Поли цепная реакция. Усовершенствование технологии пцр. Специфичность и применение

05.03.2020
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Метод полимеразной цепной реакции был открыт почти тридцать лет назад американским учёным по имени Кэрри Мюллис . Методика широко распространена в медицине в качестве диагностического инструмента, и суть её состоит в копировании участка ДНК при помощи специального фермента (полимеразы ) искусственным путём в пробирке.

В каких областях медицины применяется этот метод?

Для чего выполняется копирование ДНК и как это может послужить медицине?
Данная методика позволяет:
  • Выделять и клонировать гены.
  • Диагностировать генетические и инфекционные заболевания.
  • Определять отцовство. Ребенок частично наследует от своих биологических родителей генетические особенности, однако имеет при этом свою собственную уникальную генетическую идентификацию. Наличие у него некоторых генов, идентичных родительским генам – позволяет говорить об установлении родства.
Полимеразная цепная реакция применяется также в криминалистической практике.

На месте преступления судмедэксперты собирают образцы генетических материалов. К ним относятся: волосы, слюна, кровь. Впоследствии, благодаря методике полимеразной реакции, можно амплифицировать ДНК и сравнить идентичность взятой пробы с генетическим материалом подозреваемого человека.

В медицине эффективно используется полимеразная цепная реакция:

  • В пульмонологической практике – для дифференциации бактериальных и вирусных видов пневмонии , туберкулёза .
  • В гинекологической и урологической практике – для определения уреаплазмоза , хламидиоза , микоплазменной инфекции , гарднереллеза , герпеса , гонореи .
  • В гастроэнтерологической практике.
  • В гематологии – для определения онковирусов и цитомегаловирусной инфекции .
  • В экспресс-диагностике таких инфекционных заболеваний как вирусные гепатиты , дифтерия , сальмонеллёз .


В настоящее время наиболее распространен данный метод в диагностике инфекционных болезней (гепатитов вирусной этиологии, ВИЧ , венерических заболеваний , туберкулёза, клещевого энцефалита ).

Что происходит во время протекания реакции?


Сама реакция является химически несложной. Источником ДНК для реакции может послужить капля крови, волос, кусочек кожи, и т.д. В теории, для проведения реакции требуются нужные реагенты, пробирка, проба из биологического материала и источник тепла.

Полимеразная реакция позволяет выявить инфекцию, даже если в пробе с биологическим материалом находится всего одна или несколько ДНК-молекул возбудителя.

Во время протекания реакции, благодаря ферменту ДНК-полимеразы, происходит удвоение (репликация ) участка ДНК. Сама же дезоксирибонуклеиновая кислота (сокращенно ДНК ) важна для нас тем, что обеспечивает хранение и передачу дочерним клеткам генетической информации. ДНК имеет вид спирали, которая состоит из повторяющихся блоков. Эти блоки составляют нуклеотиды, которые являются наименьшей частицей ДНК. Нуклеотиды образуются из аминокислот.

Процесс репликации участков ДНК происходит во время повторяющихся циклов. В каждый такой цикл копируется и удваивается не только исходный фрагмент ДНК, но и те фрагменты, которые уже удвоились в прошлый цикл амплификации. Все это напоминает процесс геометрической прогрессии.

Существует:

  • Естественная амплификация (то есть процесс копирования и размножения ДНК ), которая происходит в нашем организме и является детерминированным, предопределённым процессом.
  • Искусственная амплификация, которая происходит благодаря полимеразной цепной реакции. В этом случае процесс копирования является управляемым и позволяет удвоить даже короткие участки нуклеиновой кислоты.
После завершения каждого цикла копирования, количество фрагментов нуклеиновой кислоты возрастает в геометрической прогрессии. Именно поэтому сам процесс называют «цепной реакцией».

Спустя тридцать - сорок циклов число фрагментов достигает нескольких миллиардов.

Для амплификации in vitro (в пробирке ) необходимо, чтобы в биосреде, взятой для диагностики, присутствовал специфический чужеродный фрагмент ДНК (то есть ДНК не пациента, а возбудителя ). Если в созданном растворе не будет находиться специфический фрагмент – цепная реакция под действием полимеразы не пойдет. Этим и объясняется факт высокой специфичности ПЦР.

Этапы ПЦР-диагностики

1. Из исследуемого материала выделяют ДНК.
2. Добавляют ДНК в специальный раствор из нуклеотидов.
3. Нагревают раствор до температуры 90 - 95 градусов Цельсия, для того, чтобы белок ДНК свернулся.
4. Снижают температуру до 60 градусов.
5. При повторении циклов повышения-понижения температуры количество участков нуклеиновой кислоты возрастает.

6. Путём проведения электрофореза подводится итог, и подсчитываются результаты удвоения.

Какие преимущества имеет данная диагностика?


  • Универсальность: для этого метода подходят любые образцы нуклеиновой кислоты.
  • Высокая специфичность: возбудитель имеет уникальные последовательности цепочек ДНК, которые свойственны именно ему. Поэтому результаты проведённой ПЦР будут достоверными, в них невозможно спутать ген одного возбудителя с геном другого возбудителя.
  • Чувствительность к наличию даже единичной молекулы возбудителя.

  • Маленький объем материала, нужного для исследования. Подойдет даже капля крови. Возможность получить результат, использовав минимальный объём пробы, очень важна для педиатрических, неонатологических, неврологических исследований, а также в практике судебной медицины.
  • Возможность определения вялотекущей, хронической инфекции, а не только острой.
  • Многие болезнетворные культуры очень сложно культивировать в пробирке другими методиками, а полимеразная реакция позволяет размножить культуру в нужном количестве.

Какие недостатки имеет данная диагностика?

  • Если в материале, предназначенном для проведения ПЦР, находится ДНК не только живого возбудителя, но и погибшего – будет происходить амплификация обеих ДНК. Соответственно, лечение после диагностики может быть назначено не совсем верное. Через некоторое время лучше пройти контроль эффективности проведённого лечения.
  • Повышенная чувствительность к наличию микроорганизмов тоже может считаться, в некотором роде, недостатком. Ведь в норме в человеческом организме присутствует условно-патогенная микрофлора, то есть это микроорганизмы, которые живут в кишечнике , желудке , других внутренних органах. Эти микроорганизмы могут принести вред человеку только при определенных неблагоприятных условиях – несоблюдение гигиенических требований, загрязненная питьевая вода и т.д. ПЦР-методика амплифицирует ДНК даже этих микроорганизмов, хотя они и не приводят к патологии.
  • ПЦР разных тест-систем может показывать результаты, которые будут разниться между собой. Существует много модификаций данной методики: «вложенная », «ассиметричная », «инвертированная », «количественная » ПЦР и другие.

Полимеразная цепная реакция (ПЦР) - это метод биохимической технологии в молекулярной биологии, проводящийся с целью увеличения одной или нескольких копий фрагментов ДНК на несколько степеней, что позволяет создать от нескольких тысяч до миллионов копий определенной последовательности ДНК.


