Нобелевская премия по физике. Нобелевская премия по физике присуждена за гравитационные волны. Почему обнаружение волн так важно для физики

08.05.2021
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Всё наше понимание процессов, происходящих во Вселенной, представления о ее структуре сложились на основе изучения электромагнитного излучения, другими словами — фотонов всех возможных энергий, доходящих до наших приборов из глубин космоса. Но фотонные наблюдения имеют свои ограничения: электромагнитные волны даже самых высоких энергий не доходят до нас из слишком далёких областей космоса.

Есть и другие формы излучения — потоки нейтрино и гравитационные волны. Они могут рассказать о том, чего никогда не увидят приборы, регистрирующие электромагнитные волны. Для того, чтобы «увидеть» нейтрино и гравитационные волны, нужны принципиально новые приборы. За создание детектора гравитационных волн и экспериментальное доказательство их существование в этом году удостоились Нобелевской премии по физике трое американских физиков — Райнер Вайс, Кип Торн и Барри Бэрриш.

Слева направо: Райнер Вайсс, Бэрри Бэрриш и Кип Торн.

Существование гравитационных волн предусмотрено общей теорией относительности и было предсказано Эйнштейном еще в 1915 году. Они возникают, когда очень массивные объекты сталкиваются друг с другом и порождают возмущения пространства-времени, расходящиесясо скоростью света во все стороны от места зарождения.

Даже если событие, породившее волну, огромно — например, столкнулись две чёрные дыры — воздействие, которое волна оказывает на пространство-время крайне мал, поэтому зарегистрировать его сложно, для этого нужны очень чувствительные приборы. Сам Эйнштейн считал, что гравиволна, проходя через материю, влияет на нее так мало, что не поддаётся наблюдению. Действительно, самый эффект, который волна оказывает на материю, уловить довольно сложно, зато можно зарегистрировать косвенные эффекты. Именно это сделали в 1974 году американские астрофизики Джозеф Тейлор и Рассел Халс, измерившие излучение двойной звезды-пульсара PSR 1913+16 и доказавшие, что отклонение периода ее пульсации от расчётного объясняется потерей энергии, унесенной гравитационной волной. За это они получили Нобелевскую премию по физике в 1993 году.

14 сентября 2015 года LIGO — лазерно-интерферометрическая гравитационно-волновая обсерватория — впервые напрямую зарегистрировала гравитационную волну. К тому моменту, когда волна достигла Земли, она очень ослабела, но даже этот слабый сигнал означал революцию в физике. Для того, чтобы это стало возможным, потребовался труд тысячи учёных из двадцати стран, построивших LIGO.

На то, чтобы проверить результаты пятнадцатого года, ушло несколько месяцев, поэтому обнародованы они были только в феврале 2016 года. Кроме главного открытия — подтверждения существования гравиволн — в результатах скрывалось еще несколько: первое свидетельство существования чёрных дыр средней массы (20−60 солнечных) и первое доказательство того, что они могут сливаться.

Чтобы добраться до Земли, гравиволне потребовалось больше миллиарда лет Далеко-далеко, за пределами нашей галактики две чёрных дыры врезались друг в друга, прошло 1,3 миллиарда лет — и LIGO сообщил нам об этом событии.

Энергия гравитационной волны огромна, но амплитуда невероятна мала. Почувствовать ее — всё равно что измерить расстояние до далёкой звезды с точностью до десятых долей миллиметра. LIGO на это способен. Концепцию разработал Вайсс: еще в 70-е он подсчитал, какие земные явления могут исказить результаты наблюдений, и как от них избавиться. LIGO — это две обсерватории, расстояние между которым — 3002 километра. Гравитационная волна проходит это расстояние за 7 миллисекунд, поэтому два интерферометра во время прохождения волны уточняют показатели друг друга.


Две обсерватории LIGO, в Ливингстоне (штат Луизиана) и в Хэнфорде (штат Вашингтон) находятся на расстоянии 3002 км друг от друга.

У каждой обсерватории есть два четырехкилометровых плеча, исходящие из одной точки под прямым углом друг к другу. Внутри у них — почти идеальный вакуум. В начале и в конце каждого плеча — сложная система зеркал. Проходя через нашу планету, гравитационная волна чуть-чуть сжимает пространство там, где проложен один рукав, и растягивает второй (без волны длина рукавов строго одинакова). Из перекрестья плечей выпускают луч лазера, разделяют его надвое и пускают отражаться по зеркалам; пройдя свою дистанцию, лучи встречаются в перекрестье. Если это происходит одновременно, значит, пространство-время спокойно. А если одному из лучей потребовалось на прохождение плеча больше времени, чем другому — значит, гравитационная волна удлинила его путь и сократила путь второго луча.


