Кембрий и кембрийский взрыв. Причины кембрийского взрыва. Докембрийские следы многоклеточных. Возможные причины «взрыва

20.09.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Известный английский биолог Питер Холланд считает, что древняя вспышка эволюции многоклеточных животных, обычно называемая кембрийским взрывом, частично объясняется генетическими причинами . Необходимой предпосылкой для бурной эволюции двусторонне-симметричных животных была генная дупликация (или серия дупликаций), в результате которой возникли гены Hox и ParaHox - важные регуляторы индивидуального развития. Это не исключает действия экологических факторов на раннюю эволюцию животных, но заставляет обязательно учитывать также вклад чисто генетических новшеств.

Одной из самых больших загадок в истории жизни на Земле давно считается так называемый кембрийский взрыв - внезапное появление множества крупных групп животных примерно 540 миллионов лет назад, в начале кембрийского периода (слева вверху на рисунке). Иногда встречается мнение, что кембрийский взрыв - это артефакт, иллюзия, связанная не столько с появлением новых эволюционных ветвей, сколько с изменением условий захоронения ископаемых остатков. Но последние исследования подтверждают, что резкое ускорение эволюции на границе кембрия вполне реально. Кембрийский взрыв действительно был.

Чем он был вызван? Эта проблема вполне может соперничать по популярности, например, с проблемой вымирания динозавров или появления человеческого прямохождения. Есть много гипотез, объясняющих кембрийский взрыв внешними факторами: например, повышением уровня океана (с появлением множества мелководных продуктивных окраинных морей) или изменением химического состава морской воды (с повышением содержания кислорода, кальция, фосфатов). Однако за сто лет ни одна из этих версий не получила настолько надежного подтверждения, чтобы оказаться вне конкуренции.

Есть объяснения более сложные, многоступенчатые. Например, американский палеонтолог Дуглас Эрвин (Douglas Erwin) считает, что на границе кембрия некоторые животные научились активно рыться в морском дне, это вызвало насыщение грунта кислородом, расширило набор экологических ниш и привело к «цепной реакции видообразования». Но у этой гипотезы тоже есть слабые места. И самое главное - она упускает из виду начальный этап процесса. Животные, способные перерывать морское дно, должны были сначала возникнуть.

Знаменитый британский эволюционный генетик Питер Холланд (Peter Holland) предлагает для разнообразия поискать внутренние причины кембрийского взрыва, заключенные не в окружающей среде, а в самой структуре эволюционирующих организмов. Разумеется, Холланд прекрасно понимает, что и про экологические причины тоже нельзя забывать: такое сложное событие, как кембрийский взрыв, наверняка было вызвано многими факторами, а не одним. Скорее всего, там имел место каскад взаимосвязанных перемен. Тем не менее очевидно, что реакция любой системы на внешнее воздействие зависит не только от характера этого воздействия, но и от свойств самой системы. Что, если подойти к проблеме с этой стороны?

Правда, о внутреннем устройстве раннекембрийских, а тем более докембрийских животных мы пока знаем маловато. Но кое-что можно попытаться вычислить по косвенным данным, анализируя «поведение» организмов в макроэволюционном масштабе времени.

Что, собственно, на границе кембрия «взорвалось»? Стоит обратить внимание, что большая часть событий, в сумме составляющих кембрийский взрыв, связана с эволюцией не просто животных, а двусторонне-симметричных животных. Есть только четыре современных типа животных, которые не относятся к двусторонне-симметричным: губки, гребневики, пластинчатые, стрекающие (в прошлом году предположительно был найден представитель пятого типа, но эта находка еще толком не описана). Все остальные животные, включая червей, улиток, морских ежей, бабочек и нас самих, относятся к огромной группе двусторонне-симметричных (билатерий). Именно очень быстрое - в данном случае это значит «за считанные миллионы лет» - появление большого числа крупных ветвей двусторонне-симметричных животных делает начало кембрия совершенно уникальным моментом земной истории.

Что в этих животных особенного? Билатерии исключительно разнообразны, поэтому любая их краткая характеристика рискует погрешить неточностью. Тем не менее можно назвать четыре главных признака, отличающих билатерий от «небилатерий».

Передне-задняя ось. Типичное двусторонне-симметричное животное проводит жизнь в поступательном движении, при этом его тело имеет четко выраженные передний и задний конец - попросту говоря, голову и хвост. На переднем конце обычно находятся органы чувств и ротовой аппарат.

Центральная нервная система. У «небилатерий» нервной системы или нет вообще (губки, пластинчатые), или она относительно простая (гребневики, стрекающие). У билатерий нервная система, как правило, более мощная, часто она собрана в единую цепочку или тяж. Кроме того, для нее очень характерно продольное подразделение на отделы, самый передний из которых принято называть головным мозгом.