Разработанный в 1983 году Кэри Муллисом, метод ПЦР в настоящее время является распространенным и зачастую незаменимым методом, использующимся в медицинских и биологических исследовательских лабораториях для множества различных приложений. Они включают клонирование ДНК для секвенирования, филогению на основе ДНК, или функциональный анализ генов; диагностику наследственных заболеваний; выявление генетических отпечатков пальцев (используется в отраслях судебной медицины и в проведении теста на отцовство), а также выявление и диагностику инфекционных заболеваний. В 1993 году, Муллис был удостоен Нобелевской премии по химии вместе с Майклом Смитом по их работе над ПЦР .

Метод основан на термоциклировании, состоящем из повторяющихся циклов нагрева и охлаждения реакции для денатурации и репликации ДНК ферментами. Праймеры, (короткие фрагменты ДНК), содержащие последовательности, комплементарные с целевым участком наряду с ДНК-полимеразой (на основе чего метод получил название), являются ключевыми компонентами для запуска избирательной и повторной амплификации. В процессе ПЦР, сама синтезированная ДНК используется в качестве матрицы для репликации, приводя в движение цепную реакцию, в которой ДНК-матрица амплифицируется в геометрической прогрессии. ПЦР может значительно модифицироваться для выполнения широкого спектра генетических манипуляций.

Почти все ПЦР-приложения используют термостабильную ДНК-полимеразу, такую как Taq-полимераза, фермент , первоначально выделенный из бактерии Thermus aquaticus . Эта ДНК-полимераза ферментативно собирает новую цепь ДНК из блоков, составляющих ДНК - нуклеотидов, используя одноцепочечную ДНК в качестве матрицы и олигонуклеотиды ДНК (также называемые праймерами ДНК), которые необходимы для инициации синтеза ДНК. Подавляющее большинство методов ПЦР применяют термоциклирование, т. е. попеременное нагревание и охлаждение образца ПЦР по определенному ряду температурных этапов. Эти этапы термоциклирования необходимы сначала для физического разделения двух цепей двойной спирали ДНК при высокой температуре в процессе, называемом денатурацией ДНК. При более низкой температуре, каждая цепь будет использоваться в качестве матрицы в синтезе ДНК ДНК-полимеразой для того, чтобы избирательно амплифицировать целевой участок ДНК. Избирательность результатов ПЦР с использованием праймеров, которые являются комплементарными с участком ДНК - мишенью для амплификации при определенных условиях термоциклирования.

Принципы ПЦР диагностики

ПЦР используется для амплификации определенного участка цепи ДНК (ДНК-мишень). Большинство методов ПЦР обычно амлифицируют фрагменты ДНК до ~ 10000 пар оснований (кб), хотя некоторые методы позволяют увеличивать фрагменты до 40 кб в размере. Реакция производит ограниченное количество конечного амплифицированного продукта, который регулируется имеющимися реактивами в реакции и обратной связью-ингибированием продуктов реакции.

Основной набор ПЦР требует нескольких компонентов и реактивов. Они включают:

  • ДНК-матрицу , содержащую целевой участок ДНК, который требуется амплифицировать.
  • Два праймера, комплементарные 3"-концам каждой из смысловой и антисмысловой цепей ДНК-мишени.
  • Taq-полимераза или иная ДНК-полимераза, действующая при оптимальной температуре около 70 ° C.
  • Дезоксинуклеозидтрифосфаты (дНТФ; трифосфатные группы, содержащие нуклеотиды), строительные блоки, из которых ДНК-полимераза синтезирует новую цепь ДНК.
  • Буферный раствор , обеспечивающий подходящие химические условия для оптимальной активности и стабильности ДНК-полимеразы.
  • Двухвалентные катионы, ионы магния или марганца; обычно используется Mg2 +, но также может использоваться и Mn2 + для ПЦР-опосредованного мутагенеза ДНК, так как более высокие концентрации Mn2 + увеличивают частоту ошибок в процессе синтеза ДНК.
  • Одновалентные катионы ионов калия.

ПЦР обычно проводится в реакционном объеме 10-200 мкл в небольших реакционных пробирках (объемом 0.2-0.5 мл) в термоциклере-амплификаторе. Амплификатор нагревает и охлаждает реакционные пробирки для достижения температур, необходимых на каждом этапе реакции. Многие современные амплификаторы используют эффект Пельтье, который позволяет нагревать и охлаждать блок с ПЦР-пробирками просто путем изменения направления электрического тока. Тонкостенные реакционные пробирки способствуют благоприятной теплопроводности для обеспечения быстрого теплового равновесия. Старые амплификаторы, у которых отсутствует нагреваемая крышка, требуют слоя масла на поверхности реакционной смеси или шарика воска в пробирке.

Порядок процедуры

Как правило, ПЦР состоит из серий 20-40 повторяющихся изменений температуры, называемых циклами, причем каждый цикл обычно состоит 2-3 дискретных температурных этапов, обычно трех. Циклирование зачастую начинается и завершается одним температурным этапом (так называемым ожиданием ) при высокой температуре (> 90 ° C) для окончательного расширения продукта или краткого хранения. Использующиеся температуры и длительность времени их применения в каждом цикле зависит от множества параметров. Они включают в себя фермент, используемый для синтеза ДНК, концентрацию двухвалентных ионов и дНТФ в реакции, и температуру плавления (Tm) праймеров.

  • Этап инициализации: Этот этап состоит из нагрева реакции до температуры 94-96 ° C (или 98 ° C, если используются высоко термостабильные полимеразы), который проводится на 1-9 минут. Этап требуется только для ДНК-полимераз, которым необходима активация теплом, так называемым горячим стартом ПЦР.
  • Этап денатурации: Является первым регулярным событием термоциклирования и состоит из нагревания реакции до 94-98°C в течение 20-30 секунд. Это вызывает расщепление ДНК-матрицы с разрушением водородных связей между комплементарными основаниями и образованием одноцепочечных молекул ДНК.
  • Этап отжига: Температура реакции снижается до 50-65°С в течение 20-40 секунд, что позволяет праймерам связаться с одноцепочечной матрицей ДНК. Обычно температура отжига составляет около 3-5 градусов по Цельсию ниже Tm используемых праймеров. Стабильные водородные связи ДНК-ДНК формируются только, когда последовательность праймера точнее соответствует матрице последовательности. Полимераза связывается с гибридом «праймер-матрица» и начинает синтез ДНК.
  • Этап расширения / элонгации: Температура на этом этапе зависит от используемой ДНК-полимеразы; Taq-полимераза имеет свою оптимальную температуру активности при 75-80°C; обычно используется температура 72°C для этого фермента. На этом этапе ДНК-полимераза синтезирует новую цепь ДНК, комплементарную цепи ДНК-матрицы, добавляя дНТФ, которые являются комплементарными матрице в направлении 5 "к 3", связывая 5"-фосфатную группу дНТФ с 3"-гидроксильной группой в конце образующейся (расширяющейся) ДНК. Время расширения зависит как от используемой ДНК-полимеразы, так и длины фрагмента ДНК, который необходимо амплифицировать. Как правило, при своей оптимальной температуре, ДНК-полимераза полимеризует тысячу оснований в минуту. При оптимальных условиях, т.е. при отсутствии ограничений вследствие ограничивающих субстратов или реактивов, на каждом этапе расширения, количество ДНК-мишени удваивается, что приводит к экспоненциальной (в геометрической прогрессии) амплификации фрагмента ДНК.
  • Финальное удлинение: Это единственный этап, выполняющийся иногда при температуре 70-74°С в течение 5-15 минут после последнего цикла ПЦР для того, чтобы убедиться, что любые оставшиеся одноцепочечные ДНК удлинились полностью.
  • Финальное ожидание: Этот этап при температуре 4-15 ° C в течение неопределенного времени может быть использован для кратковременного сохранения реакции. Чтобы проверить, синтезировала ли ПЦР ожидаемый фрагмент ДНК (также иногда называют «амплимер» или «ампликон»), применяется электрофорез в агарозном геле для разделения продуктов ПЦР по размеру. Размер ПЦР-продуктов определяется путем сравнения с лестницей ДНК (маркером молекулярного веса), которая содержит фрагменты ДНК известного размера, выполняется на геле наряду с ПЦР-продуктами.