Схема работы обсерватории LIGO.

LIGO разработал Вайсс (и, конечно, его коллеги), Кип Торн — ведущий мировой эксперт в теории относительности — выполнил теоретические расчёты, Барри Бэриш присоединился к команде LIGO в 1994 году и превратил небольшую — всего из 40 человек — группу энтузиастов в огромную международную коллаборацию LIGO/VIRGO, благодаря слаженной работе участников которой и стал возможен фундаментальный пропыв, осуществлённый двадцать лет спустя.

Работа на детекторах гравитационных волн продолжается. За первой зарегистрированной волной последовали вторая, третья и четвертая ; последнюю «поймали» не только детекторы LIGO, но и недавно запущенный европейский VIRGO. Четвертая гравитационная волна, в отличие от трёх предыдущих, родилась не в абсолютной тьме (в результате слияния чёрных дыр), а при полной иллюминации — при взрыве нейтронной звезды; космические и наземные телескопы зарегистрировали и оптический источник излучения в том районе, откуда пришла волна гравитационная.

Роль Бэриша, также преподавателя Калтеха, заключается в том, что он объединил множество проектов в единый LIGO и взял на себя управленческие функции. В сравнении с другими сооснователями LIGO Торн является не только одним из главных мировых экспертов по общей теории относительности (и, в частности, по теории гравитации), но и одним из самых известных в мире популяризаторов науки. Он стал одним из вдохновителей создания фильма «Интерстеллар», в ходе съемок которого также выступил как научный консультант и исполнительный продюсер картины. Таким образом, Торн — первый голливудский продюсер, получивший Нобелевскую премию.

2. Российское участие

Будучи преимущественно американским проектом, LIGO объединяет несколько десятков научных групп, в которых работают около 1 тыс. ученых со всего мира. В проекте участвуют и две российские группы — одна под руководством московского профессора Валерия Митрофанова, другую возглавляет нижегородский ученый Александр Сергеев.

Сергеев, который с 27 сентября возглавляет Российскую академию наук, РБК, что основу открытия еще в 1962 году заложил советский ученый Владислав Пустовойт, предложивший схему использования лазера для фиксирования гравитационных волн. Тем не менее открытие 2015 года является, по словам Сергеева, «триумфом человеческой мысли и триумфом оборудования».

Профессор МГУ Митрофанов, другой участник LIGO, что именно три нобелевских лауреата внесли наибольший вклад в создание проекта. «Зарегистрировать такой слабый сигнал — мечта у физиков. Благодаря усилиям всего коллектива LIGO и лауреатов удалось в конце концов это сделать», — заявил он в разговоре с РБК.

Райнер Вайс и Кип Торн (слева направо)

3. Суть открытия

Задача LIGO — подтвердить на практике существование гравитационных волн, о которых Альберт Эйнштейн рассказал в своей общей теории относительности в 1916 году. Гравитационные волны — это колебания пространства-времени (физики также говорят «рябь на ткани пространства-времени»), производимые движением во Вселенной массивных тел с переменным ускорением. Каждая из двух обсерваторий LIGO оборудована детектором гравитационных волн, помещенным в вакуум и способным фиксировать колебания размером в тысячи раз меньше размера атомного ядра, говорится в сообщении Нобелевского комитета. Расстояние 3002 км между объектами световая волна преодолевает по прямой за 10 мс. Поскольку предполагается, что гравитационная волна также распространяется со скоростью света, изменение значения времени прохождения волны через одну обсерваторию и другую призвано помочь найти направление движения, а значит, и источник волны.

LIGO зафиксировала гравитационные волны утром 14 сентября 2015 года. Несколько месяцев эксперты LIGO совместно с коллегами из франко-итальянского центра Virgo анализировали полученную информацию. В феврале 2016 года ученые представили результаты исследования: событие 14 сентября действительно было первым прямым наблюдением гравитационных волн. Приборы LIGO, гласило заявление, зафиксировали волну от слияния двух черных дыр на расстоянии 1,3 млрд световых лет от Земли.

