Формула молекулярной массы. Молекулярная масса: базовые принципы определения Что такое молекулярный вес в кремле

21.07.2021
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Выраженная в атомных единицах массы . Численно равна молярной массе . Однако следует чётко представлять разницу между молярной массой и молекулярной массой, понимая, что они равны лишь численно и различаются по размерности.

Молекулярные массы сложных молекул можно определить, просто складывая молекулярные массы входящих в них элементов. Например, молекулярная масса воды (H 2 O) есть

M H 2 O = 2 M H + M O ≈ 2·1+16 = 18 а. е. м.

См. также

Wikimedia Foundation . 2010 .

  • Молекулярные моторы
  • Молекулярный генетик

Смотреть что такое "Молекулярный вес" в других словарях:

    МОЛЕКУЛЯРНЫЙ ВЕС - есть относительный вес молекулы вещества. Кроме возможности находиться в трех различных фазах (см. Аггрвгатное состояние) вещества обладают способностью распределяться одно в другом, образуя так наз. растворы. Согласно вант Гоффу (van t Hoff)… … Большая медицинская энциклопедия

    МОЛЕКУЛЯРНЫЙ ВЕС - см. Молекулярная масса … Большой Энциклопедический словарь

    МОЛЕКУЛЯРНЫЙ ВЕС - МОЛЕКУЛЯРНЫЙ ВЕС, термин, который ранее использовался для обозначения ОТНОСИТЕЛЬНОЙ МОЛЕКУЛЯРНОЙ МАССЫ … Научно-технический энциклопедический словарь

    молекулярный вес - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN molecular weightM … Справочник технического переводчика

    Молекулярный вес М в - Молекулярный вес, М. в. * малекулярная вага, М. в. * molecular weight or M. w. сумма атомных весов всех атомов, из которых состоит данная молекула. Часто отождествляется с терминами «молекулярная масса» (см.) и «относительная молекулярная масса»… … Генетика. Энциклопедический словарь

    МОЛЕКУЛЯРНЫЙ ВЕС - устарев шее и неправильное название молекулярной относительной (см.) … Большая политехническая энциклопедия

    молекулярный вес - то же, что молекулярная масса. * * * МОЛЕКУЛЯРНЫЙ ВЕС МОЛЕКУЛЯРНЫЙ ВЕС, см. Молекулярная масса (см. МОЛЕКУЛЯРНАЯ МАССА) … Энциклопедический словарь

Массы атомов и молекул очень малы, поэтому в качестве единицы измерения удобно выбрать массу одного из атомов и выражать массы остальных атомов относительно нее. Именно так и поступал основоположник атомной теории Дальтон, который составил таблицу атомных масс, приняв массу атома водорода за единицу.

До 1961 года в физике за атомную единицу массы (а.е.м. сокращенно) принимали 1/16 массы атома кислорода 16 О, а в химии - 1/16 средней атомной массы природного кислорода, который является смесью трех изотопов. Химическая единица массы была на 0,03% больше, чем физическая.

В настоящее время за в физике и химии принята единая система измерения. В качестве стандартной единицы атомной массы выбрана 1/12 часть массы атома углерода 12 С.

1 а.е.м. = 1/12 m(12 С) = 1,66057×10 -27 кг = 1,66057×10 -24 г.

Относительная атомная и молекулярная масса элемента

ОПРЕДЕЛЕНИЕ

Относительная атомная масса элемента (A r) - это безразмерная величина, равная отношению средней массы атома элемента к 1/12 массы атома 12 С.

При расчете относительной атомной массы учитывается распространенность изотопов элементов в земной коре. Например, хлор имеет два изотопа 35 Сl (75,5%) и 37 Сl (24,5%).Относительная атомная масса хлора равна:

A r (Cl) = (0,755×m(35 Сl) + 0,245×m(37 Сl)) / (1/12×m(12 С) = 35,5.