Стадии полимеразной цепной реакции

Процесс ПЦР можно разделить на три этапа:

  1. Экспоненциальная амплификация : В течение каждого цикла, количество продукта удваивается (при условии 100% эффективности реакции). Реакция очень чувствительна: необходимо присутствие только незначительного количества ДНК.
  2. Стадия выравнивания : реакция замедляется, так как ДНК-полимераза теряет активность и потребление реактивов, таких как дНТФ и праймеры, заставляет их стать ограничивающими.
  3. Плато : Продукт больше не накапливается из-за истощения реактивов и ферментов.

Оптимизация ПЦР

На практике, ПЦР может пройти не успешно по различным причинам, в частности из-за ее чувствительности к загрязнению, что вызывает амплификацию побочных продуктов ДНК. В связи с этим, был разработан ряд методик и процедур для оптимизации условий ПЦР. Загрязнением посторонней ДНК занимаются лабораторные протоколы и процедуры, которые очищают предварительно ПЦР-смеси от потенциальных ДНК-загрязнителей. Это обычно включает пространственное разделение ПЦР-комплектов от областей для анализа или очистки продуктов ПЦР, использование одноразовой пластиковой посуды и тщательную очистку рабочей поверхности между этапами проведения реакции. Методы конструирования праймеров играют важную роль в улучшении выделения продуктов ПЦР и в избегании образования побочных продуктов, а также использование альтернативных компонентов буфера или полимеразных ферментов может помочь в амплификации длинных или иначе проблемных участков ДНК. Добавление реактивов, таких как формамид, в буферные системы может увеличить специфичность и выделение ПЦР. Симуляция на компьютере теоретических результатов ПЦР (электронная ПЦР) может быть выполнена для оказания помощи в конструировании праймеров.

Применение ПЦР

Селективное выделение ДНК

ПЦР позволяет выделять фрагменты ДНК из геномной ДНК с помощью селективной амплификации конкретного участка ДНК. Это применение ПЦР дополняет многие методы, такие как создание зондов гибридизации для методов «саузерн» или «норзерн-блоттинга» и клонирования ДНК, которые требуют больших количеств ДНК, представляющих собой специфический участок ДНК. ПЦР снабжает эти методы высоким содержанием чистой ДНК, что позволяет выполнить анализ образцов ДНК, даже с небольшим количеством исходного материала.

Другие применения ПЦР включают секвенирование ДНК с целью определения неизвестных ПЦР-амплифицированных последовательностей, в которой один из апмлификационных праймеров может быть использован в секвенировании по Сэнгеру, выделении последовательности ДНК для ускорения технологий рекомбинантной ДНК, включающих вставку последовательности ДНК в плазмиду или генетический материал другого организма. Можно быстро провести скрининг колоний бактерий (кишечной палочки) посредством ПЦР для коррекции конструкции векторной ДНК. ПЦР также можно применять для генетической дактилоскопии; методика, используемая в судебной медицине для идентификации личности или организма путем сравнения экспериментальных ДНК с помощью различных ПЦР - методов.

Некоторые методы ПЦР «отпечатков пальцев» имеют высокую дискриминационную силу и могут использоваться для определения генетических связей между людьми, такими как родитель -ребенок или между братьями и сестрами, и используются в выявлении отцовства. Эта методика также может применяться для определения эволюционных взаимоотношений между организмами.

Амплификация и количественная оценка ДНК

Так как ПЦР увеличивает число копий участков ДНК, которые являются мишенями, ПЦР может применяться для анализа очень малых количеств образца. Зачастую это имеет решающее значение для судебно-медицинской экспертизы, когда доступны только следовые количества ДНК в качестве доказательств. ПЦР также может применяться при анализе древних ДНК, которым десятки тысяч лет. Эти ПЦР-методы были успешно использованы на животных, таких как сорокатысячелетний мамонт, а также на ДНК человека, в приложениях, начиная от анализа египетских мумий до идентификации русского царя.

Количественные методы ПЦР позволяют оценить количество заданной последовательности, присутствующей в образце - метод часто применяется для количественного определения уровня экспрессии гена. ПЦР в реальном времени является признанным инструментом для количественного анализа ДНК, который измеряет накопление ДНК продукта после каждого цикла ПЦР-амплификации.

ПЦР в диагностике заболеваний

ПЦР позволяет провести раннюю диагностику злокачественных заболеваний, таких как лейкемия и лимфома, которая в настоящее время является высоко развитой в исследованиях рака и уже используется в плановом порядке. ПЦР может проводиться непосредственно на геномных образцах ДНК для выявления транслокационно-специфичных злокачественных клеток с чувствительностью, которая, по крайней мере, в 10 000 раз выше, чем у других методов.

ПЦР позволяет также выявлять некультивируемые или медленно растущие микроорганизмы, таких как микобактерии, анаэробные бактерии, и вирусы из культуры ткани и моделей животных. Основанием для ПЦР диагностических приложений в области микробиологии является выявление инфекционных агентов и дифференцировка непатогенных штаммов от патогенных в силу специфических генов.

Вирусная ДНК может также выявляться с помощью ПЦР. Праймеры должны быть специфичными к целевым последовательностям ДНК вируса, и ПЦР может применяться для диагностических анализов ДНК или секвенирования генома вируса. Высокая чувствительность ПЦР позволяет обнаружить вирусы вскоре после инфицирования и даже до начала заболевания. Такое раннее выявление вируса может дать врачам значительные возможности в лечении. Количество вируса («вирусная нагрузка») у пациента также может быть определено количественными методом анализа ДНК на основе ПЦР.

