Какое из следующих множеств является выпуклым. Дайте определение выпуклого множества. Докажите, что пересечение выпуклых множеств является выпуклым

20.09.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Пусть х , у , z – элементы n -мерного действительного евклидова пространства Будем называть их также векторами или точками пространства

Определение . Отрезком, соединяющим точки x и y , называется множество точек вида

Определение . Множество точек называется выпуклым множеством , если отрезок, соединяющий любые две точки входит в множество M , то есть

Например, выпуклыми множествами являются точка, отрезок, пространство открытый и замкнутый параллелепипед, открытый и замкнутый шар. Пустое множество не является выпуклым.

Теорема . Непустое пересечение любого числа выпуклых множеств является выпуклым множеством.

Доказательство . Пусть - выпуклые множества, и точки x , y принадлежат всем этим множествам одновременно поэтому Точка по определению выпуклого множества принадлежит всем множествам одновременно. Таким образом, для любых двух точек точки принадлежат множеству M . Поэтому по определению М – выпуклое множество.

Определение . Гиперплоскостью в называется множество точек

где a – n -мерный направляющий вектор , круглые скобки обозначают скалярное произведение действительное число с называется свободным членом.

Замечания . 1) Гиперплоскость является выпуклым множеством. Действительно, пусть Тогда для любого точка принадлежит G , так как

2) Направляющий вектор a ортогонален гиперплоскости, то есть для любого вектора z = x – y , соединяющего две произвольные несовпадающие точки гиперплоскости (a , z ) = 0. Действительно,

(a , z ) = (a , x ) – (a , y ) = c c = 0.

Определение . Множество точек вида

называется полупространством в

Направление неравенства в определении можно взять и противоположным.

Замечание . Полупространство является выпуклым множеством. Действительно, пусть Тогда для любого точка принадлежит S , так как

Определение . Непустое пересечение конечного числа полупространств называется выпуклым многогранником .

Применение термина выпуклый многогранник объясняется тем, что полупространство – выпуклое множество, а непустое пересечение конечного числа выпуклых множеств есть выпуклое множество.

Определение . Множество вида

называется положительным ортантом .

Положительный ортант есть выпуклый многогранник. Действительно, неравенство можно интерпретировать как систему неравенств

Определение . Пусть выпуклый многогранник G задан системой неравенств

где - направляющие векторы, k > n . Если точка обращает в равенства не менее n неравенств, причем ранг соответствующей системы векторов равен n , то точка у называется угловой (или крайней) точкой многогранника.

Отметим, что число угловых точек выпуклого многогранника может быть (в зависимости от n и k ) очень большим. Так, при n = 10, k = 20 это число может быть сравнимо с 10 11 .



Замечание . Так как равенство вида

можно заменить системой двух неравенств

то если в определении часть неравенств (или все неравенства) заменить соответствующими равенствами, то получающаяся система условий также определяет выпуклый многогранник.

Напомним определение часто используемого выпуклого множества.

Определение . ε – окрестностью точки называется открытый шар

Очевидно, ε – окрестность точки есть выпуклое множество.

Определение . Точка x называется граничной точкой множества , если ε -окрестность содержит точки, принадлежащие множеству X и точки, не принадлежащие множеству X .

Определение . Точка x называется внутренней точкой множества , если найдется , что ε -окрестность целиком лежит внутри множества X .

Замечание . Граничная точка может и не принадлежать множеству X . Например, для множестваОпределение . Множество Х называется ограниченным , если его диаметр является конечным числом.

Определение . Конусом называется такое множество, что из следует, что .

Замечание . Из определения следует, что конус содержит нулевую точку х = 0. Конус является неограниченным множеством (за исключением вырожденного случая, когда конус содержит всего лишь одну точку х = 0). Конус может быть как замкнутым, так и незамкнутым множеством.

Определение . Компактом называется замкнутое ограниченное множество.

Замечание . Замкнутые ограниченные множества представляют особый интерес в связи с теоремой Вейерштрасса, которая утверждает, что непрерывная функция на замкнутом ограниченном множестве (компакте) достигает своего наибольшего и наименьшего значений.

    Задачи выпуклого программирования

    1. Выпуклые множества

2.1.1. Понятие выпуклого множества

Определение . МножествоSE n называется выпуклым, если для любых двух точек
и
имеем

при любом
. Геометрически это означает, что вместе с
и
и весь отрезок
принадлежит множеству . Отметим, что отрезок
называется выпуклой комбинацией точек
и
.

Примеры выпуклых множеств

1. E n .

2. Пустое множество.

3. Множество, состоящее из одной точки

,

где
.

4. Гиперплоскость

где
, a ≠
0, иb – число. Приn = 3 это множество совпадает с обычной плоскостью, а приn = 2 – с прямой.

5. Полупространство

где
, a ≠
0, иb – число.

