные методы изменения генома человека находятся на стадии разработки и испытаний на приматах. Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия. Для этого используют яйцеклетки здоровой женщины.


Проект «Геном человека» В 1990 году в США был начат проект "Геном человека", целью которого было определить весь генетический год человека. Проект, в котором важную роль сыграли и российские генетики, был завершён в 2003 году. В результате проекта 99% генома было определено с точностью 99,99%.


Невероятные примеры генной инженерии В 2007 году южнокорейский ученый изменил ДНК кота, чтобы заставить его светиться в темноте, а затем взял эту ДНК и клонировал из нее других котов, создав целую группу пушистых флуоресцирующих кошачьих Эко-свинья, или как критики ее еще называют Франкенсвин - это свинья, которая была генетически изменена для лучшего переваривания и переработки фосфора.


Ученые Вашингтонского университета работают над созданием тополей, которые могут очищать загрязненные места при помощи впитывания через корневую систему загрязняющих веществ, содержащихся в подземных водах. Ученые недавно выделили ген, отвечающий за яд в хвосте скорпиона, и начали искать способы введения его в капусту. Ученые недавно выделили ген, отвечающий за яд в хвосте скорпиона, и начали искать способы введения его в капусту.


Плетущие паутину козы Исследователи вложили ген каркасной нити паутины в ДНК козы таким образом, чтобы животное стало производить паутинный белок только в своем молоке. Генетически модифицированный лосось компании «AquaBounty» растет в два раза быстрее, чем обычная рыба этого вида. Генетически модифицированный лосось компании «AquaBounty» растет в два раза быстрее, чем обычная рыба этого вида.


Помидор Flavr Savr был первым коммерчески выращиваемым и генетически созданным продуктом питания, которому предоставили лицензию для потребления человеком. Помидор Flavr Savr был первым коммерчески выращиваемым и генетически созданным продуктом питания, которому предоставили лицензию для потребления человеком. Банановые вакцины, Когда люди съедают кусок генетически созданного банана, заполненного вирусными белками, их иммунная система создает антитела для борьбы с болезнью; то же происходит и с обычной вакциной.


Деревья изменяются генетически для более быстрого роста, лучшей древесины и даже для обнаружения биологических атак. Коровы производят молока идентичное молоку, вырабатываемому кормящими женщинами. Коровы производят молока идентичное молоку, вырабатываемому кормящими женщинами.


Опасности генной инженерии: 1.В результате искусственного добавления чужеродного гена непредвиденно могут образоваться опасные вещества. 1.В результате искусственного добавления чужеродного гена непредвиденно могут образоваться опасные вещества. 2.Могут возникнуть новые и опасные вирусы. 3.Знания о действии на окружающую среду модифицированных с помощью генной инженерии организмов, привнесённых туда, совершенно недостаточны. 4.Не существует совершенно надёжных методов проверки на безвредность. 5.В настоящее время генная инженерия технически несовершенна, так как она не в состоянии управлять процессом встраивания нового гена, поэтому невозможно предсказать результаты.

1 слайд

2 слайд

Историческая справка В 1953 году Дж. Уотсон и Ф. Крик создали двуспиральную модель ДНК, на рубеже 50 – 60-х годов 20 века были выяснены свойства генетического кода. В 1970 году Г.Смитом был впервые выделен ряд ферментов – рестриктаз, пригодных для генно-инженерных целей. Комбинирование ДНК-рестриктаз (для разрезания молекул ДНК на определенные фрагменты) и выделенных еще в 1967 г. ферментов – ДНК-лигаз (для «сшивания» фрагментов в произвольной последовательности) по праву можно считать центральным звеном в технологии генной инженерии. В 1972 году П. Берг, С. Коэн, Х. Бойер создали первую рекомбинантную ДНК. С начала 1980-х гг. достижения генной инженерии начинают использоваться на практике. С 1996 г. генетически модифицированные начинают использоваться в сельском хозяйстве. Уотсон и Крик

3 слайд

Задачи генной инженерии Придание устойчивости к ядохимикатам Придание устойчивости к вредителям и болезням Повышение продуктивности Придание особых качеств