Сквозной кишечник. Билатериям свойствен кишечник в виде трубки, которая начинается ртом (обычно вблизи переднего конца тела) и оканчивается анальным отверстием (обычно вблизи заднего конца тела). Такой кишечник, как и нервная система, имеет продольное подразделение на отделы, например на переднюю, среднюю и заднюю кишку. Пища все время движется по сквозной кишке в одном направлении - от рта к анальному отверстию. Среди билатерий есть случаи отсутствия сквозного кишечника, но большинство их наверняка связано с вторичной потерей. У «небилатерий» сквозного кишечника в виде трубки не бывает никогда. Даже если их кишечная полость и имеет другие отверстия, кроме рта (у гребневиков, например), система однонаправленного протока пищи там отсутствует.

Три зародышевых листка. Зародыш многоклеточного животного, как правило, делится на слои клеток, называемые зародышевыми листками. У билатерий четко описано три зародышевых листка. У «небилатерий» зародышевые листки или вообще выделяются с трудом (губки, пластинчатые), или их скорее два, чем три (гребневики, стрекающие). По этой причине билатерий еще с XIX века принято считать трехслойными животными (триплобластами), а «небилатерий» двухслойными (диплобластами). Трехслойные животные отличаются от двухслойных наличием среднего зародышевого листка - мезодермы, из которой развивается, в частности, мышечная система. Поэтому такие животные способны к гораздо более активным и разнообразным движениям.

Известнейший британский палеонтолог Саймон Конвей Моррис (Simon Conway Morris) еще в 1993 году высказал мнение, что главное эволюционное содержание кембрийского взрыва заключалось в переходе с уровня двухслойных животных на уровень трехслойных, то есть двусторонне-симметричных . По Конвею Моррису, кембрийский взрыв в основном и состоял во «вторжении» в биосферу Земли трехслойных животных. Накопившиеся с тех пор палеонтологические данные вовсе не противоречат этой идее.

Как выглядел последний общий предок всех современных двусторонне-симметричных животных (latest common ancestor of all living bilaterians, LCAB)? Сравнительная анатомия и генетика развития дают достаточно оснований думать, что у этого общего предка была центральная нервная система, сквозной кишечник и расположенные по сторонам от него мышцы (возможно, даже сегментированные). Сокращения этих мышц давали возможность сложным образом менять форму тела, обеспечивая ползание, плавание или рытье - во всех случаях головой вперед.

Двусторонне-симметричные животные гораздо лучше приспособлены к активному перемещению в трехмерном пространстве, чем «небилатерии». Причем трехмерным пространством для них может быть не только толща воды, но и толща грунта. Не исключено, что именно рытье в грунте сыграло ключевую роль в эволюции ранних билатерий (как это и предполагает гипотеза Эрвина). Роющему двусторонне-симметричному существу удобно использовать грунт для питания: ил поступает в рот, проходит кишечную трубку, отдавая по пути питательные вещества, и выбрасывается через анус, оставаясь позади. Продвигаться сквозь грунт ему тоже удобно: для этого есть сильные мышцы, а кроме того, в мезодерме может образоваться еще и целомическая (вторичная) полость, которая заполнена жидкостью и выполняет функцию гидростатического скелета. В зоологии давно есть идея, что целом возник именно при переходе к рытью, в качестве гидроскелета, который стал тогда необходим .

Если этот сценарий соответствует действительности, то прекрасным образцом древней жизненной формы билатерий может послужить не кто иной, как дождевой червь. Он сменил морскую среду на почву, но сохранил в самом ярком виде все перечисленные признаки: сквозная кишка с ртом на переднем конце тела и анусом на заднем, сильные мышцы (сегментированные) и целом с явной опорной функцией.

В любом случае, о появлении двусторонне-симметричных животных можно сказать, что оно: (1) произошло во временной окрестности границы кембрия (никаких убедительных свидетельств намного более раннего существования билатерий нет) и (2) произвело настоящую революцию как в анатомии животного мира, так и в глобальной экологии.

Но что все-таки вызвало эту революцию? Вот тут-то и стоит подумать о том, какие внутренние изменения в организмах сделали ее возможной.

Как ни парадоксально, на нынешнем уровне развития биологии мы зачастую знаем больше про гены, которые были у древних животных, чем про анатомию этих животных. В таком случае с генов и стоит начать.

В первую очередь нас должны интересовать гены, контролирующие развитие (1) нервной системы, (2) кишечника и (3) мезодермальных структур, к которым относятся мышцы и целом (слева внизу на рисунке). Таких генов сейчас известно достаточно много. Как правило, они кодируют белки, способные включать или выключать другие гены, то есть являющиеся факторами транскрипции. К генам факторов транскрипции, способным влиять на развитие животных, относятся, например, Fox-гены, Pax-гены, гомеобоксные гены, T-боксные гены и гены «цинковых пальцев».

Поскольку «нельзя объять необъятное», Питер Холланд выбрал для исследования только одну из этих пяти групп генов - гомеобоксные гены. Они неплохо изучены, и, судя по всему, именно от них сильнее всего зависит развитие интересующих нас систем органов.