4. Новый инструмент проникновения во Вселенную

Обнаружение гравитационных волн в сообщении Нобелевского комитета названо «революцией в астрофизике», которая предоставляет принципиально новый способ изучения космоса. «Целое сокровище открытий ждет того, кто сумеет поймать эти волны и прочитать сокрытое в них сообщение», — говорится в пресс-релизе.

За прошедшие два года физики LIGO и Virgo еще три раза зафиксировали движение гравитационных волн. Последнее наблюдение состоялось 14 августа 2017 года, официально было объявлено об этом на прошлой неделе. Пресс-секретарь LIGO Дэвид Шумейкер отметил, что новый раунд совместного наблюдения экспертов LIGO и Virgo намечен на осень 2018 года и на нем подобные открытия «ожидаются раз в неделю или чаще».

Как отметила профессор Шейла Роуэн из Университета Глазго, совместная работа LIGO и Virgo позволила «расширить объем данных, которые мы получим в будущем и которые помогут нам лучше понять Вселенную».

Участник LIGO профессор Митрофанов рассказал РБК, что обнаружение гравитационных волн открывает новую область науки. «Раньше мы смотрели на то, что происходит в далеком космосе, в основном в электромагнитном диапазоне. А сейчас добавился такой канал информации, как гравитационные волны, и у него гораздо больше возможностей. Они идут от первых моментов после Большого взрыва, когда образовалась наша Вселенная», — сказал он.

О потенциальных возможностях человечества после открытия гравитационных волн говорил и сам Торн в своей книге «Интерстеллар: наука за кадром». Она была опубликована в 2015 году, вскоре после выхода блокбастера «Интерстеллар» и незадолго до открытия LIGO.


Исполнительный директор LIGO Давид Рейце (Фото: Gary Cameron / Reuters)

5. Наука и кино

В сферу научных интересов Торна входит поиск возможного практического применения этих знаний. Например, речь идет о перемещении во времени и пространстве. С 1980-х годов Торн изучает вероятность существования так называемых червоточин, или «кротовых нор», — своеобразных «туннелей» в пространстве, которые позволяют мгновенно перемещаться из одной его точки в другую. О вероятном существовании таких «туннелей» писал еще Эйнштейн, объясняя этим ряд положений своей теории относительности. ​Торн, развивающий эту теорию, является одним из авторов гипотезы «проходимых кротовых нор». Торн уверяет, что на текущем этапе технологического развития межзвездные полеты невозможны. «С технологиями XXI века мы неспособны достичь других звездных систем быстрее, чем за тысячи лет пути. Наша единственная призрачная надежда на межзвездный перелет — это червоточина либо иная предельная форма искривления пространства-времени», — пишет он в последней книге.​ Торн надеется, что прорыв в изучении гравитационных волн поможет приблизиться к решению этого вопроса.

Имеющиеся у него теоретические и практические наработки Торн визуализировал в фильме «Интерстеллар», который вышел на экраны осенью 2014 года. «Мне выпал счастливый случай участвовать в его создании с самого начала, помогая [режиссеру Кристоферу] Нолану и его коллегам вплести в ткань повествования компоненты истинной науки», — писал Торн.

По сути, Торн выступил как создатель идеи самого фильма, а в ходе работы над картиной попробовал смоделировать имеющиеся гравитационные теории. Начиная в 2005 году работу над фильмом, Торн поставил режиссеру Стивену Спилбергу, который изначально собирался взяться за картину, два условия. События фильма не должны противоречить законам физики, а используемые в сценарии физические теории должны быть научно подкреплены, то есть приняты хотя бы частью научного сообщества.​​

6. Друзья-соперники

Для Торна награждение Нобелевской премией стало по меньшей мере девятой научной наградой за полтора года с момента публикации сообщения об открытии LIGO. Тем не менее изучением гравитации он занимается последние полвека.

Почти с самого начала своей исследовательской деятельности Торн дружит с другим известным популяризатором науки и исследователем Вселенной Стивеном Хокингом. Взгляды двух ученых на космические явления иногда совпадали, иногда расходились. Друзья-соперники регулярно заключают публичные пари по научным вопросам. Последний такой спор, начавшийся в 1991 году (для знатоков — Торн допускал существование голых сингулярностей, Хокинг — нет) закончился в 1997 году победой Кипа Торна. Он получил от оппонента £100 и некий предмет одежды с надписью, в которой Стивен признавал поражение (других деталей в своем рассказе об этой истории Кип Торн не приводит).