4 слайд

Технология 1. Получение изолированного гена. 2. Введение гена в вектор для встраивания в организм. 3. Перенос вектора с конструкцией в модифицируемый организм-рецепиент. 4. Молекулярное клонирование. 5. Отбор ГМО

5 слайд

Суть технологии заключается в направленном, по заданной программе конструировании молекулярных генетических систем вне организма с последующим внедрением созданных конструкций в живой организм. В результате достигается их включение и активность в данном организме и у его потомства. Возможности генной инженерии – генетическая трансформация, перенос чужеродных генов и других материальных носителей наследственности в клетки растений, животных и микроорганизмов, получение генно-инженерно-модифицированных организмов с новыми уникальными генетическими, биохимическими и физиологическими свойствами и признаками, делают это направление стратегическим. Трансгенная мышь

6 слайд

Практические достижения современной генной инженерии Созданы клонотеки, представляющие собой коллекции клонов бактерий. Каждый из этих клонов содержит фрагменты ДНК определенного организма (дрозофилы, человека и других). На основе трансформированных штаммов вирусов, бактерий и дрожжей осуществляется промышленное производство инсулина, интерферона, гормональных препаратов. На стадии испытаний находится производство белков, позволяющих сохранить свертываемость крови при гемофилии, и других лекарственных препаратов. Созданы трансгенные высшие организмы, в клетках которых успешно функционируют гены совершенно других организмов. Широко известны генетически защищенные генно-модифицированные растения, устойчивые к высоким дозам определенных гербицидов, к вредителям. Среди трансгенных растений лидирующие позиции занимают: соя, кукуруза, хлопок, рапс. Овечка Долли

7 слайд

Эколого-генетические риски ГМ-технологий Генная инженерия относится к технологиям высокого уровня. Высокие биотехнологии характеризуются высокой наукоемкостью. ГМ-технологии используются как в рамках обычного сельскохозяйственного производства, так и в других областях человеческой деятельности: в здравоохранении, в промышленности, в различных областях науки, при планировании и проведении природоохранных мероприятий. Любые технологии высокого уровня могут быть опасными для человека и окружающей его среды, поскольку последствия их применения непредсказуемы. Для снижения вероятности неблагоприятных эколого-генетических последствий применения генно-инженерных технологий постоянно разрабатываются новые подходы. Например, трансгенез (внедрение в геном генетически модифицируемого организма чужеродных генов) в ближайшем будущем может быть вытеснен цисгенезом (внедрение в геном генетически модифицируемого организма генов этого же или близкородственного вида).

Слайд 1

Биотехнологии Генная инженерия

Слайд 2

Биотехнология – это интеграция естественных и инженерных наук, позволяющая наиболее полно реализовать возможности живых организмов для производства продуктов питания, лекарственных препаратов, для решения проблем в области энергетики и охраны окружающей среды.

Слайд 3

Одним из видов биотехнологий является генная инженерия. Генная инженерия основана на получении гибридных молекул ДНК и введении этих молекул в клетки других организмов, а также на молекулярно-биологических, иммунохимических и бмохимических методах.

Слайд 4

Генная инженерия начала развиваться с 1973 года, когда американские исследователи Стэнли Коэн и Энли Чанг встроили бартериальную плазмиду в ДНК лягушки. Затем эту трансформированную плазмиду вернули в клетку бактерии, которая стала синтезировать белки лягушки, а также передавать лягушачью ДНК своим потомкам. Таким образом был найден метод, позволяющий встраивать чужеродные гены в геном определенного организма.

Слайд 5

Генная инженерия находит широкое практическое применение в отраслях народного хозяйства, таких как микробиологическая промышленность, фармакологическая промышленность, пищевая промышленность и сельское хозяйство.

Слайд 6

Одним из наиболее значимых отраслей в генной инженерии является производство лекарственных препаратов. Современные технологии производства различных лекарств позволяют излечивать тяжелейшие заболевания, или хотя бы замедлять их развитие.

Слайд 7

В основе генной инженерии лежит технология получения рекомбинантной молекулы ДНК.