Когда заходит речь о гомеобоксных генах, многие биологи (и небиологи, интересующиеся научной литературой, тоже) первым делом вспоминают про гены семейства Hox. Строго говоря, это неправильно. Hox-гены - действительно важные регуляторы развития животных, они могут, скажем, определять отличия между разными сегментами тела. Но далеко не все гомеобоксные гены являются Hox-генами. Например, в геноме мухи-дрозофилы гомеобоксных генов больше сотни, а к семейству Hox из них относятся только восемь. В геноме человека гомеобоксных генов больше двухсот, а к семейству Hox из них относятся только 39. По выражению Холланда, Hox-гены - это «верхушка гомеобоксного айсберга».

Гомеобоксные гены, эволюция которых особенно интересна с точки зрения сравнительной анатомии, называются ANTP-генами (от мутации antennapedia). Это один из нескольких классов гомеобоксных генов, который, в свою очередь, делится на генные семейства. Кроме уже упомянутых Hox-генов, к ANTP-генам относятся ParaHox-гены, NK-гены, Dlx-гены, Evx-гены, Emx-гены, Dbx-гены, Msx-гены и ряд других.

Важная особенность генов семейства Hox состоит в том, что они склонны располагаться в хромосомах рядом друг с другом, образуя плотные группы - кластеры. Например, у дрозофилы все восемь Hox-генов собраны в один кластер. У человека таких кластеров четыре. У некоторых животных Hox-кластеры распадаются, но гораздо чаще они остаются более или менее целыми. Эта особенность имеет огромное значение и для регуляции работы Hox-генов, и для их эволюции. Именно расшифровка принципа работы Hox-кластера была главным достижением великого американского генетика Эдварда Льюиса (Edward B. Lewis), получившего за это в 1995 году Нобелевскую премию.

В 1990-х годах было открыто еще несколько генов, очень близких к Hox-генам по нуклеотидной последовательности, но не входящих в Hox-кластер и, по-видимому, имеющих какие-то другие функции. Эти гены получили общее название ParaHox. Более того, для трех таких генов - Gsx, Xlox (он же Pdx) и Cdx - было показано, что по своим последовательностям они даже ближе к некоторым Hox-генам, чем многие Hox-гены между собой. Откуда же они взялись? Эту загадку удалось частично решить в 1998 году, когда Питер Холланд с коллегами обнаружили, что ParaHox-гены тоже собраны в кластер - свой собственный. Правда, ParaHox-кластер намного меньше Hox-кластера: например, у ланцетника есть 15 Hox-генов и всего три ParaHox-гена. Но они наверняка имеют общее происхождение. Первую статью на эту тему так и назвали: «Кластер ParaHox - эволюционная сестра кластера Hox» .

Напрашивающийся здесь эволюционный сценарий выглядит так. У общего предка большинства современных животных был единый небольшой генный кластер, «предковый» и для Hox-генов, и для ParaHox-генов. Этот древний кластер называют ProtoHox-кластером. В некоторый момент ProtoHox-кластер удвоился вместе с частью хромосомы, в которой он находился. Такое генетическое событие называется тандемной дупликацией. Так возникли два родственных кластера, эволюция которых в дальнейшем пошла по-разному. Один из них стал Hox-кластером, а другой ParaHox-кластером (в середине рисунка вверху).

Есть и третье семейство ANTP-генов, склонных «кластеризоваться». Они называются NK-гены. У мухи-дрозофилы их пять, и они собраны в компактный кластер, совершенно отдельный от кластеров Hox и ParaHox. Эти гены - очень древние (они наверняка возникли раньше, чем животные стали двусторонне-симметричными) и очень консервативные, то есть они сохраняются у самых разных организмов, мало изменяясь. У ланцетника и у позвоночных NK-кластер распался, но входившие в него гены сохранились по отдельности. Более того, сравнительная геномика позволяет предположить, что NK-кластер дрозофилы (с пятью генами) является остатком более крупного кластера, который существовал в начале эволюции билатерий и включал не меньше восьми генов. Сейчас он находится в процессе медленного распада, и некоторые «отколовшиеся» от него гены уже давно существуют самостоятельно.

Кембрийский период (сокращ. кембрий ) - первый геологический период палеозойской эры в геологической истории Земли. Назв. от "Камбрия", Cambria - лат. название Уэльса). Начался кембрий около 570 млн. лет назад, после рифея, закончился 505 млн. лет назад, продолжался 65 - 70 млн. лет, до ордовикского периода (по другим данным - начало около 542 ±1 млн. лет назад, окончание 488 ±2 млн. лет назад, продолжительность ок. 51-57 млн. лет).
В стратиграфии кембрийскому периоду оответствует кембрийская система палеозойской эратемы, кембрийская система как стратиграфическая единица подразделяется на 3 отдела, 4 надъяруса и 10 ярусов:

Период (система) Эпоха (отдел) Надъярус Век (ярус)
Кембрийский период Верхний кембрий
(Фуронгский)
Кыршабактинский (€3k) Батырбайский (€3b)
Аксайский (€3ak)
Сакский (€3s)
Аюсокканский (€3as)
Средний кембрий
(Акадский)
Якутский (€2j) Майский (€2m)
Амгинский (€2am)
Нижний кембрий Ленский (€1l) Тойонский (€1k)
Ботомский (€1b)
Алданский (€1a) Атдабанский (€1at)
Томмотский (€1t)

Подразделения верхнего кембрия в Северной Америке разработано иное ярусное деление, в котором выделяют 3 яруса:

Кембрий - единственная система стратиграфической шкалы, которая не имеет общепринятых международных ярусов, хотя попытки ярусного расчленения предпринимались неоднократно. Зональное расчленение кембрия в большинстве регионов мира ещё разрабатывается, а существующие варианты требуют дальнейших уточнений. Вопрос о проведении границы с докембрием до последнего времени был спорным. В большинстве случаев она проводилась по перерыву в основании толщ, содержащих кембрийские ископаемые; в 70-е гг. XX в. нижняя граница кембрия стала проводиться по подошве первой зоны, содержащей комплекс ископаемых скелетных форм. Международная комиссия по стратиграфии предложила для верхнего кембрия название Фуронгский отдел .

Комплекс горных пород, отвечающий кембрийской системе, был выделен английским геологом А. Седжвиком в 1835г. в Уэльсе, где им были установлены три отдела. Уточнения, произведённые позднее американским геологом Ч. Уолкоттом, английским геологом Ч. Лапуорсом и др., привели к современному пониманию отделов кембрия, принятому 4-м Международным геологическим конгрессом в 1888 году. Первые работы по изучению кембрия в России велись на территории Прибалтики и связаны с именами А. Миквитца, Ф. Шмидта и др. С именами Э. Толля (конец XIX - начало XX вв.), В.А. Обручева, Е.В. Лермонтовой, А.Г. Вологдина, П.С. Краснопеевой и др. (20 - 30-е гг. XX в.) связан факт установления отложений кембрийской системы и широкого их развития в Сибири. В 1956 году была принята первая унифицированная схема кембрия Сибири, создание которой связано с именами Ф.Г. Гурария, А.К. Боброва, И.Т. Журавлевой, К.К. Зеленовой, Н.П. Лазаренко, Н.В. Покровской, И.П. Суворовой, Н.Е. Чернышовой и др. Планомерными геолого-съёмочными работами, проводившимися в СССР, были установлены кембрийские отложения и во многих других районах.

Широко распространены морские отложения нижнего кембрия - результат обширных трансгрессий моря; в целом в кембрии до начала позднего кембрия во многих местах Земного шара происходила регрессия. Кембрийские отложения распространены очень широко и известны на всех континентах. Наиболее широко представлены морские отложения нижнего кембрия, соответствующие времени обширных морских трансгрессий, когда большая часть современных материков была покрыта теплыми морями с обильной фауной. На основании фациального анализа предполагается, что для морей Сибири в раннем кембрии температура воды не спускалась ниже 25°С. Характерной особенностью осадкообразования раннего кембрия было широкое развитие морских красноцветных карбонатных пород и накопление мощных толщ солей. В это время происходили миграции фаун, в результате чего в регионах, удалённых друг от друга (например Сибирь и Австралия), обнаруживаются близкие сообщества ископаемых организмов. В среднем кембрии наблюдается значительное сокращение морских бассейнов, продолжающееся и в начале позднего кембрия. По-видимому, и в среднем и в позднем кембрии происходила более существенная, чем в раннем кембрии, климатическая дифференциация, приведшая к образованию биогеографических провинций. В отложениях позднего кембрия впервые установлены достоверные лагунные красноцветные породы.

Тектоника и магматизм

Главные тектонические структуры сформированы еще в конце рифея и продолжали существовать в кембрии. Структурные элементы платформ и геосинклиналей (синеклизы, антеклизы, синклинории, антиклинории), сформированные в конце рифея, в кембрии, особенно раннем, сохраняли близкую конфигурацию. Лишь со среднего кембрия в результате активизации тектонических движений во многих регионах (особенно в складчатых областях юга Сибири) структурный план существенно изменился. Усиление тектонических движений привело к тому, что во многих случаях разрезы среднего и верхнего кембрия гораздо более фрагментарны, чем нижнего. В геосинклинальных областях наряду с нормальными осадочными породами формировались мощные толщи эффузивов, чаще всего основного состава. Интрузивные породы представлены рядом разнообразных по составу пород, от ультраосновных до кислых. На платформах имеются лишь мелкие тела диабазов .