Теперь соперничество двух светил мировой науки становится еще драматичнее: у Стивена Хокинга Нобелевской премии пока нет. ​Впрочем, вслед за успехом «Интерстеллара», получившего «Оскар» за лучшие визуальные эффекты (к которым Торн имел прямое отношение), Торн заявил, что готовит новый научно-фантастический фильм — и на этот раз совместно с Хокингом. Об этом он рассказал в ноябре 2016 года в лекции на физфаке МГУ. ​

Лауреаты Нобелевской премии по физике-2017

Райнер Вайс родился в 1932 году в Берлине. После прихода нацистов к власти в Германии родители Вайса переехали вначале в Чехословакию, затем в США. В 1955 году получил диплом бакалавра в MIT, затем окончил докторантуру в Принстонском университете, с 1964 года преподает в MIT. Является автором десятков научных работ по астрофизике, гравитации и использованию лазеров.

Кип Торн родился в 1940 году в штате Юта в мормонской семье. Сейчас, правда, ученый называет себя атеистом. В 1962 году окончил бакалавриат в Калтехе, затем защитил диссертацию по геометродинамике (сведение физических объектов к геометрическим) в Принстонском университете. С 1967 года преподает теоретическую физику в Калтехе. Автор нескольких научных теорий и работ по астрофизике.

Барри Бариш родился в Небраске в 1936 году. Вскоре после его рождения семья переехала в Калифорнию, где Бариш поступил в Университет Беркли, а с 1963 года работал в Калтехе. В сферу его научных интересов входит экспериментальная физика высокой энергии. С 1980-х годов он интересуется созданием оборудования по улавливанию магнитных и прочих волн, а в 1994 году выступил вдохновителем создания объединенного проекта LIGO.

Нобелевская премия по физике за 2017 год присуждена американским учёным Райнеру Вайссу, Барри Баришу и Кипу Торну за «решающий вклад» в создание обсерватории LIGO и наблюдение за гравитационными волнами.

Проект лазерно-интерферометрической гравитационно-волновой обсерватории (LIGO) был предложен в 1992 году группой учёных из Калифорнийского и Массачусетского технологических институтов. Его главной задачей было экспериментальное обнаружение космических гравитационных волн, существование которых было предсказано ещё Альбертом Эйнштейном в рамках его общей теории относительности в 1916 году. При этом гениальный немецкий физик был уверен, что эти волны не удастся измерить.

Гравитационные волны (или так называемая рябь пространства-времени) появляются в результате крупнейших катастрофических событий во Вселенной, например столкновений чёрных дыр или взрывов звёзд. Затем эти волны свободно распространяются со скоростью света и могут быть зафиксированы при прохождении между свободно падающими телами — расстояние между ними изменяется.

Об обнаружении этого явления было официально объявлено в феврале 2016 года, когда группа учёных LIGO рассказала:

14 сентября 2015 года в 13:51 мск впервые были зарегистрированы гравитационные волны, возникшие после столкновения двух чёрных дыр, которое произошло 1,3 млрд лет назад.

До слияния чёрные дыры обладали весом 36 и 29 солнечных масс, однако после их столкновения суммарный вес нового объекта составил 62, а не 65 солнечных масс. За доли секунды порядка 5,96676 × 10³º кг вещества превратилось в ту самую «рябь пространства-времени», которая спустя 1,3 млрд лет прошла через Солнечную систему.

Максимальная мощность излучения была примерно в 50 раз больше, чем от всех звёзд видимой Вселенной. Однако когда сигнал достиг Земли, он был исключительно слабым (детекторы LIGO обнаружили относительные колебания величиною в 10 в -19-й степени метра).

Сам факт его фиксирования стал настоящим прорывом для физики, буквально открывшим новую эру в науке.

Открытие было сделано на двух детекторах LIGO, расположенных в Ливингстоне (штат Луизиана) и Хэнфорде (штат Вашингтон) — в 3002 км друг от друга. Ведущий научный сотрудник Института ядерных исследований РАН Борис Штерн в разговоре с RT рассказал, что собой представляет обсерватория и как она работает.