Слайд 8

Основной единицей наследовательности любого организма является ген. Информация в генах, кодирующих белки, расшифровывается в ходе двух последовательных процессов: транскрипции (синтеза РНК) и трансляции (синтеза белка), которые в свою очередь обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот.

Слайд 9

С развитием генной инженерии всё чаще стали проводить различные опыты над животными, в результате которых ученые добивались своеобразной мутации организмов. Так, например, компания «Lifestyle Pets» создала с помощью генной инженерии гипоаллергенного кота, названного Ашера ГД. В организм животного был введен некий ген, позволявший «обходить заболевания стороной».

Слайд 11

С помощью генной инженерии исследователи из Университета Пенсильвании представили новый метод производства вакцин: с помощью генетически сконструированных грибов. В результате был ускорен процесс производства вакцин, что может, по мнению пенсильванцев, пригодиться в случае биотеррористической атаки или вспышки птичьего гриппа.

Слайд 2

Генная инженерия-это совокупность методов, позволяющих посредством операций in vitro (в пробирке, вне организма), переносить генетическую информацию из одного организма в другой.

Слайд 3

Цель генной инженерии в получении клеток (в первую очередь бактериальных), способных в промышленных масштабах вырабатывать некоторые «человеческие» белки; в возможности преодолевать межвидовые барьеры и передавать отдельные наследственные признаки одних организмов другим (использование в селекции растений, животных)

Слайд 4

Формальной датой рождения генной инженерии считают 1972 год. Её родоначальником стал американский биохимик Пол Берг.

Слайд 5

Группа исследователей во главе с Полом Бергом, работавшим в Стэнфордском университете, что неподалеку от Сан-Франциско в Калифорнии, сообщила о создании вне организма первой рекомбинантной (гибридной) ДНК. Первая рекомбинантная молекула ДНК состояла из фрагментов кишечной палочки (Eschherihia coli), группы генов самой этой бактерии и полной ДНК вируса SV40, вызывающего развитие опухолей у обезьяны. Такая рекомбинантная структура теоретически могла обладать функциональной активностью в клетках, как кишечной палочки, так и обезьяны. Она могла как челнок «ходить» между бактерией и животным. За эту работу Полу Бергу в 1980 году присуждена Нобелевская премия.

Слайд 6

Вирус SV40

  • Слайд 7

    Основные методы генной инженерии.

    Основные методы генной инженерии были разработаны в начале 70-х годов XX века. Их суть заключается во введении в организм нового гена. Для этого создают специальное генетические конструкции - векторы, т.е. устройство для доставки нового гена в клетку В качестве вектора используют плазмиды.

    Слайд 8

    Плазмида – это кольцевая двухцепочечная молекула ДНК, которая есть в бактериальной клетке.

    Слайд 9

    ГМ-картофель

    Экспериментальное создание генетически модифицированных организмов началось ещё в 70-е годы ХХ века. В Китае стали выращивать табак, устойчивый к пестицидам. В США появились: ГМ-помидоры

    Слайд 10

    Сегодня в США насчитывается более 100 наименований генетически модифицированных продуктов- «трансгенов»-это соя, кукуруза, горох, подсолнечник, рис, картофель, помидоры и другие. Соя Подсолнечник Горох

    Слайд 11

    Генетически модифицированные животные:

    Кролик, светящийся в темноте Лосось

    Слайд 12

    ГМИ входят в состав многих продуктов питания:

    ГМ кукуруза добавляется в кондитерские и хлебобулочные изделия, безалкогольные напитки.

    Слайд 13

    ГМ соя входит в состав рафинированных масел, маргаринов, жиров для выпечки, соусов для салатов, майонезов, макаронных изделий, даже детского питания и других продуктов.

    Слайд 14

    ГМ картофель используется для приготовления чипсов

    Слайд 15

    Чья продукция содержит трансгенные компоненты:

    Nestle (Нестле) Hershey’s (Хёршис) Coca-Cola (Кока-Кола) McDonald’s (Макдоналдс)

  • Последние материалы сайта