Из определения относительной атомной массы следует, что средняя абсолютная масса атома равна относительной атомной массе, умноженной на а.е.м.:

m(Cl) = 35,5 ×1,66057×10 -24 = 5,89×10 -23 г.

ОПРЕДЕЛЕНИЕ

Относительная молекулярная масса вещества (M r) - это безразмерная величина, равная отношению массы молекулы вещества к 1/12 массы атома 12 С.

Относительная молекулярная масса молекулы равна сумме относительных атомных масс атомов, входящих в состав молекулы, например:

M r (N 2 O) = 2×A r (N) + A r (O) = 2×14,0067 + 15,9994 = 44,0128.

Абсолютная масса молекулы равна относительной молекулярной массе, умноженной на а.е.м.

Число атомов и молекул в обычных образцах веществ очень велико, поэтому при характеристике количества вещества используют специальную единицу измерения - моль.

Моль - это количество вещества, которое содержит столько же частиц (молекул, атомов, ионов, электронов), сколько атомов углерода содержится в 12 г изотопа 12 С.

Масса одного атома 12 С равна 12 а.е.м., поэтому число атомов в 12 г изотопа 12 С равно:

N A = 12 г / 12 × 1,66057×10 -24 г = 1/1,66057×10 -24 = 6,0221×10 -23 .

Таким образом, моль вещества содержит 6,0221×10 -23 частиц этого вещества.

Физическую величину N A называют постоянной Авогадро, она имеет размерность = моль -1 . Число 6,0221×10 -23 называют числом Авогадро.

Молярная масса вещества

ОПРЕДЕЛЕНИЕ

Молярная масса (М) - это масса 1 моль вещества.

Легко показать, что численные значения молярной массы М и относительной молекулярной массы M r равны, однако первая величина имеет размерность [M] = г/моль, а вторая безразмерна:

M = N A × m (1 молекулы) = N A × M r × 1 а.е.м. = (N A ×1 а.е.м.) × M r = × M r .

Это означает, что если масса некоторой молекулы равна, например, 44 а.е.м., то масса одного моля молекул равна 44 г.

Постоянная Авогадро является коэффициентом пропорциональности, обеспечивающим переход от молекулярных отношений к молярным.


Молекулярная масса , сумма масс атомов, входящих в состав данной молекулы; выражается в атомных единицах массы (а.е. м.). Поскольку 1 а.е.м. (иногда называемая дальтон, D) равна 1 / 12 массы атома 12 С и в единицах массы составляет 1,66057 . 10 -27 кг, то умножение молекулярной массы на 1,66057 . 10 -27 дает абсолютную массу в килограммах. Чаще пользуются безразмерной величиной М отн - относительной молекулярной массы: М отн =M x /D, где М х - масса x , выраженная в тех же единицах массы (кг, г или др.), что и D. молекулярная масса характеризует среднюю массу с учетом изотопного состава всех элементов, образующих данное химическое соединение. Иногда молекулярную массу определяют для смеси различных веществ известного состава, например для "эффективную" молекулярную массу можно принять равной 29.

Абсолютными массами молекул удобно оперировать в области физики субатомных процессов и , где путем измерения энергии частиц, согласно теории относительности, определяют их абсолютные массы. В и химической технологии необходимо применять макроскопические единицы измерения количества вещества. Число любых частиц (молекул, атомов, электронов или мысленно выделяемых в веществе групп частиц, например Na + и Сl - в кристаллич. решетке NaCl), равное N А = 6,022 . 10 23 , составляет макроскопическую единицу количества вещества - моль. Тогда можно записать: М отн = M x . N A /(D . N A), то есть относительная молекулярная масса равна отношению массы моля вещества к N A D. Если вещество состоит из молекул с между составляющими их атомами, то величина M x . N A представляет собой молярную массу этого вещества, единицы измерения которой кг-моль (киломоль, кМ). Для веществ, не содержащих молекул, а состоящих из атомов, или радикалов, определяется формульная молярная масса, то есть масса N A частиц, соответствующих принятой формуле вещества (однако в СССР часто и в этом случае говорят о молекулярной массе, что неверно).