«Это четырёхкилометровые трубы, в которых находится лазерный интерферометр, чувствующий смещение, которое в сто тысяч раз меньше размера ядра атома. В это трудно поверить, но методика отработана до совершенства, и такие ничтожные смещения фиксируют. Смещения происходят за счёт деформации пространства, которая происходит из-за гравитационных волн. Они же, в свою очередь, происходят потому, что где-то далеко встретились две чёрные дыры», — сказал Штерн.

Учёный добавил, что LIGO позволила подтвердить разработанную в начале ХХ века общую теорию относительности Эйнштейна, что стало «триумфом науки». Детекторы обсерватории предстоит и дальше использовать для научных работ и открытий.

«Теперь будем пользоваться этим для наблюдения за слиянием чёрных дыр. Как они образуются, как образуются сверхтяжёлые звёзды и другое. Здесь масса интересных астрофизических вопросов. Появилась новая отрасль астрофизики», — пояснил Штерн.

В феврале 2016 года учёные Калифорнийского технологического института также опубликовали звуковую интерпретацию гравитационных волн от столкновения чёрных дыр.

Российский вклад

В команду международного научного сообщества LIGO входят более тысячи человек из 20 стран мира, включая Россию, которая представлена коллективами физфака МГУ имени Ломоносова и группой нижегородского Института прикладной физики РАН. Московскую группу создал и вплоть до последнего времени возглавлял член-корреспондент РАН Владимир Брагинский — всемирно известный учёный и один из пионеров гравитационно-волновых исследований в мире. Группа МГУ участвует в проекте с 1992 года.

«С самого начала основные усилия были направлены на повышение чувствительности гравитационно-волновых детекторов, определение фундаментальных квантовых и термодинамических ограничений чувствительности, на разработку новых методов измерений», — сообщили RT в пресс-службе МГУ.

«Теоретические и экспериментальные исследования российских ученых нашли своё воплощение при создании детекторов, позволивших непосредственно наблюдать гравитационные волны от слияния двух чёрных дыр», — добавили в университете.

В настоящее время коллектив научной группы МГУ активно участвует в разработке гравитационно-волновых детекторов следующего поколения, которые призваны обеспечить значительное увеличение их чувствительности. Это позволит «практически ежедневно обнаруживать гравитационно-волновые сигналы», заявил руководитель российской группы LIGO, профессор физического факультета МГУ, доктор физико-математических наук Валерий Митрофанов.

Вручение Нобелевской премии состоится в Стокгольмской филармонии 10 декабря, в день смерти Альфреда Нобеля. Лауреаты получат из рук короля Карла XVI Густава золотую медаль и диплом. Бонусом к всемирному признанию и почёту станет выплата в размере 9 млн крон ($1,12 млн).

По сложившейся традиции - Нобелевские премии 2017 года в «научных» номинациях достались не отдельным ученым, а группам исследователей, состоящим из 2-3 человек. А вот в двух "гуманитарных" дисциплинах награды оказались персональными.

Нобелевская премия по физике за 2017 г. за открытие гравитационных волн

Ее получили американские физики Райнер Вайсс (Rainer Weiss), Кип Торн (Kip Thorne) и Барри Бэриш (Barry Barish), под руководством которых в США был реализован проект LIGO.

Нобелевские лауреаты 2017 года: Райнер Вайс, Кип Торн и Барри Бэриш («Физика»)

Его главными элементами являются две обсерватории в штатах Вашингтон и Луизиана, удаленные друг от друга на 3002 км. Поскольку скорость распространения гравитационных волн равна скорости света, данное расстояние «гравитация» преодолевает ровно за 10 миллисекунд, что облегчает расчеты. Обсерватории представляют собой интерферометры Майкельсона, совмещенные с двумя мощными лазерами. Их использование позволяет установить направление на источник гравитационных флуктуаций и определить их силу.


Еще 14 сентября 2015 г. до Земли дошла гравитационная волна от столкновения двух массивных черных дыр, которые находились на расстоянии 1,3 млрд. световых лет от Солнечной системы. Ее то и удалось зарегистрировать с помощью обсерваторий LIGO, подтвердив тем самым экспериментально само наличие гравитационных волн. Необходимо отметить, что их существование предсказал еще Альберт Эйнштейн в далеком 1915 г. в рамках Общей Теории Относительности.

Но теория – это одно, а практика – совсем другое, решили в Нобелевском комитете и, совершенно заслуженно присудили премию трем американским физикам.