Климат

В Кембрии климат на Земле был теплее, чем в наши дни. Тропические побережья материков окаймляли гигантские рифы из строматолитов , во многом напоминавшие коралловые рифы современных тропических вод. По рифы эти понемногу уменьшались в размерах, поскольку бурно развивавшиеся многоклеточные животные активно их поедали. На суше в те времена не было ни растительности, ни почвенного слоя, поэтому вода и ветер разрушали ее гораздо быстрее, чем ныне. В результате в море смывалось большое количество осадков.

Растительный и животный мир

Отложения кембрийского периода

Отложения кембрия на территории России развиты очень широко, особенно на Сибирской платформе, в Алтае-Саянской складчатой области и на Восточно-Европейской платформе. Кроме того, они известны на Урале, Кавказе, в Казахстане, Средней Азии, на Дальнем Востоке, в бассейне Колымы, складчатых районах Читинской обл., Бурятской АССР и Хабаровского края, а также вскрыты скважинами на Западно-Сибирской равнине.
На Сибирской платформе кембрийские отложения представлены почти исключительно толщами карбонатных пород мощностью от 100 до 1.000 м.; наиболее характерны красноцветные и чёрные битуминозные известняки, различного рода биогенные карбонатные породы, содержащие обильные остатки ископаемой фауны.
На Восточно-Европейской платформе кембрийские отложения распространены почти повсеместно в её северной части, а также известны в западных частях Белоруссии и Украины. Нижнекембрийские отложения представлены морскими песчано-глинистыми породами, часто очень слабо измененными, содержащими редкие остатки фауны. Наиболее известны "синие глины" Прибалтики. Отложения среднего кембрия представлены мелководными, пляжного типа, песками; достоверные верхнекембрийские отложения установлены лишь в нескольких пунктах. Мощности кембрия Восточно-Европейской платформы обычно не превышают первых сотен метров. Отложения кембрия складчатых областей представлены сложным комплексом геосинклинальных формаций мощностью в несколько тыс. м. (чередующиеся органогенные карбонатные, вулканогенные и терригенные породы, содержащие залежи фосфоритов, железных руд и т.п.).

Литература:

  • Стратиграфия СССР, т. 3. Кембрийская система, под ред. Н.Е. Чернышевой, М., 1965
  • Стратиграфия нижнего палеозоя Центральной Европы, М., 1968 (Доклады советских геологов. Международный геологический конгресс. XXIII сессия)
  • Розанов А.Ю. и др. Томмотский ярус и проблема нижней границы кембрия, "Труды Геологического института АН СССР", 1969, вып. 206
  • Доклады советских геологов на XXI сессии Международного геологического конгресса. Проблема 8, М., 1960 // International geological congress. Report of the 21 session, pt 8, Cph., 1960
  • El sistema Cámbrico, su paleogeografia у el problema de su base, XX Congreso Geologico International. Symposium, pt 1-2, Мех., 1956: то же, т. 3, М., 1961 (на русском., англ. и исп. яз.).

О последних данных, известных об этом далеком периоде, в своей книге «Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы» писал известный биолог и популяризатор науки Александр Марков. На самом деле о кембрийском периоде науке сегодня известно очень мало, ведь события, о которых мы будем говорить происходили 542 млн лет назад. О более ранних временах (архейский и протерозойский эоны) науке и вовсе - до недавнего времени было почти ничего неизвестно. Это и понятно, ведь докембрийские толщи, действительно, кажутся практически мертвыми, в них почти не угадывались следы какой-нибудь жизни. А вот Кембрийский взрыв как раз и характеризуется резким возникновением разнообразнейших форм жизни, которые возникли как будто из ничего. Дарвин в свое время назвал этот период тем фактом, который не укладывается в его теорию постепенных эволюционных изменений.

Дарвин тогда не знал, что в период Кембрийского взрыва многие формы живых организмов просто резко начали обзаводиться твердым минерализованным скелетом. Однако, жизнь в докембрии (криптозое) все-таки была, поэтому его называют периодом «скрытой жизни». Науке сегодня известно - многие из групп животных, которые находят в кембрийских толщах, жили и в криптозое. Просто в большинстве своем это были мягкотелые существа, не имеющие твердого панциря или скелета. Но загадка Кембрийского взрыва все равно осталась, просто теперь разговор идет не о том, что сложные формы жизни появились из неоткуда, а о том, почему очень многие из них вдруг обзавелись минеральным скелетом. «Это могло быть связано с изменениями условий среды. Например, к такому эффекту могло бы привести резкое уменьшение кислотности воды, в результате чего карбонат кальция - самый распространенный у животных скелетообразующий материал - стал хуже растворяться в морской воде и легче выпадать в осадок», - пишет Александр Марков. Но существует и множество других гипотез.


Марков рассказывает о сравнительно недавнем исследовании, которое относится как к событиям, происходившим во времена Кембрийского взрыва, так и к сравнительной геномике, и к ранней эволюции животных.