Ранее в использовали понятия грамм-молекула, грамм-атом, грамм-ион, теперь - моль молекул, моль атомов, моль ионов, подразумевая под этим N A молекул, атомов, и соответсвенно их молярные массы, выраженные в граммах или килограммах. Традиционно употребляют в качестве синонима термин "молекулярный (молярный) вес", так как определение массы производится с помощью весов. Но, в отличие от веса, зависящего от географических координат, масса является постоянным параметром количества вещества (при обычных скоростях движения частиц в условиях химических реакций), поэтому правильнее говорить "молекулярная масса".

Большое число устаревших терминов и понятий, касающихся молекулярной массы, объясняется тем, что до эры космических полетов в не придавали значения различию между массой и весом, которое обусловлено разностью значений ускорения свободного падения на полюсах (9,83 м. с -2) и на экваторе (9,78 м. с -2); при расчетах силы тяжести (веса) обычно пользуются средним значением, равным 9,81 м. с -2 . Кроме того, развитие понятия (как и атома) было связано с исследованием макроскопических количеств вещества в процессах их химических (реакции) или физических (фазовые переходы) превращений, когда не была разработана теория строения вещества (19 в.) и предполагалось, что все химические соединения построены только из и молекул.

Методы определения. Исторически первый метод (обоснованный исследованиями С. Канниццаро и А. Авогадро) предложен Ж. Дюма в 1827 и заключался в измерении плотности газообразных веществ относительно водородного газа, молярная масса которого принималась первоначально равной 2, а после перехода к кислородной единице измерений молекулярных и атомных масс - 2,016 г. Следующий этап развития экспериментальных возможностей определения молекулярной массы заключался в исследовании жидкостей и растворов нелетучих и недиссоциирующих веществ путем измерения коллигативных свойств (то есть зависящих только от числа растворенных частиц) - осмотического давления, понижения давления пара, понижения точки замерзания (криоскопия) и повышения точки кипения (эбулиоскопия) растворов по сравнению с чистым растворителем. При этом было открыто "аномальное" поведение электролитов.

Понижение давления пара над раствором зависит от молярной доли растворенного вещества (закон Рауля): [(раствор 0 )/р ] = N, где р 0 - давление пара чистого растворителя, р - давление пара над раствором, N- молярная доля исследуемого растворенного вещества, N = (т х /М х )/[(т х /М х ) + (m 0 /M 0)], m x и М х -соответствующая навеска (г) и молекулярная масса исследуемого вещества, m 0 и М 0 - то же для растворителя. В ходе определений проводят экстраполяцию к бесконечно разбавленному раствору, то есть устанавливают для растворов исследуемого вещества и для растворов известного (стандартного) химического соединения. В случае криоскопии и эбулиоскопии используют зависимости соответствующих Dt 3 = Кс и Dt к = Еc, где Dt 3 -понижение температуры замерзания раствора, Dt к - повышение температуры кипения раствора, К и Е- соответственно криоскопические и эбулиоскопические постоянные растворителя, определяемые по стандартному растворенному веществу с точно известной молекулярной массы, с - моляльная концентрация исследуемого вещества в растворе (с = М х т х. 1000/m 0). Молекулярную массу рассчитывают по формулам: М х = т х К. 1000/m 0 Dt 3 или М х = т х Е. 1000/m 0 Dt к. Методы характеризуются достаточно высокой точностью, так как существуют специальные термометры (так называемые термометры Бекмана), позволяющие измерять весьма малые изменения температуры.