Открытие гравиволн - действительно фундаментально, поскольку способно стать отправной точкой для развития систем связи на основе гравитационного взаимодействия, а в далеком будущем – и создания транспортных средств для путешествий (в т.ч. межзвездных) через «изнанку пространства», которые многократно описаны фантастами.

Нобелевская премия по химии за 2017 г. за развитие криоэлектронной микроскопии

Была присуждена швейцарцу Жаку Дюбоше (Jacques Dubochet) из университета Лозанны, американцу Иоахиму Франку (Joachim Frank) из Колумбийского университета и британцу Ричарду Хендерсону (Richard Henderson) из Кембриджа.


Нобелевские лауреаты 2017 года: Жак Дюбоше, Иоахим Франк и Ричард Хендерсон («Химия»)

Несмотря на то, что они работают в разных организациях, ученые кооперировались друг с другом. В результате им удалось добиться небывало высокого разрешения изображений биомолекул, для чего они использовали особые растворы. Суть метода криомикроскопии заключается в быстром замораживании исследуемого биоматериала в жидком азоте или этане без его кристаллизации. Это позволяет увидеть вирус, митохондрию, рибосому или отдельный белок именно такими, какими они есть на самом деле. Используя электронные микроскопы и специальную методику визуализации, ученые создали карты целого ряда белков в разрешении порядка 2 Ангстрем (2 мкм).


На полученных изображениях можно различить отдельные атомы углерода или кислорода, входящие в состав белков и ферментных комплексов. Данное достижение невозможно переоценить, поскольку оно предоставляет биохимикам великолепный инструмент для исследований.

Как указано в пресс-релизе Нобелевского комитета, открытие трех лауреатов премии за 2017 г., - «переместило биохимию в новую эру».

Теперь структуру ДНК можно визуализировать не схематически, а иметь реалистичную картинку «as is», что наверняка поможет в достижении самых разных целей. Например, открываются отличные перспективы в оценивании воздействия лекарств на самые тонкие структуры организма, а также в генном модифицировании. Как ожидается, новые методы криоэлектронной микроскопии позволят сделать, возможно, решающий шаг в разработке лекарства от рака.

Нобелевская премия по физиологии за 2017 г. за исследование биологических ритмов

Досталась американским генетикам Джефри Холлу (Jeffrey Hall), Майклу Росбашу (Michael Rosbash) и Майклу Янгу (Michael Young).


Этим ученым удалось осуществить прорывное исследование в области т.н. «циркадных» циклов, отвечающих за периоды сна и бодрствования у всех живых существ на планете. В отличие от предшественников (а изучение биоритмов ведется еще с 18-го века), нобелевские лауреаты обнаружили особый ген, контролирующий биологические часы. В качестве объектов исследования были выбраны обыкновенные плодовые мушки, поколения которых сменяются всего за несколько суток, что очень удобно.

Биохимические эксперименты показали, что найденный ген кодирует специальный белок, причем в течение ночи это вещество накапливается в организме, а днем – постепенно разрушается.

Ученые тщательно проанализировали, как это происходит у дрозофил, а затем экстраполировали полученные данные на более сложные организмы, включая человека. Как выяснилось, биологические часы работают примерно одинаково у всех живых существ, регулируя целый ряд функций организма – температуру, давление, гормональный фон и в конечном итоге – циклы сна.


Полученные результаты обещают окончательное решение проблемы бессонницы, которая мучает десятки миллионов людей. Причем, средством против расстройств сна уже в скором времени будет не вредная химия, а абсолютно естественный для человека белок (если нужно бодрствовать) или его разрушитель (когда необходимо заснуть). Кроме того, открытие нобелевских лауреатов в недалеком будущем наверняка улучшит качество жизни людей, работающих в ночную смену или имеющих скользящий график.

Нобелевская премия по экономике за 2017 г. за изучение «поведенческой экономики»

Досталась американскому экономисту Ричарду Талеру (Richard Thaler) за разработку целого раздела экономической теории, который получил неофициальное название - «экономика с человеческим лицом».