Вариации основных методов полимеразной цепной реакции

  • Аллель-специфичная ПЦР : метод диагностики или клонирования, основанный на однонуклеотидных полиморфизмах (SNP) (отличиях одного основания в ДНК). Требует предварительных знаний о последовательности ДНК, включая различия между аллелями, и использует праймеры, чьи 3"-концы охватывают SNP. ПЦР-амплификация в жестких условиях гораздо менее эффективна в присутствии несоответствия между матрицей и праймером, поэтому успешная амплификация с SNP-специфическим праймером сигнализирует о наличии специфических SNP в последовательности.
  • ПЦР-сборка или сборка циклирования полимеразы (СЦП): искусственный синтез длинных последовательностей ДНК путем проведения ПЦР на резерве длинных олигонуклеотидов с короткими перекрывающимися сегментами. Олигонуклеотиды чередуются между направлениями смысловой и антисмысловой цепей, и перекрывающиеся сегменты определяют порядок ПЦР-фрагментов, тем самым селективно вырабатывая окончательный длинный продукт ДНК.
  • Асимметричная ПЦР : преимущественно амплифицирует одну цепь ДНК в матрице двухцепочечной ДНК. Используется в секвенировании и гибридизационного зондирования, где требуется амплификация только одной из двух комплементарных цепей. ПЦР проводится как обычно, но с большим избытком праймеров для цепи, предназначенной для амплификации. Из-за медленной (в арифметической прогрессии) амплификации в конце реакции после использования ограничивающего праймера, требуются дополнительные циклы ПЦР. Последняя модификация этого процесса, известная как «LATE-PCR» (линейность после экспоненциальной фазы - ПЦР) использует ограничивающий праймер с более высокой температурой плавления (Tm), чем избыток праймера для поддержания эффективности реакции, так как концентрация ограничивающего праймера снижается в середине реакции.
  • Dial-out ПЦР : высоко параллельный метод с целью получения точных молекул ДНК для синтеза генов. Комплексный резерв молекул ДНК модифицируется уникальными фланговыми метками до массивного параллельного секвенирования. Tag-направленные праймеры затем обеспечивают получение молекул с заданной последовательностью с помощью ПЦР.
  • Геликаза-зависимая амплификация: аналогична традиционной ПЦР, но требует постоянную температуру, чем циклирование через циклы денатурации и отжига / расширения. Геликаза ДНК, фермент, который раскручивает ДНК, используется вместо тепловой денатурации.
  • Горячий старт ПЦР : методика, которая снижает неспецифическую амплификацию во время начальной настройки этапов ПЦР. Может выполняться вручную путем нагревания компонентов реакции до температуры денатурации (например, 95 ° C) перед добавлением полимеразы. Были разработаны системы специализированных ферментов, которые ингибируют активность полимеразы при комнатной температуре, либо путем связывания антител, либо в присутствии ковалентно связанных ингибиторов, которые диссоциируются только после высокотемпературной стадии активации. «Горячий старт/холодный финиш» ПЦР достигается с помощью новых гибридных полимераз, которые являются неактивными при температуре окружающей среды и мгновенно активируются при температуре элонгации.
  • ПЦР, специфичная к межмикросателлитным последовательностям (ISSR): ПЦР-метод ДНК-дактилоскопии, который увеличивает число копий участков между простыми повторяющимися последовательностями для получения уникального отпечатка из амплифицированной длины фрагмента.
  • Инвертированная ПЦР широко используется для определения участков последовательности вокруг геномных вставок. Она включает ряд расщеплений ДНК и самостоятельного лигирования, в результате чего образуются известные последовательности на любом конце неизвестной последовательности.
  • ПЦР, опосредованная лигированием: Использует небольшие линкеры ДНК, соединенные с интересующей ДНК и несколькими праймерами, связанные с линкерами ДНК; используется для секвенирования ДНК, метода прогулки по геному, и футпринтинга ДНК.
  • Метилирование-специфическая ПЦР (MSP): разработана Стивеном Бэйлином и Джимом Германом в Школе Медицины Джона Хопкинса, используется для обнаружения метилирования островков CpG в геномной ДНК. ДНК сначала обрабатывается бисульфитом натрия, который преобразует неметилированные основания цитозина в урацил, распознающийся ПЦР-праймерами как тимин. Затем проводятся две ПЦР на модифицированной ДНК с использованием наборов идентичных праймеров, за исключением в любом островке CpG в пределах последовательности праймеров. В этих точках, один набор праймеров распознает ДНК с цитозинами для увеличения числа копий метилированной ДНК, и один набор распознает ДНК с урацилом или тимином для амплификации неметилированной ДНК. MSP с использованием qPCR также может выполняться с целью получения количественной, нежели качественной информации о метилировании.
  • Минипраймер - ПЦР: используются термостабильные полимеразы (S-Tbr), которые могут расширять от коротких праймеров («smalligos»), с числом от 9 или 10 нуклеотидов. Этот метод позволяет ПЦР нацеливаться на регионы, связанные с меньшими праймерами, и используется для амплификации консервативных последовательностей ДНК, таких как ген рРНК 16S (или эукариотическая 18S).
  • Амплификация зонда, зависящего от мультиплексного лигирования (MLPA ): позволяет амплифицировать множество мишеней только с одной парой праймеров, таким образом, избегая ограничений разрешения мультиплексной ПЦР.
  • Мультиплексная ПЦР состоит из нескольких наборов праймеров в одной смеси ПЦР с целью получения ампликонов разных размеров, которые специфичны к различным последовательностям ДНК. По ориентации на несколько генов одновременно, возможно получить дополнительную информацию при проведении одного теста, что в противном случае потребовало бы больше в несколько раз реагентов и больше времени для выполнения. Температуры отжига для каждого набора праймеров должны быть оптимизированы, чтобы работать правильно в пределах одной реакции, и с размерами ампликона. То есть, длина их пары оснований должна быть достаточно разной с целью образования отдельных полос при визуализации путем электрофореза в геле.
  • Вложенная ПЦР : увеличивает специфичность амплификации ДНК, за счет уменьшения фона в связи с неспецифической амплификацией ДНК. Используются два набора праймеров в двух последовательных ПЦР. В первой реакции одна пара праймеров используется для синтеза ДНК-продуктов, которые помимо намеченной цели, могут по-прежнему состоять из неспецифически амплифицированных фрагментов ДНК. Продукты используются затем во второй ПЦР с набором праймеров, чьи сайты связывания полностью или частично отличаются от 3"-концов каждого из праймеров, использованных в первой реакции. Вложенная ПЦР часто наиболее успешна в специфической амплификации длинных фрагментов ДНК, чем традиционная ПЦР, но она требует более подробных знаний о последовательностях-мишенях.
  • ПЦР с перекрывающимися расширениями или сращивание перекрывающимися расширениями (SOE): методика генной инженерии, которая применяется для соединения двух или более фрагментов ДНК, которые содержат комплементарные последовательности. Используется для соединения частей ДНК, содержащие гены, регулирующие последовательности, или мутации; техника позволяет создавать специфические и длинные конструкции ДНК.
  • Количественная ПЦР (КПЦР): используется для измерения количества продукта ПЦР (обычно в режиме реального времени). Количественно измеряет начальные количества ДНК, кДНК или РНК. КПЦР широко применяется для определения наличия последовательности ДНК в образце, и числа ее копий в пробе. Количественная ПЦР в реальном времени имеет очень высокую степень точности. Методы QRT-PCR (или QF-PCR) используют флуоресцентные красители, такие как «Sybr Green», «EvaGreen» или флюорофор-содержащие ДНК-зонды, такие как «TaqMan», чтобы измерить количество амплифицированного продукта в реальном времени. Иногда упоминается под сокращением RT-PCR (ПЦР в реальном времени) или RQ-PCR. QRT-PCR или RTQ-PCR являются более подходящими сокращениями, так как RT-PCR обычно относится к ПЦР с обратной транскрипцией, часто используемой в сочетании с КПЦР.
  • ПЦР с обратной транскрипцией (RT-PCR): для увеличения числа копий ДНК из РНК. Обратная транскриптаза транскрибирует РНК в кДНК, которая затем амплифицируется с помощью ПЦР. RT-PCR широко используется в профилировании экспрессии для выявления экспрессии гена или для определения последовательности РНК-транскрипта, включая сайты старта транскрипции и прекращения. Если известна геномная последовательность ДНК гена, RT-PCR может использоваться для отображения расположения экзонов и интронов в гене. 5"-конец гена (соответствующий сайту старта транскрипции), как правило, определяется RACE-PCR (быстрой амплификацией концов кДНК).
  • ПЦР твердой фазы : охватывает несколько значений, в том числе «Амплификация Полонии» (где ПЦР колонии производятся на матрице геля, например), «Bridge ПЦР» (праймеры ковалентно связаны с твердой опорной поверхностью), традиционная ПЦР твердой фазы (где применяется «асимметричная ПЦР» в присутствии праймеров, несущих твердую опору с последовательностью, соответствующей одному из водных праймеров), и ПЦР усиленной твердой фазы (где традиционная ПЦР твердой фазы может быть улучшена за счет применения высоких Tm и вложенных праймеров с твердой опорой с вариантом приложения термического «этапа», чтобы способствовать образованию праймеров с твердой опорой).
  • Термическая асимметричная чередующаяся ПЦР (TAIL-PCR): применяется с целью выделения неизвестной последовательности, следующей за известной последовательностью. В известной последовательности, TAIL-PCR использует вложенную пару праймеров с различными температурами отжига; дегенерат праймера используется для амплификации в другом направлении от неизвестной последовательности.
  • Touchdown PCR (ступенчатая ПЦР): вариант ПЦР, направленный на уменьшение неспецифического фона путем постепенного снижения температуры отжига по мере прогрессирования циклов ПЦР. Температура отжига на начальных циклах, как правило, на несколько градусов (3-5 ° C) выше Tm используемых праймеров, в то время как на более поздних циклах, температура на несколько градусов (3-5 ° C) ниже Tm праймеров. Более высокие температуры дают большую специфичность для связывания праймера, и более низкие температуры способствуют более эффективной амплификации из специфических продуктов, образующихся во время начальных циклов.
  • PAN-AC : использует изотермические условия для амплификации и может применяться на живых клетках.
  • Универсальная быстрая прогулка по геному : для прогулки по геному и генетической дактилоскопии с использованием более специфических «двусторонних» ПЦР, чем традиционные "односторонние" подходы (с использованием только один ген-специфического праймера и одного общего праймера - что может привести к артефактному «шуму») в силу механизма, включающего образование структуры лассо. Упрощенными производными UFW являются «Lane RAGE» (лассо-зависимая вложенная ПЦР для быстрой амплификации концов геномной ДНК), «5"RACE Lane» и «3"RACE Lane».
  • In silico PCR (цифровая ПЦР, виртуальная ПЦР, электронная ПЦР, е-ПЦР) относится к вычислительным средствам, применяющимся для вычисления результатов теоретической полимеразной цепной реакции с помощью данного набора праймеров (зондов) для амплификации последовательностей ДНК из секвенированного генома или транскриптома.