Для определения молекулярной массы используют также изотермическую перегонку растворителя. При этом пробу раствора исследуемого вещества вносят в камеру с насыщенным паром растворителя (при данной температуре); пары растворителя конденсируются, температура раствора повышается и после установления равновесия вновь понижается; по изменению температуры судят о количестве выделившейся теплоты испарения, которая связана с молекулярной массой растворенного вещества. В так называемых изопиестичих методах проводят изотермическую перегонку растворителя в замкнутом объеме, например в Н-образном сосуде. В одном колене сосуда находится так называемая раствор сравнения, содержащий известную массу вещества известной молекулярная масса(молярная концентрация C 1), в другом - раствор, содержащий известную массу исследуемого вещества (молярная концентрация С 2 неизвестна). Если, например, С 1 > С 2 , р-ритель перегоняется из второго колена в первое, пока молярные концентрации в обоих коленах не будут равны. Сопоставляя объемы полученных изопиестичких растворов, рассчитывают молекулярную массу неизвестного вещества. Для определения молекулярной массы можно измерять массу изопиестических растворов с помощью Мак-Бена, которые представляют собой две чашечки, подвешенные на пружинках в закрытом стеклянном сосуде; в одну чашечку помещают исследуемый раствор, в другую - раствор сравнения; по изменению положения чашечек определяют массы изопиестических растворов и, следовательно, молекулярную массу исследуемого вещества.

Основным методом определения атомных и молекулярных масс летучих веществ является масс-спектрометрия. Для исследования смеси соединений эффективно использование хромато-масс-спектрометрии. При малой интенсивности пика молекулярного иона применяют эффузиометрические приставки к масс-спектрометрам. Эффузиометрический способ основан на том, что скорость вытекания газа в вакуум из камеры через отверстие, диаметр которого значительно меньше среднего пути свободного пробега молекулы, обратно пропорциональна квадратному корню из молекулярной массы вещества; скорость вытекания контролируют по изменению давления в камере. Молекулярная масса летучих соединений определяют также методами газовой хроматографии с газовыми весами Мартина. Последние измеряют скорость перемещения газа в канале, соединяющем трубки, по которым текут газ-носитель и газ из хроматографической колонки, что позволяет определять разницу плотностей этих газов, зависящую от молекулярной массы исследуемого вещества.

МОЛЕКУЛЯРНЫЙ ВЕС (син. молекулярная масса ) - масса молекулы вещества, выраженная в углеродных единицах атомной массы (углеродная единица атомной массы - 1/12 массы атома изотопа углерода 12 C); наряду с атомными массами служит основой для всевозможных расчетов, выполняемых с помощью хим. формул и уравнений, в т. ч. расчетов, производимых в биохим. и клинико-диагностических лабораториях.

Если известна хим. формула вещества, то его М. в. может быть вычислен как сумма атомных весов (масс) атомов хим. элементов (см. Атомный вес), входящих в состав молекулы данного вещества. Напр., М. в. углекислого газа (CO 2) равен:

12,011 + 2 * 15,9994 = 44,0098.

Для веществ, находящихся в газообразном или растворенном состоянии, экспериментальные методы определения М. в. наиболее обоснованны. М. в. (М1) газа обычно определяют, измерив его относительную плотность D по газу, М. в. к-рого (М2) известен; тогда М1 = M2*D. М. в. газа можно также определить, если известна его нормальная плотность d, т. е. масса 1 л газа в граммах при давлении 760 мм рт. ст. и 0 °C. В этом случае М. в. газа равен M = 22,42*d.

Для определения М. в. растворенного вещества в таком растворителе, в к-ром это вещество не подвергается диссоциации или ассоциации, наиболее часто измеряют понижение температуры замерзания р-ра Δt (см. Криометрия), наблюдаемое при растворении а г исследуемого вещества в b г растворителя: М = (K*a*1000)/(Δt*b), где К - криометрическая (криоскопическая) постоянная растворителя.