Нобелевский лауреат 2017 года: Ричард Талер («Экономика»)

Эта дисциплина изучает нерациональное поведение людей и целых организаций, выбирающих товары и услуги. Давно известно, что факторами такого выбора являются не только прямая выгода, но и социальные, эмоциональные, когнитивные и даже религиозные аспекты. Все это не учитывается большинством современных экономических теорий, которые исходят из того, что в основе экономики лежит исключительно прямая выгода. Нобелевский лауреат 2017 г. убедительно обосновал ущербность такого подхода, а также доказал, что «полезность» может лежать не только в материальной плоскости, но и в области чувств.


Почему дорогие «айфоны» успешно конкурируют на мировом рынке с объективно не менее качественными, но дешевыми «самсунгами»? В т.ч. и на этот вопрос отвечает поведенческая экономика Ричарда Талера

В рамках поведенческой экономики Ричард Талер подробно исследовал такие моменты, как эвристика доступности, влияние толпы (ввел понятие «информационные каскады»), феномен избыточной уверенности, который заставляет людей делать объективно ошибочный выбор товара или услуги. Есть надежда, что новая экономическая теория «с человеческим лицом» позволит точнее прогнозировать развитие потребительских рынков и экономики в целом.

Нобелевская премия по литературе за 2017 г. за романы «невероятной эмоциональной силы»

Вручена британскому писателю японского происхождения Кадзуо Исигуро (Kazuo Ishiguro) за глубокое проникновение во внутренний мир людей, осознающих «иллюзорность своих связей с миром».


Нобелевский лауреат 2017 года: Кадзуо Исигуро («Литература»)

Как отмечают эксперты-литературоведы, в 2017-м году Нобелевский комитет наконец-то отказался от политизации премии по литературе, как это было, например, два года назад, когда «нобелевку» получила малоизвестная писательница Светлана Алексиевич. Не исключено, что главная ее заслуга, повлиявшая на выбор жюри – откровенно русофобские произведения и высказывания. В отличие от Алексиевич, Кадзуо Исигуро – действительно признанный мастер прозы, уже получавший Букеровскую премию и издавший свои произведения миллионными тиражами.


Его книга «Не отпускай меня» была включена в сотню лучших английских романов по версии журнала «Τime», а сразу несколько работ мастера были экранизированы, в частности, роман «Белая графиня». Последнюю свою книгу «Погребенный великан» Кадзую Исигуро написал в модном нынче жанре фэнтези, однако Нобелевскую премию получил не за него, а как бы по сумме результатов своего творчества, что вполне справедливо и заслуженно. Романы этого японо-британского писателя переведены на 40 языков, в т.ч. на русский.

Нобелевская премия Мира за 2017 г. за борьбу против ядерного оружия

Была вручена организации, которая называется «Международная кампания за запрет ядерного оружия» - в английской аббревиатуре ICAN.


Этот результат стал для многих неожиданным, поскольку ожидалось, что нобелевским лауреатом-2017 в области борьбы за мир станет папа римский Франциск или же канцлер Германии Ангела Меркель. Нобелевский комитет сумел удивить наблюдателей, в последний момент сделав выбор в пользу ICAN. Данная организация объединяет политиков, общественных деятелей, а также простых людей из 101-й страны мира и ставит целью полный запрет ядерного оружия на Земле.


ICAN регулярно проводит массовые акции против нуклеаризации планеты, ведет разъяснительную работу и лоббирует антиядерные законы в различных странах. Конечная цель организации – мир без ядерных бомб, выглядит несколько утопично, но возможно это и стало причиной присуждения ICAN Нобелевской премии Мира.

Создатель удобрений и химического оружия

Одним из самых спорных обладателей Нобелевской премии стал Фриц Габер (Fritz Haber). Премия по химии была присуждена ему в 1918 году за изобретение метода синтеза аммиака - открытие, имеющее решающее значение для производства удобрений. Однако он также известен и как "отец химического оружия" из-за работ в области применения отравляющего газа хлора, использовавшегося в ходе Первой мировой войны.

Смертельное открытие

Другой немецкий ученый, Отто Ган (Otto Han) - на фото в центре - был удостоен "нобелевки" в 1945 году за открытие расщепления атомного ядра. Несмотря на то, что он никогда не работал над военным применением этого открытия, оно напрямую привело к разработке ядерного оружия. Ган получил премию спустя несколько месяцев после того, как были сброшены ядерные бомбы на Хиросиму и Нагасаки.