История ПЦР

В статье в «Journal of Molecular Biology» в 1971 г. Клеппе и его соавторов впервые описан метод с использованием ферментативного анализа с целью репликации короткой матрицы ДНК с праймерами в условиях пробирки. Тем не менее, это раннее проявление основного принципа ПЦР не получило много внимания, и изобретение полимеразной цепной реакции в 1983 году, как правило, приписывается Кэри Муллису.

Когда Муллис разработал ПЦР в 1983 году, он работал в Эмеривилле, Калифорнии на «Cetus Corporation», одной из первых компаний биотехнологии. Там он отвечал за синтез коротких цепочек ДНК. Муллис писал, что он задумал ПЦР во время езды вдоль шоссе Пасифик Кост однажды ночью в своем автомобиле. Он проигрывал в своем сознании новый способ анализа изменений (мутаций) в ДНК, когда он осознал, что он вместо этого изобрел метод увеличения числа копий любого участка ДНК посредством повторяющихся циклов дупликации, обусловленной ДНК-полимеразой. В «Scientific American», Муллис резюмировал процедуру: «Начиная с одной молекулы генетического материала ДНК, ПЦР может генерировать 100 млрд. подобных молекул за один день. Эту реакцию легко выполнить. Она требует не больше, чем пробирку, несколько простых реагентов и источник тепла». Он был награжден Нобелевской премией по химии в 1993 году за свое изобретение, семь лет спустя как он и его коллеги в «Cetus» впервые осуществили его предложение на практике. Тем не менее, остались некоторые противоречия об интеллектуальном и практическом вкладе других ученых в работе Муллиса, и был ли он единственным изобретателем принципа ПЦР.

В основе метода ПЦР лежит использование подходящей ДНК-полимеразы, способной выдерживать высокие температуры> 90°C (194°F), необходимых для расщепления двух цепей ДНК в двойной спирали ДНК после каждого цикла репликации. ДНК-полимеразы, первоначально использовавшиеся для экспериментов в пробирке, предвещая ПЦР, были не в состоянии выдержать такие высокие температуры. Поэтому, ранние процедуры репликации ДНК были очень неэффективны и занимали много времени, а также требовали большого количества ДНК-полимеразы и непрерывной обработки в течение всего процесса.

Открытие в 1976 г. Taq-полимеразы - полимеразы ДНК, выделенной из термофильной бактерии, Thermus aquaticus , которая, естественно, живет в горячих (от 50 до 80°C (122 до 176°F)) средах, таких как горячие источники - проложило путь к кардинальному улучшению метода ПЦР. ДНК-полимераза, выделенная из Т. Aquaticus , стабильна при высоких температурах и остается активной даже после денатурации ДНК, тем самым устраняя необходимость добавления новых ДНК-полимераз после каждого цикла. Это позволило автоматизировать процесс амплификации ДНК на основе амплификатора-термоциклера.

Патентные войны

Предложенный метод ПЦР был запатентован Кэри Муллисом и приписан «Cetus Corporation», где работал Муллис, когда он изобрел методику в 1983 году. Фермент Taq-полимераза был также защищен патентами. Было подано несколько громких исков, связанных с методикой, в том числе безуспешный иск, поданный «DuPont». Фармацевтическая компания «Hoffmann-La Roche» приобрела права на патенты в 1992 году и в настоящее время держит те, которые по-прежнему защищены.

Подобное патентное сражение за фермент Taq-полимеразу все еще продолжается в некоторых юрисдикциях по всему миру между «Roche» и «Promega». Правовые аргументы вышли за рамки сроков действия исходных патентов на ПЦР и Taq-полимеразу, срок действия которых истек 28 марта 2005 года.

Который позволяет обнаружить в биологическом материале малые количества точнее, определенных ее фрагментов, и размножить их во много раз. Затем их идентифицируют визуально путем электрофореза в геле. Реакция была разработана в 1983 г. К. Муллисом и включена в список выдающихся открытий последних лет.