М. в. растворенного вещества можно также определить, измерив осмотическое давление р-ра (см. Осмотическое давление). В этом случае M = (m*R*T)/p, где m - масса растворенного вещества в граммах, содержащаяся в 1 л р-ра, p - осмотическое давление в атм, T - температура в градусах по Кельвину и R - газовая постоянная в л*атм/моль*град. Этот метод с успехом применяется для определения М. в. белков, полисахаридов, нуклеиновых и других высокомолекулярных соединений (см.). М. в. белков и других биополимеров можно определить методом ультрацентрифугирования (см.).

В практике биохим., клин, и сан.-гиг. лабораторий для выполнения различного рода расчетов широко пользуются также единицей количества вещества, называемой молем.

Моль - это количество вещества, содержащее столько молекул, атомов, ионов, электронов или других структурных единиц, сколько содержится атомов в 12 г изотопа углерода 12 C. Число молекул, атомов или других структурных единиц, содержащихся в одном моле любого вещества, называемое числом Авогадро, определено с большой точностью. Для практических расчетов его принимают равным

6,023*10 23 моль -1 .

Масса одного моля вещества, выраженная в граммах, численно равная М. в. вещества, называется мольной массой, или грамм-молекулой.

Библиография: Белки, под ред. Г. Нейрата и К. Бэйли, пер. с англ., т. 2, с. 276, М., 195 6: Гауровиц Ф. Химия и функция белков, пер. с англ., М., 1965; Ост-вальд-Лютер - Дру кер, Физикохимические измерения, пер. с нем., ч. 1, €. 294, Л., 1935.

Состав веществ сложный, хотя образованы они крохотными частицами — атомами, молекулами, ионами. многие жидкости и газы, а также некоторые твердые тела. Из атомов и заряженных ионов состоят металлы, многие соли. Все частицы обладают массой, даже самая крохотная если выразить ее в килограммах, получает очень маленькое значение. Например, m (Н 2 О) = 30 . 10 -27 кг. Такие важнейшие характеристики вещества, как масса и размеры микрочастиц, издавна изучают физики и химики. Основы были заложены в трудах Михаила Ломоносова и Рассмотрим, как изменились с тех пор взгляды на микромир.

Представления Ломоносова о «корпускулах»

Предположение о дискретном высказывали ученые Древней Греции. Тогда же было дано название «атом» мельчайшей неделимой частице тел, «кирпичику» мироздания. Великий русский исследователь М. В. Ломоносов писал о ничтожно малой, неделимой физическими способами частице строения вещества — корпускуле. Позже в трудах других ученых она получила название «молекула».

Масса молекулы, а также ее размеры, определяются свойствами составляющих ее атомов. Долгое время ученым не удавалось заглянуть вглубь микромира, что тормозило развитие химии и физики. Ломоносов неоднократно призывал коллег изучать и в своей работе опираться на точные количественные данные — «меру и вес». Благодаря работам русского химика и физика были заложены основы учения о строении вещества, ставшие составной частью стройной атомно-молекулярной теории.

Атомы и молекулы — «кирпичики мироздания»

Даже микроскопически малые тела сложно устроены, обладают различными свойствами. Такие частицы, как атомы, образованы ядром и электронными слоями, отличаются по количеству положительных и отрицательных зарядов, радиусу, массе. Атомы и молекулы существуют в составе веществ не изолированно, они притягиваются с разной силой. Более заметно действие сил притяжения в твердых телах, слабее — в жидкостях, почти не ощущаются в газообразных веществах.

Химические реакции не сопровождаются разрушением атомов. Чаще всего происходит их перегруппировка, возникает другая молекула. Масса молекулы зависит от того, какими атомами она образована. Но при всех изменениях атомы остаются химически неделимыми. Но они могут войти в состав разных молекул. При этом атомы сохраняют свойства того элемента, к которому относятся. Молекула до своего распада на атомы сохраняет все признаки вещества.

Микрочастица строения тел — молекула. Масса молекулы

Для измерения массы макротел используются приборы, старейший из которых — весы. Результат измерения удобно получать в килограммах, ведь это основная единица международной системы физических величин (СИ). Чтобы определить массу молекулы в килограммах, надо сложить атомные массы с учетом количества частиц. Для удобства была введена специальная единица массы — атомная. Можно записать ее в виде буквенного сокращения (а.е.м.). Эта единица соответствует одной двенадцатой части массы углеродного нуклида 12 С.