6. Конус

а y (k) – заданные векторы
. Заметим, что часто рассматриваются конусы с вершиной не в нуле, а в какой-либо другой точке
, то есть множества типа

7. Выпуклая комбинация (оболочка) конечного числа точек

Такое множество геометрически представляет собой n -мерный выпуклый многогранник.

8. Пересечение конечного числа полупространств

где
.
Такое множество называется многогранным выпуклым множеством. В том случае, когда оно ограничено, оно также является выпуклым многогранником. Таким образом, возможны два представления выпуклого многогранника – в виде выпуклой оболочки конечной совокупности точек и в виде пересечения конечного числа полупространств, заданных неравенствами.

9. Шар радиуса r ≥0 с центром в

.

В качестве примеров невыпуклых множеств можно назвать множество целых чисел или множество рациональных чисел.

2.1.2. Свойства выпуклых множеств

    Пересечение любого числа выпуклых множеств является выпуклым множеством.

    Объединение двух выпуклых множеств не обязательно выпукло.

Пример: объединение двух точек не есть выпуклое множество.



также является выпуклым множеством.

Эти утверждения следуют из определения выпуклого множества. Докажем, например, первое утверждение для пересечения двух множеств
и
. Пусть. Рассмотрим

Из выпуклости A иB получаем, что
и
при всех
.
Отсюда
. Утверждение доказано.

Определение .Крайней (экстремальной) точкой выпуклого множества называется такая его точка, которая не может быть представлена в виде выпуклой комбинации двух различных точек этого множества.

В качестве примера приведем выпуклый многогранник. Его крайними точками являются его вершины.

Определение . МножествоSE n называетсястрого выпуклым , если оно выпукло и все его граничные точки являются крайними.

Примером строго выпуклого множества является замкнутый шар.

2.1.3. Опорная гиперплоскость

Рассмотрим важнейшее понятие опорной гиперплоскости . Прежде всего заметим, что любая гиперплоскость , где
, a ≠
0, определяет в пространстве
два замкнутых полупространства

Гиперплоскость является пересечением этих полупространств и одновременно границей каждого из них.

Пусть имеется некоторое выпуклое множество S и его граничная точкаy .

Определение . ГиперплоскостьH , проходящая через точкуy и содержащая все точки множествоS в одном из определяемых ею замкнутых полупространств, называется гиперплоскостью,опорной к множествуS в точкеy .

Можно показать, что опорную гиперплоскость можно провести через любую граничную точку выпуклого множества. Иллюстрация опорной гиперплоскости приведена на рис. 3.1.

Рис. 3.1. Опорная гиперплоскость H к выпуклому множеству S в точке y .

Отметим, что опорная гиперплоскость может быть не единственна (см. рис. 3.2).

Рис. 3.2. Две опорных гиперплоскости H 1 и H 2 к выпуклому множеству S в точке y .

Пусть теперь задано два непустых множества A иB . ГиперплоскостьH называетсяразделяющей гиперплоскостью, если все точки множестваA лежат в одном из замкнутых полупространств, определяемых гиперплоскостьюH , а все точки множестваB лежат в другом из определяемых ею замкнутых полупространств. Можно доказать несколько теорем о разделяющих гиперплоскостях. Рассмотрим простейшую из них. Пусть
– совокупность внутренних точек множестваA .

Теорема 3.1. ПустьA иB – два непустых выпуклых множества, причем
Ø. Тогда существует гиперплоскостьH , разделяющая множестваA иB. 1

Примеры разделяющих гиперплоскостей приведены на рис. 3.3 и 3.4.

Рис. 3.3. Гиперплоскость H разделяет множества S 1 и S 2 , не имеющие общую точку

Рис. 3.4. Гиперплоскость H разделяет множества S 1 и S 2 , имеющие общую точку

      Выпуклые и вогнутые функции

Свойства выпуклого множества

Классификация и специфика задач математического программирования.

Введение в математическое программирование.

Математическое программирование является одним из способов исследования операций в экономике. Содержание математического программирования составляют теория и методы решения задач о нахождении экстремума функции на некотором множестве. Множества могут определяться как линœейными так и не линœейными ограничениями. Главная цель задач математического программирования – выбор программ действий, приводящих к наилучшему результату, с точки зрения лица, принимающего решения (ЛПР). Проблема принятия решения в последовательности операции неразрывно связано с проблемами моделирования.

Определœение модели.

Модель - ϶ᴛᴏ образ изучаемого явления или объекта.

Этапы моделирования.

1. Построение качественной модели, ᴛ.ᴇ. выделœение факторов, которые представляются наиболее важными в установлении закономерности, которым они подчиняются.

2. Построение математической модели. Запись качественной модели в математических терминах.

Математическая модель принято называть точной если всœе исходные величины числовых параметров модели являются точными (к примеру, результаты наблюдений). В этом смысле точную модель называют идеальной. Далее будем полагать, что у точной задачи всœегда существует точное решение(результаты наблюдений). В реальной ситуации сведения о входных параметрах носят, как правило, приблизительный характер (результаты измерений). В этом случае полученные задачи называются реальными, а их решения – реальными решениями.