Для того, чтобы у животных появились карбонатные скелеты, недостаточно только того, чтобы среда стала благоприятной. Необходимо иметь и специальные гены и ферменты, с помощью которых живые организмы сумели бы контролировать процесс образования и роста кристаллов карбоната кальция в определенных частях своего тела и в необходимом количестве. Очень важную роль в формировании таких скелетов имеют ферменты карбоангидразы, они ускоряют реакцию превращения растворенного в воде углекислого газа в гидрокарбонат приблизительно в миллион раз. Карбоангидразы вообще очень распространены в животном царстве. Помимо того, что они способствуют формированию скелета, они выполняют и множество других функций. До недавнего времени было неизвестно, когда же именно и в какой последовательности живые организмы обзавелись карбоангидразами. Однако, не так давно австралийские и немецкие специалисты изучили скелетообразующие ферменты у примитивной архаичной губки, живого ископаемого, которое проживает на нашей планете уже больше 200 млн лет - Astrosclera willeyana . На основе этого исследования ученым удалось определить, что все многочисленные и разнообразные карбоангидразы животных происходят от одного белка, который имел последний общий предок всех животных.


««Последний общий предок всех животных», вне всяких сомнений, жил задолго до кембрийской скелетной революции. Получается, что животные изначально были хорошо подготовлены (преадаптированы) к развитию минерального скелета - у них с самого начала были ферменты, способные резко ускорить образование карбоната кальция», - пишет Марков. Вероятно, такие ферменты докембрийские животные с мягким телом использовали не для образования скелета, а для других целей (о том, что карбоангидразы выполняют в организме и другие функции упоминалось выше). Когда же среда стала благоприятствовать биоминерализации, разные животные независимо друг от друга извлекли из этого пользу для себя, формируя с помощью этих ферментов свои скелеты и панцири.

Смысле) появление в раннекембрийских (ок. 540 млн лет по эволюционной шкале) отложениях окаменелостей представителей многих подразделений животного царства, на фоне отсутствия их окаменелостей или окаменелостей их предполагаемых предков в докембрийских отложениях.

Теория эволюции не имеет достоверного объяснения этому «феномену». Теория креационизма видит в этом явлении очередное свидетельство несостоятельности теории эволюции и свидетельство в пользу Сотворения .

История открытия

Первооткрывателем Кембрийского взрыва был англичанин Роберт Мэрчисон, аристократ по происхождению, который под влиянием своей честолюбивой жены решил заняться наукой. Изучая окаменелости многоклеточных древних эпох, и слои пород, в которых они находились, он столкнулся с чётко-выраженной границей, ниже которой имелись следы лишь простейших одноклеточных организмов - бактерий и водорослей. А слоем выше (в «кембрийских» отложениях) - богатейшее разнообразие биологических форм. Мэрчисон был верующим христианином и разделял убеждение Линнея , что «существует ровно столько видов, сколько их первоначально сотворил Создатель» . В окрытом явлении он увидел доказательство действия Божьей руки. В 1830-е годы Мэрчисон опубликовал результаты своих исследований.

Кембрийский взрыв и дарвинизм

Последние открытия

В течении последних ста лет считалось, что позвоночные появились в истории жизни позже. Однако, в 1999 году в кембрийских породах в Китае были обнаружены окаменелости рыб,. что подтверждает, что рыбы возникают внезапно в летописи окаменелостей вместе со всеми другими типами животных. Кембрийский взрыв стал еще громче. Чтобы эти полностью сформированные рыбы появились в Кембрии, предполагаемый предок позвоночных должен быть отодвинут на миллионы лет в докембрийский период, где нет переходных форм ни для них, ни для всех основных типов организмов.

В 2006 году в Китае геологи обнаружили окаменелый эмбрион животного, которому, по мнению эволюционистов, 600 миллионов лет.,. Если эволюция действительно происходила, то современные эмбрионы, через сотни миллионов лет эволюции, должны были бы сильно отличаться от тех, что были обнаружены в Китае. Однако эмбрионы, найденные в Китае полностью идентичны эмбрионам современных животных.

В 2008 в Кембрийских пластах были обнаружены ископаемые медузы, которые почти идентичны современным живым видам. Некоторые из них имели мышцы, ряд стрекательных клеток, сложные половые органы и виды поведения (включая узнавание пары и ухаживание), а также сложные глаза. Согласно эволюции, пока эти медузы так и остались такими же медузами до сего дня, за это время (около 500 млн лет) должна была эволюционировать практически вся природа - птицы, сосны, крокодилы, кенгуру, слоны, собаки, цветы, помидоры, киты, гекконы и т. д.

См. также

Ссылки

Рождение сложности [Эволюционная биология сегодня: неожиданные открытия и новые вопросы] Марков Александр Владимирович

Кембрийский взрыв

Кембрийский взрыв

В самом начале кембрийского периода, примерно 542 млн лет назад, многие группы животных почти одновременно стали обзаводиться твердым минерализованным скелетом. Поскольку в ископаемом состоянии обычно сохраняются именно такие скелеты, а мягкие части бесследно исчезают, это событие в палеонтологической летописи выглядит как внезапное, «взрывное» появление многих групп животных (моллюсков, членистоногих, губок, археоциат, брахиопод, к которым несколько позже присоединяются иглокожие, кораллы, мшанки и другие). Отсюда и общепринятое название этого события - «кембрийский взрыв».