От Фридмана до Обамы: самые неоднозначные нобелевские лауреаты

Прорыв, оказавшийся под запретом

Швейцарский химик Пауль Мюллер получил премию по медицине в 1948 году за открытие того, что ДДТ может эффективно убивать насекомых, распространяющих такие болезни, как малярия. Использование пестицида спасло в свое время миллионы жизней. Однако позже экологи стали утверждать, что ДДТ представляет угрозу для здоровья человека и вредит природе. Сегодня его использование запрещено по всему миру.

От Фридмана до Обамы: самые неоднозначные нобелевские лауреаты

Неудобная награда

Из-за своей явной и косвенной политической окраски премия мира, пожалуй, самая противоречивая из всех нобелевских наград. В 1935 году немецкий пацифист Карл фон Осецкий (Carl von Ossietzky) получил ее за разоблачение секретного перевооружения Германии. Сам Осецкий находился в тюрьме по обвинению в измене, и возмущенный Гитлер обвинил комитет во вмешательстве во внутренние дела Германии.

От Фридмана до Обамы: самые неоднозначные нобелевские лауреаты

Премия (возможного) мира

Решение норвежского комитета присудить премию мира Госсекретарю США Генри Киссинджеру и лидеру Северного Вьетнама Ле Дык Тхо в 1973 году столкнулось с жесткой критикой. Нобелевская премия должна была стать символом признания заслуг в достижении прекращения огня в ходе вьетнамской войны, однако Ле Дык Тхо отказался от ее получения. Война во Вьетнаме продолжалась еще два года.

От Фридмана до Обамы: самые неоднозначные нобелевские лауреаты

Либертарианец и диктатор

Защитник свободного рынка Милтон Фридман - один из самых спорных получателей Нобелевской премии мира по экономике. Решение комитета в 1976 году вызвало международные протесты из-за связей Фридмана с чилийским диктатором Аугусто Пиночетом. Годом ранее Фридман действительно посетил Чили, и критики утверждают, что его идеи вдохновили режим, где применялись пытки и были убиты тысячи людей.

От Фридмана до Обамы: самые неоднозначные нобелевские лауреаты

Напрасные надежды

Премия мира, которую в 1994 году разделили палестинский лидер Ясир Арафат, премьер-министр Израиля Ицхак Рабин и израильский министр иностранных дел Шимон Перес, должна была послужить дополнительным стимулом для мирного урегулирования конфликта на Ближнем Востоке. Вместо этого дальнейшие переговоры провалились, а Рабин был убит израильским националистом год спустя.

От Фридмана до Обамы: самые неоднозначные нобелевские лауреаты

Жуткие мемуары

Правозащитница Ригоберта Менчу, отстаивающая интересы народа майя, получила премию мира в 1992 году "за борьбу за социальную справедливость". Впоследствии это решение вызвало много споров, так как в ее мемуарах были якобы обнаружены фальсификации. Описанные ею зверства о геноциде коренных народов Гватемалы сделали ее знаменитой. Однако многие убеждены, что она в любом случае заслуживала награды.

От Фридмана до Обамы: самые неоднозначные нобелевские лауреаты

Преждевременная награда

Когда премию мира в 2009 году присудили Бараку Обаме, удивлены были многие, включая и его самого. Находящийся к тому моменту менее года на посту президента, он получил премию за "огромные усилия по укреплению международной дипломатии". Критики и некоторые сторонники Обамы посчитали, что награда была преждевременной, и он получил ее еще до того, как у него появился шанс сделать реальные шаги.

От Фридмана до Обамы: самые неоднозначные нобелевские лауреаты

Посмертная награда

В 2011 году Нобелевский комитет назвал лауреатами премии по медицине Жюля Хоффмана, Брюса Бётлера и Ральфа Стейнмана за их открытия в области изучения иммунной системы. Проблема была в том, что за несколько дней до этого Стейнман умер от рака. Согласно правилам, премия не вручается посмертно. Но комитет все же присудил ее Стейнману, обосновав тем, что о его смерти тогда было еще не известно.

От Фридмана до Обамы: самые неоднозначные нобелевские лауреаты

"Величайшее упущение"

Нобелевская премия вызывает споры не только из-за того, кому она была присуждена, но и потому, что кто-то ее так и не получил. В 2006 году член Нобелевского комитета Гейр Лундестад заявил, что "несомненно, величайшим упущением за всю нашу 106-летнюю историю стало то, что Махатма Ганди так никогда и не получил Нобелевскую премию мира".


Последние материалы сайта