Если выразить найденное значение в стандартных единицах, то получаем 1,66 . 10 -27 кг. Такими малыми показателями для массы тел оперируют, в основном, физики. В статье приведена таблица, из которой можно узнать, чему равны массы атомов некоторых химических элементов. Чтобы узнать, чему равна масса одной в килограммах, умножим на два приведенную в таблице атомную массу этого химического элемента. В результате получим значение массы молекулы, состоящей из двух атомов.

Относительная молекулярная масса

Трудно оперировать в расчетах очень маленькими величинами, это неудобно, приводит к затратам времени, к ошибкам. Что касается массы микрочастиц, то выходом из затруднительной ситуации стало применение Привычный для химиков термин состоит из двух слов — «атомная масса», его обозначение — Ar. Идентичное понятие было введено для молекулярной массы (то же самое, что масса молекулы). Формула, связывающая две величины: Mr = m(в-ва)/1/12 m(12 C).

Нередко можно услышать, что говорят «молекулярный вес». Этот устаревший термин еще употребляется по отношению к массе молекулы, но все реже. Дело в том, что вес — это другая физическая величина — сила, которая зависит от тела. Напротив, масса служит постоянной характеристикой частиц, которые участвуют в химических процессах и перемещаются с обычной скоростью.

Как определить массу молекулы

Точное определение веса молекулы проводят при помощи прибора — масс-спектрометра. Для решения задач можно использовать сведения из периодической системы. К примеру, масса молекулы кислорода равна 16 . 2 = 32. Выполним несложные расчеты и найдем значение величины Mr(H 2 O) — относительной молекулярной массы воды. По таблице Менделеева определим, что масса атома кислорода — 16, водорода — 1. Проведем несложные расчеты: M r (H 2 O) = 1 . 2 + 16 = 18, где M r — молекулярная масса, H 2 O — молекула воды, H — символ элемента водорода, О — химический знак кислорода.

Массы изотопов

Химические элементы в природе и технике существуют в виде нескольких разновидностей атомов — изотопов. Каждый из них обладает индивидуальной массой, ее величина не может иметь дробное значение. Но атомная масса химического элемента чаще всего представляет собой число с несколькими знаками после запятой. При подсчетах учитывается распространенность каждой разновидности в земной коре. Поэтому массы атомов в периодической системе не всегда являются целыми числами. Используя такие величины для расчетов, мы получаем массы молекул, которые также не являются целыми числами. В некоторых случаях допускается округление значений.

Молекулярная масса веществ немолекулярного строения

Размеры и масса молекул

На электронных микрофотографиях крупных молекул можно рассмотреть отдельные атомы, но они настолько малы, что в обычный микроскоп не видны. Линейный размер частицы любого вещества, как и масса, — это постоянная характеристика. Диаметр молекулы зависит от радиусов образующих ее атомов, их взаимного притяжения. Размеры частиц меняются с увеличением числа протонов и энергетических уровней. Атом водорода — самый маленький по размерам, его радиус составляет всего 0,5 . 10 -8 см. Атом урана в три раза больше атома водорода. Настоящие «великаны» микромира — молекулы органических веществ. Так, линейный размер одной из протеиновых частиц равен 44 . 10 -8 см.

Подведем итог: масса молекул — это сумма масс атомов, входящих в их состав. Абсолютное значение в килограммах можно получить, умножив значение молекулярной массы, найденное в таблице Менделеева, на величину 1,66 . 10 -27 кг.

Молекулы ничтожно малы по сравнению с макротелами. Например, по своим размерам молекула воды Н 2 О уступает яблоку во столько же раз, во сколько раз этот фрукт меньше нашей планеты.

Последние материалы сайта