Вся та палеонтология, о которой мы говорили до сих пор, - палеонтология докембрия, то есть изучающая архейский и протерозойский эоны со всеми биомаркерами, окремненными цианобактериями, акритархами, городискиями и мягкотелыми животными венда, - стала интенсивно развиваться лишь сравнительно недавно. До этого момента докембрийские толщи казались ученым практически мертвыми, не содержащими почти никаких следов жизни. «Кембрийский взрыв» выглядел внезапным появлением множества разнообразных организмов словно бы из ниоткуда. Поэтому докембрий назвали криптозоем - временем «скрытой жизни», а последний этап развития биосферы, начавшийся с кембрия и включающий палеозойскую, мезозойскую и кайнозойскую эры, носит название фанерозоя (время «явной жизни»).

Дарвин считал кембрийский взрыв одним из фактов, не укладывающихся в его теорию постепенных эволюционных изменений. Впоследствии выяснилось, что «взрыв» на самом деле был не таким уж взрывообразным. Как мы теперь знаем, предки многих кембрийских групп жили и раньше, но они были по большей части бесскелетными, мягкотелыми. Именно поэтому палеонтологи долго не могли обнаружить их остатков в докембрийских породах.

Загадка кембрийского взрыва, тем не менее, осталась, только теперь речь идет не о внезапном возникновении как бы «из ничего» многих типов животных, а о более или менее одновременном появлении у них минерального скелета. Это могло быть связано с изменениями условий среды. Например, к такому эффекту могло бы привести резкое уменьшение кислотности воды, в результате чего карбонат кальция (CaCO 3) - самый распространенный у животных скелетообразующий материал - стал хуже растворяться в морской воде и легче выпадать в осадок. Предложен и целый ряд других объяснений. Хорошие популярные рассказы о кембрийском взрыве и теориях, предложенных для его объяснения, можно найти в книгах А. Ю. Розанова «Что произошло 600 миллионов лет назад» (1986) . Это настоящее «живое ископаемое»: род Astrosclera существует больше 200 млн лет (с конца триасового периода), а по строению своего карбонатного скелета эта губка очень близка к формам, процветавшим еще в палеозое (так называемым строматопоратам).

Скелет астросклеры состоит из мелких сферических элементов, которые постепенно растут и сливаются друг с другом. Ученые выделили из скелета губки органическую фракцию, а из нее - все белки. Три преобладающих белка оказались карбоангидразами. Исследователи определили их аминокислотную последовательность, а затем по этой последовательности «выудили» из генома и три соответствующих гена. Это позволило, сравнивая между собой нуклеотидные последовательности генов карбоангидраз примитивной губки и высших животных, чьи геномы уже прочтены, реконструировать эволюцию этих белков у животных.

Ученые пришли к выводу, что все многочисленные и разнообразные карбоангидразы животных происходят от одного предкового белка, который имелся у последнего общего предка всех животных. В разных эволюционных линиях ген этой исходной карбоангидразы неоднократно подвергался независимым дупликациям (удвоениям). Так возникали различные новые варианты карбоангидраз. «Последний общий предок всех животных», вне всяких сомнений, жил задолго до кембрийской скелетной революции. Получается, что животные изначально были хорошо подготовлены (преадаптированы) к развитию минерального скелета - у них с самого начала были ферменты, способные резко ускорить образование карбоната кальция. Эти ферменты, очевидно, использовались докембрийскими мягкотелыми животными для других целей - как уже говорилось, у карбоангидраз в животном организме хватает работы и без скелетообразования. Когда условия среды стали благоприятствовать биоминерализации, разные группы животных не сговариваясь «привлекли» часть своих карбоангидраз к выполнению новой функции.

Оказалось, что у этих примитивных многоклеточных уже есть значительная часть комплекса так называемых постсинаптических белков, которые у более высокоорганизованных животных функционируют в нервных клетках и участвуют в «приеме сигнала». У губок, однако, нет нервных клеток. Зачем же им эти белки? По всей видимости, они участвуют в обмене сигналами между клетками губки. Животное может не иметь нервной системы, но если его клетки совсем не будут «общаться» друг с другом, это будет уже не животное, а скопление одноклеточных организмов. Позже, когда у животных развилась нервная система, эти «коммуникационные» белки пригодились для формирования системы обмена сигналами между нервными клетками. Этот пример, как и множество других, показывает, что большинство эволюционных новшеств возникает не на пустом месте, а собирается из «подручного материала», причем часто для радикального изменения функции какого-нибудь белка или белкового комплекса достаточно совсем небольших генетических изменений.