Каковы механизмы ПЦР

Вся методика базируется на способности нуклеиновых кислот к самостоятельной репликации, что в данном случае проводится искусственно в условиях лаборатории. Воспроизведение ДНК может начаться не в любой области молекулы, а только в участках с определенной последовательностью нуклеотидов — стартовых фрагментах. Для того чтобы полимеразная цепная реакция началась, нужны праймеры (или ДНК-зонды). Это короткие фрагменты цепочки ДНК с заданной нуклеотидной последовательностью. Они комплементарные (то есть соответствующие) стартовым участкам

Разумеется, чтобы создать праймеры, ученые должны изучить последовательность нуклеотидов той которая участвует в методике. Именно эти ДНК-зонды обеспечивают специфичность реакции и ее инициацию. не пойдет, если в образце не найдется хотя бы одна молекула искомой ДНК. В целом, для проведения реакции необходимы вышеуказанные праймеры, набор нуклеотидов, термоустойчивая ДНК-полимераза. Последняя является ферментом — катализатором реакции синтеза новых молекул нуклеиновой кислоты на основе образца. Все эти вещества, включая биологический материал, в котором необходимо выявить ДНК, объединяются в реакционную смесь (раствор). Она помещается в специальный термостат, выполняющий ее очень быстрое нагревание и охлаждение за заданное время — цикл. Обычно их 30-50.

Как проходит эта реакция

Сущность ее в том, что во время одного цикла праймеры присоединяются к нужным участкам ДНК, после чего идет ее удвоение под действием фермента. На основе получившихся нитей ДНК в последующих циклах синтезируются новые и новые идентичные фрагменты молекулы.

Полимеразно-цепная реакция идет последовательно, выделяют следующие ее стадии. Первая характеризуется удваиванием количества продукта в течение каждого цикла нагревания и охлаждения. На второй стадии происходит замедление реакции, поскольку фермент повреждается, а также теряет активность. Помимо этого, истощаются запасы нуклеотидов и праймеров. На последней стадии — плато — продукты более не накапливаются, поскольку реактивы закончились.

Где ее применяют

Несомненно, широчайшее применение полимеразная цепная реакция находит в медицине и науке. Ее используют в общей и частной биологии, ветеринарной медицине, фармации и даже экологии. Притом в последней это делают для отслеживания качества продуктов питания и объектов внешней среды. Активно применяется полимеразная цепная реакция в криминалистической практике для подтверждения отцовства и идентификации личности человека. В судебно-медицинской экспертизе, так же, как и в палеонтологии, часто эта методика является единственным выходом, так как обычно для исследования доступно крайне малое количество ДНК. Безусловно, очень широкое применение метод нашел в практической медицине. Он необходим в таких ее областях, как генетика, инфекционные и онкологические заболевания.

Полимеразная цепная реакция (ПЦР) - экспериментальный метод молекулярной биологии, который представляет собой специфическую амплификацию нуклеиновых кислот, индуцируемую синтетическими олигонуклеотидными праймерами in vitro.

Идея разработки метода ПЦР принадлежит американскому исследователю Kary Mullis, который в 1983 г. создал метод, позволивший амплифицировать ДНК в ходе циклических удвоений с помощью фермента ДНК-полимеразы в искусственных условиях. Через несколько лет после опубликования этой идеи, в 1993 г., К. Mullis получил за нее Нобелевскую премию.

В начале использования метода после каждого цикла нагревания- охлаждения приходилось добавлять в реакционную смесь ДНК-полимеразу, так как она быстро инактивировалась при высокой температуре. Процедура была очень неэффективной, требовала много времени и фермента. В 1986 г. ее существенно модифицировали за счет использования ДНК-полимеразы из термофильных бактерий. Эти ферменты способны выдерживать множество циклов реакции, что позволяет автоматизировать проведение ПЦР. Одна из наиболее часто использовавшихся термостабильных ДНК-полимераз была выделена из бактерий Thermus aquaticus и названа Taq -ДНК-полимеразой.

Суть метода. Метод основан на многократном избирательном копировании определенного участка ДНК при помощи фермента Taq- ДНК-полимеразы. Полимеразная цепная реакция позволяет получить амплификаты длиной до нескольких тысяч пар нуклеотидов. Для увеличения длины ПЦР-продукта до 20-40 тыс. пар нуклеотидов применяют смесь различных полимераз, но все равно это значительно меньше длины хромосомной ДНК эукаротической клетки.

Реакция проводится в программируемом термостате (амплификаторе) - приборе, который может проводить достаточно быстро

охлаждение и нагревание пробирок (обычно с точностью не менее 0,1 °С). Амплификаторы позволяют задавать сложные программы, в том числе с возможностью «горячего старта» и последующего хранения. Для ПЦР в режиме реального времени выпускают приборы, оборудованные флуоресцентным детектором. Существуют также приборы с автоматической крышкой и отделением для микропланшет, что позволяет встраивать их в автоматизированные системы.

Обычно при проведении ПЦР выполняется 20-45 циклов, каждый из которых состоит из трех стадий: денатурации, отжига праймеров, элонгации (рис. 6.1 и 6.2). На рис. 6.1 представлена динамика изменения температуры в пробирке при проведении цикла ПЦР.

Рис. 6.1. График изменения температуры в пробирке в течение одного цикла полимеразной цепной реакции

Денатурация ДНК-матрицы проводится с помощью нагревания реакционной смеси до 94-96 °С на 5-90 с, чтобы цепи ДНК разошлись. Следует отметить, что перед первым циклом осуществляют предварительный прогрев реакционной смеси в течение 2-5 мин для полной денатурации исходной матрицы, что позволяет снизить количество неспецифичных продуктов реакции.


Рис. 6.2. Схема первого цикла полимеразной цепной реакции

Стадия отжига праймеров. При плавном снижении температуры праймеры комплементарно связываются с матрицей. Температура отжига зависит от состава праймеров и обычно она на 4-5° ниже расчетной температуры плавления. Длительность стадии - 5-60 с.

Во время следующей стадии - элонгации - происходит синтез дочерней цепи ДНК на матрице материнской. Температура элонгации зависит от полимеразы. Часто используемые ДНК-полимеразы Taq и Pfu наиболее активны при 72 °С. Время элонгации, в основном зависящее от длины ПЦР-продукта, обычно составляет 1 мин на каждую тысячу пар оснований.

1. Полимеразная цепная реакция (ПЦР)

2. Принцип метода полимеразной цепной реакции

2.1 Наличие в реакционной смеси ряда компонентов

2.2 Циклический температурный режим

2.3 Основные принципы подбора праймеров

2.4 Эффект "плато"

3. Cтадии постановки ПЦР

3.2 Амплификация

3.4.1 Положительные контроли

3.4.2 Внутренние контроли

4.1 Качественный анализ

4.1.2 Детекция молекул РНК

3.1 Подготовка пробы биологического материала

Для выделения ДНК используют различные методики в зависимости от поставленных задач. Их суть заключается в экстракции (извлечении) ДНК из биопрепарата и удалении или нейтрализации посторонних примесей для получения препарата ДНК с чистотой, пригодной для постановки ПЦР.