Из книги Непослушное дитя биосферы [Беседы о поведении человека в компании птиц, зверей и детей] автора Дольник Виктор Рафаэльевич

Взрыв - кризис - коллапс - стабилизация Популяция любых видов - бактерий, растений, животных,- попав в благоприятные условия, увеличивает свою численность по экспоненте взрывным образом, так, как это показано на рисунке. Рост численности с разгону переходит значение,

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Из книги Путешествие в прошлое автора Голосницкий Лев Петрович

Кембрийский период Во многих местах выступают на поверхность земли толщи осадочных кембрийских пород, образовавшихся свыше 400 миллионов лет назад. Это главным образом песчаники, известняки и глинистые сланцы - твёрдая горная порода тёмно-серого или чёрного цвета,

Из книги Язык как инстинкт автора Пинкер Стивен

Глава 11 БОЛЬШОЙ ВЗРЫВ Эволюция языка Слоновий хобот имеет шесть футов в длину и один фут в толщину и содержит шестьдесят тысяч мускулов. С помощью хобота слоны могут с корнем выдирать деревья, складывать бревна в штабеля или аккуратно помещать их в требуемую позицию при

Из книги До и после динозавров автора Журавлёв Андрей Юрьевич

Глава IV Мир, которого не может быть (кембрийский период: 550–490 млн лет назад) Если идея приходит в голову, то из какого же места она вышла? Приписывается автору Что написано в «Кембрийской газете». Запуск пеллетного конвейера. Галлюцигения и прочие «ошибки природы». Почему

Из книги Фармацевтическая и продовольственная мафия автора Броуэр Луи

Феминизация: финальный взрыв Процент феминизации - количество женщин на 100 врачей - увеличивается каждый год. В июле 1984 г. женщины-медики составляли 26,3 %, в январе 1985 г. - 26,8 %, в январе 1986 г. - 27,9 %, в январе 1987 г. - 28,4 %.На конец 1993 г. среди трех французских врачей была

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Что такое Большой взрыв и как долго он продолжался? Согласно самой признанной на сегодня космологической модели, Вселенная возникла в результате так называемого Большого взрыва. До Большого взрыва не было пространства и времени. Лишь после Большого взрыва Вселенная

Из книги Генетическая одиссея человека автора Уэллс Спенсер

Взрыв Все континенты (кроме Антарктиды) были заселены людьми 10 000 лет назад. Всего за 40 000 лет наш вид проделал путешествие из Восточной Африки к Огненной Земле, бросая вызов пустыням, высоким горам и мерзлым пустошам Крайнего Севера. Их изобретательность сослужила им

Из книги Энергия и жизнь автора Печуркин Николай Савельевич

Второй «большой взрыв» Неолит стал поворотным пунктом для человеческого вида. Именно тогда мы перестали быть полностью зависимыми от климата, как это было во время наших странствий в эпоху палеолита, и взяли под контроль нашу собственную судьбу. Освоив сельское

Из книги Рождение сложности [Эволюционная биология сегодня: неожиданные открытия и новые вопросы] автора

9 Последний «большой взрыв» Если ты знаешь свою историю, тебе известны твои корни. Боб Марли, «Солдат Буффало» Пару лет назад меня попросили провести генетический анализ в одной из телевизионных программ. Его целью было показать с помощью генетических данных то, что

Из книги Эволюция человека. Книга 2. Обезьяны, нейроны и душа автора Марков Александр Владимирович

9 Последний «большой взрыв» О национализме и о возникновении одноязычия кратко повествуется в книге Тимоти Бейкрофта «Национализм в Европе» (Timothy Baycroft. Nationalism in Europe, 1789–1945. - Cambridge University Press, 1998). Исчезновение мировых языков обсуждается в книге Дэвида Неттла и Сюзанн Ромейн

Из книги Хозяева Земли автора Уилсон Эдвард

5.2. Биологический взрыв и нехватка вещества Одной из важных черт жизни является способность к рождению себе подобных, которые также могут размножаться, давая новые единицы, способные к размножению, и т. д. Это и есть известное явление автокатализа в физике, химии, при

Из книги автора

Происхождение членистоногих - «артроподизация» (вендский и кембрийский периоды) В «домолекулярную эру» в распоряжении ученых было три научных дисциплины, при помощи которых можно было реконструировать эволюционную историю организмов: 1. сравнительная анатомия, 2.

Из книги автора

Когнитивный взрыв Гипотеза макиавеллиевского интеллекта появилась в конце 1980-х и с тех пор неуклонно укрепляет свои позиции. В 2006 году Сергей Гаврилец и Аарон Воуз из Университета штата Теннесси в Ноксвилле разработали математическую модель, наглядно демонстрирующую

Из книги автора

10. Культурный взрыв После того как увеличение размеров мозга открыло Homo sapiens возможности завоевания мира, человеческая волна выплеснулась из Африки и поколение за поколением покатилась по Старому Свету, сметая все на своем пути. Культура, поначалу незаметная, то тут, то

Последние материалы сайта