Стандартной и ставшей уже классической считается методика получения чистого препарата ДНК, описанная Мармуром. Она включает в себя ферментативный протеолиз с последующей депротеинизацией и переосаждением ДНК спиртом. Этот метод позволяет получить чистый препарат ДНК. Однако он довольно трудоемок и предполагает работу с такими агрессивными и имеющими резкий запах веществами, как фенол и хлороформ.

Одним из популярных в настоящее время является метод выделения ДНК, предложенный Boom с соавторами. Этот метод основан на использовании для лизиса клеток сильного хаотропного агента - гуанидина тиоционата (GuSCN), и последующей сорбции ДНК на носителе (стеклянные бусы, диатомовая земля, стеклянное "молоко" и. т.д.). После отмывок в пробе остается ДНК, сорбированная на носителе, с которого она легко снимается с помощью элюирующего буфера. Метод удобен, технологичен и пригоден для подготовки образца к амплификации. Однако возможны потери ДНК вследствие необратимой сорбции на носителе, а также в процессе многочисленных отмывок. Особенно большое значение это имеет при работе с небольшими количествами ДНК в образце. Кроме того, даже следовые количества GuSCN могут ингибировать ПЦР. Поэтому при использовании этого метода очень важен правильный выбор сорбента и тщательное соблюдение технологических нюансов.

Другая группа методов пробоподготовки основана на использовании ионообменников типа Chilex, которые, в отличие от стекла, сорбируют не ДНК, а наоборот, примеси, мешающие реакции. Как правило, эта технология включает две стадии: кипячение образца и сорбция примесей на ионообменнике. Метод чрезвычайно привлекателен простотой исполнения. В большинстве случаев он пригоден для работы с клиническим материалом. К сожалению, иногда встречаются образцы с такими примесями, которые невозможно удалить с помощью ионообменников. Кроме того, некоторые микроорганизмы не поддаются разрушению простым кипячением. В этих случаях необходимо введение дополнительных стадий обработки образца.

Таким образом, к выбору метода пробоподготовки следует относиться с пониманием целей проведения предполагаемых анализов.

3.2 Амплификация

Для проведения реакции амплификации необходимо приготовить реакционную смесь и внести в нее анализируемый образец ДНК. При этом важно учитывать некоторые особенности отжига праймеров. Дело в том, что, как правило, в анализируемом биологическом образце присутствуют разнообразные молекулы ДНК, к которым используемые в реакции праймеры имеют частичную, а в некоторых случаях значительную, гомологию. Кроме того, праймеры могут отжигаться друг с другом, образуя праймер-димеры. И то, и другое приводит к значительному расходу праймеров на синтез побочных (неспецифических) продуктов реакции и, как следствие, значительно уменьшает чувствительность системы. Это затрудняет или делает невозможным чтение результатов реакции при проведении электрофореза.

3.3 Оценка результатов реакции

Для правильной оценки результатов ПЦР важно понимать, что данный метод не является количественным. Теоретически продукты амплификации единичных молекул ДНК-мишени могут быть обнаружены с помощью электрофореза уже после 30-35 циклов. Однако на практике это выполняется лишь в случаях, когда реакция проходит в условиях, близких к идеальным, что в жизни встречается не часто. Особенно большое влияние на эффективность амплификации оказывает степень чистоты препарата ДНК, т.е. наличие в реакционной смеси тех или иных ингибиторов, от которых избавиться в некоторых случаях бывает крайне сложно. Иногда, из-за их присутствия не удается амплифицировать даже десятки тысяч молекул ДНК-мишени. Таким образом, прямая связь между исходным количеством ДНК-мишени и конечным количеством продуктов амплификации часто отсутствует.

3.3.1 Метод горизонтального электрофореза

Для визуализации результатов амплификации используют различные методы. Наиболее распространенным на сегодняшний день является метод электрофореза, основанный на разделении молекул ДНК по размеру. Для этого готовят пластину агарозного геля, представляющего собой застывшую после расплавления в электрофорезном буфере агарозу в концентрации 1,5-2,5% с добавлением специального красителя ДНК, например, бромистого этидия. Застывшая агароза образует пространственную решетку. При заливке с помощью гребенок в геле формируют специальные лунки, в которые в дальнейшем вносят продукты амплификации. Пластину геля помещают в аппарат для горизонтального гель-электрофореза и подключают источник постоянного напряжения. Отрицательно заряженная ДНК начинает двигаться в геле от минуса к плюсу. При этом более короткие молекулы ДНК движутся быстрее, чем длинные. На скорость движения ДНК в геле влияет концентрация агарозы, напряженность электрического поля, температура, состав электрофорезного буфера и, в меньшей степени, ГЦ-состав ДНК. Все молекулы одного размера движутся с одинаковой скоростью. Краситель встраивается (интеркалирует) плоскостными группами в молекулы ДНК. После окончания электрофореза, продолжающегося от 10 мин до 1 часа, гель помещают на фильтр трансиллюминатора, излучающего свет в ультрафиолетовом диапазоне (254 - 310 нм). Энергия ультрафиолета, поглощаемая ДНК в области 260 нм, передается на краситель, заставляя его флуоресцировать в оранжево-красной области видимого спектра (590 нм).

Яркость полос продуктов амплификации может быть различной. Однако это нельзя связывать с начальным количеством ДНК-мишени в образце.

3.3.2 Метод вертикального электрофореза

Метод вертикального электрофореза принципиально схож с горизонтальным электрофорезом. Их отличие заключается в том, что в данном случае вместо агарозы используют полиакриламидные гели. Его проводят в специальной камере для вертикального электрофореза. Электрофорез в полиакриламидном геле имеет большую разрешающую способность по сравнению с агарозным электрофорезом и позволяет различать молекулы ДНК разных размеров с точностью до одного нуклеотида. Приготовление полиакриламидного геля несколько сложнее агарозного. Кроме того акриламид является токсичным веществом. Поскольку необходимость определить размер продукта амплификации с точностью до 1 нуклеотида возникает редко, то в обычной работе используют метод горизонтального электрофореза.

3.4 Контроль за прохождением реакции амплификации

3.4.1 Положительные контроли

В качестве "положительного контроля" используют препарат ДНК искомого микроорганизма. Неспецифические ампликоны отличаются по размеру от ампликонов, образуемых в результате амплификации с контрольным препаратом ДНК. Размер неспецифических продуктов может быть как большего, так и меньшего размера по сравнению с положительным контролем. В худшем случае эти размеры могут совпадать и читаются в электрофорезе как положительные.

Для контроля специфичности образуемого продукта амплификации можно использовать гибридизационные зонды (участки ДНК, расположенные внутри амплифицируемой последовательности), меченные ферментными метками или радиоактивными изотопами и взаимодействующими с ДНК в соответствии с теми же принципами, что и праймеры. Это значительно усложняет и удлиняет анализ, а его стоимость существенно увеличивается.

3.4.2 Внутренние контроли

Необходимо контролировать ход амплификации в каждой пробирке с реакционной смесью. Для этой цели используют дополнительный, так называемый "внутренний контроль". Он представляет собой любой препарат ДНК, несхожий с ДНК искомого микроорганизма. Если внутренний контроль внести в реакционную смесь, то он станет такой же мишенью для отжига праймеров, как и хромосомальная ДНК искомого возбудителя инфекции. Размер продукта амплификации внутреннего контроля подбирают таким образом, чтобы он был в 2 и более раз больше, чем ампликоны, образуемые от амплификации искомой ДНК микроорганизма. В результате, если внести ДНК внутреннего контроля в реакционную смесь вместе с испытуемым образцом, то независимо от наличия микроорганизма в биологическом образце, внутренний контроль станет причиной образования специфических ампликонов, но значительно более длинных (тяжелых), чем ампликон микроорганизма. Наличие тяжелых ампликонов в реакционной смеси будет свидетельством нормального прохождения реакции амплификации и отсутствия ингибиторов. Если ампликоны нужного размера не образовались, но не образовались также и ампликоны внутреннего контроля, можно сделать вывод о наличии в анализируемом образце нежелательных примесей, от которых следует избавиться, но не об отсутствии искомой ДНК.

К сожалению, несмотря на всю привлекательность такого подхода, у него есть существенный изъян. Если в реакционной смеси находится нужная ДНК, то эффективность ее амплификации резко снижается из-за конкуренции с внутренним контролем за праймеры. Это особенно принципиально важно при низких концентрациях ДНК в испытуемом образце, что может приводить к ложноотрицательным результатам.

Тем не менее, при условии решения проблемы конкуренции за праймеры, этот способ контроля эффективности амплификации безусловно будет весьма полезен.

4. Методы, основанные на полимеразной цепной реакции

4.1 Качественный анализ

Классический способ постановки ПЦР, принципы которого были изложены выше, нашел свое развитие в некоторых модификациях, направленных на преодоление ограничений ПЦР и повышение эффективности прохождения реакции.

4.1.1 Способ постановки ПЦР с использованием “горячего старта"

Чтобы уменьшить риск образования неспецифических продуктов реакции амплификации, используют подход, получивший название “горячий старт" (“Hot-start”). Суть его состоит в предотвращении возможности начала реакции до момента достижения в пробирке условий, обеспечивающих специфический отжиг праймеров.

Дело в том, что в зависимости от ГЦ-состава и размера, праймеры имеют определенную температуру плавления (Tm). Если температура системы превышает Тm, праймер не в состоянии удерживаться на цепи ДНК и денатурирует. При соблюдении оптимальных условий, т.е. температуры отжига, близкой к температуре плавления, праймер образует двухцепочечную молекулу только при условии его полной комплементарности и, таким образом, обеспечивает специфичность реакции.

Существуют различные варианты реализации "горячего старта":

Внесение в реакционную смесь Taq-полимеразы во время первого цикла после прогрева пробирки до температуры денатурации.

Разделение ингредиентов реакционной смеси парафиновой прослойкой на слои (в нижней части - праймеры, в верхней - Taq-полимераза и ДНК-мишени), которые смешиваются при расплавлении парафина (~65-75 0 С).

Использование моноклональных антител к Taq-полимеразе. Фермент, связанный моноклональными антителами, становится активным лишь после стадии первой денатурации, когда моноклональные антитела необратимо денатурируют и освобождают активные центры Taq-полимеразы.

Во всех перечисленных случаях, даже если неспецифический отжиг произошел до начала температурного циклирования, элонгации не происходит, а при нагревании комплексы праймер-ДНК денатурируют, поэтому неспецифические продукты не образуются. В дальнейшем температура в пробирке не опускается ниже температуры плавления, что обеспечивает образование специфического продукта амплификации.

4.1.2 Детекция молекул РНК

Возможность использования РНК в качестве мишени для ПЦР существенно расширяет спектр применения этого метода. Например, геномы многих вирусов (гепатит С, вирус инфлюэнцы, пикорнавирусы и т.д.) представлены именно РНК. При этом в их жизненных циклах отсутствует промежуточная фаза превращения в ДНК. Для детекции РНК необходимо в первую очередь перевести ее в форму ДНК. Для этого используют обратную транскриптазу, которую выделяют из двух различных вирусов: avian myeloblastosis virus и Moloney murine leukemia virus. Использование этих ферментов связано с некоторыми трудностями. Прежде всего, они термолабильны и поэтому могут быть использованы при температуре не выше 42° С. Так как при такой температуре молекулы РНК легко образуют вторичные структуры, то эффективность реакции заметно снижается и по разным оценкам приблизительно равна 5%. Предпринимаются попытки обойти этот недостаток используя в качестве обратной транскриптазы термостабильную полимеразу, полученную из термофильного микроорганизма Thermus Thermophilus, проявляющего транскриптазную активность в присутствии Mn 2+ . Это единственный известный фермент, способный проявлять как полимеразную так и транскриптазную активность.

Для проведения реакции обратной транскрипции в реакционной смеси также как и в ПЦР должны присутствовать праймеры в качестве затравки и смесь 4-х дНТФ, как строительный материал.

После проведения реакции обратной транскрипции полученные молекулы кДНК могут служить мишенью для проведения ПЦР

5. Организация технологического процесса постановки ПЦР

Потенциально высокая чувствительность полимеразной цепной реакции делает совершенно необходимым особенно тщательное устройство ПЦР-лаборатории. Это связано с наиболее острой проблемой метода - контаминацией.

Контаминация - попадание из внешней среды в реакционную смесь специфических молекул ДНК, способных служить мишенями в реакции амплификации и давать ложноположительные результаты.

Существует несколько способов борьбы с этим неприятным явлением. Одним из них является использование фермента N-урацил-гликозилазы (УГ). В основе этого метода лежит способность УГ расщеплять молекулы ДНК со встроенным урацилом. Реакцию амплификации проводят с использованием смеси дНТФ, в которой дТТФ заменен на урацил, и после термоциклирования все образующиеся в пробирке ампликоны будут содержать урацил. Если до амплификации в реакционную смесь добавить УГ, то попавшие в реакционную смесь ампликоны будут разрушены, тогда как нативная ДНК останется целой и будет в дальнейшем служить мишенью для амплификации.

Таким образом, этот метод лишь в некоторой степени позволяет устранить источник контаминации и не гарантирует от ложноположительных результатов.

Другой способ борьбы с результатами контаминации, значительное уменьшение количества циклов реакции (до 25-30 циклов). Но даже при таком подходе риск получения ложноположительных результатов велик, т.к и в этом случае при отсутствии ингибиторов легко получить продукт амплификации из-за контаминации.

Таким образом, несмотря на пользу преамплификационных мероприятий, направленных на инактивацию молекул ДНК, служащих причиной возникновения ложноположительных результатов, наиболее радикальным средством является заранее продуманная организация лаборатории.

Заключение

Самое широкое распространение метод ПЦР в настоящее время получил как метод диагностики различных инфекционных заболеваний. ПЦР позволяет выявить этиологию инфекции даже если в пробе, взятой на анализ, содержится всего несколько молекул ДНК возбудителя. ПЦР широко используется в ранней диагностики ВИЧ-инфекций, вирусных гепатитов и т.д. На сегодняшний день почти нет инфекционного агента, которого нельзя было бы выявить с помощью ПЦР.

Последние материалы сайта