Реальное решение может и не существовать .

2 этап. Включает также построение целœевой функции, ᴛ.ᴇ. такой числовой характеристики, большему или меньшему значению которой соответствует лучшая ситуация с точки зрения лица, принимающего решения.

3 этап. Исследование влияния переменных на значения целœевой функции, нахождение решения, поставленной задачей.

4 этап. Сопоставление результатов вычисления, полученных на 3 этапе с моделированным объектом, ᴛ.ᴇ. критерий практики.

Здесь устанавливается степень адекватности модели и моделируемого объекта.

В математическом программировании можно выделить два направления:

· Собственно математическое программирование – детерминированные задачи, когда вся исходная информация полностью определœена;

· Стохастическое программирование. К нему относятся задачи, в которых исходная информация содержит неопределённость, либо когда некоторые параметры носят случайный характер с известными вероятностными характеристиками.

В математическом программировании выделяют следующие разделы:

1) Линœейное программирование. В этих задачах целœевая функция линœейна, а множества, на котором исследуется его экстремальное значение задается системой линœейных равенств или неравенств. В свою очередь, в линœейном программировании существуют классы задач, структура которых позволяет создавать свои специальные методы решения, выгодно отличающиеся от методов общего характера. К примеру, транспортная задача.

2) Нелинœейное программирование. Данная задача и целœевая функция и ограничения носят нелинœейный характер.
Размещено на реф.рф
Задачи нелинœейного программирования обычно классифицируют на:

a) Выпуклое программирование, когда целœевая функция выпукла и выпукло множество, на котором решается задача.

b) Квадратичное программирование, когда целœевая функция квадратична, а ограничения линœейное равенство или неравенство.

c) Многоэкстремальные задачи. Обычно выделяются специальные классы задач, часто встречающиеся в примечаниях. К примеру, задача минимизации на выпуклом множестве вогнутых функций.

3) Целочисленное программирование, когда на значения переменных или на значения целœевой функции накладывается условие целочисленности.

Специфика задач математического программирования состоит в том, что, во-первых, методы классического анализа для отыскания условных экстремумов неприменимы, т.к. даже в простых задачах экстремумы достигаются в углах многогранника решения, а, следовательно, нарушается дифференцируемость функции.

Во-вторых, в практических задачах число переменных и ограничений столь велико, что если перебирать всœе точки в экстремальности, то может не хватить ресурсов ЭВМ, в связи с этим цель математического программирования создание, где возможно, аналитических методов решения, а при отсутствии таких методов – создание эффективных вычислительных способов нахождения принудительного решения.

Элементы выпускного анализа.

Множество Х принято называть замкнутым если оно содержит всœе свои предельные точки

Множество Х принято называть ограниченным если существует шар конечного радиуса с центром в любой точке этого множества целиком включающее в себя это множество.

Множество Х принято называть выпуклым множеством если на ряду с каждыми точками Х1, Х2 є этому множеству всœе точки Х равны (1-α)· , где 0≤α≤1 так же принадлежат этому множеству Х. Т.е. если множеству Х, то и отрезок, соединяющий эти точки, тоже множеству Х.

Пример:

Дано множество Ө ={х, у такие, что х+у≤1. Доказать, что данное множество является выпуклым.

Пусть взяли две точки () и () Ө (ᴛ.ᴇ. + ≤1 и + ≤1).

Доказать, что точка

1. Теорема 1

Пересечение выпуклых множеств является выпуклым множеством.

Доказательство:

Пусть Х пересечение множеств и, где и выпуклые множества.

Докажем, что Х выпуклое множество.

Пусть точки и Х. Докажем, что отрезок, соединяющий эти точки, тоже принадлежит множеству Х.

т.к. и Х => и Х1

Х1 выпуклое множество => отрезок [ , ] Х1

т.к. , Х => они Х2

Х2 выпуклое множество.

Отсюда следует, что отрезок [ , ] Х1∩Х2=Х

Теорема доказана.

2. Теорема 2.

Объединœение выпуклых множеств не всœегда является выпуклым.

3. Свойство определённости.

Рассмотрим двухмерное пространство, в котором имеется неĸᴏᴛᴏᴩᴏᴇ замкнутое и выпуклое множество Х и некая точка d (,), где d Х, тогда найдётся прямая

С такая, что будут выполняться неравенства

Гиперплоскостью в пространстве R принято называть множество точек x (которая удовлетворяет равенству

Свойства выпуклого множества - понятие и виды. Классификация и особенности категории "Свойства выпуклого множества" 2017, 2018.

Задача линейного программирования - это нахождение минимума линейной функции f: n > 1 , заданной на некотором замкнутом выпуклом множестве, выделенном линейными неравенствами.

Общая задача линейного программирования имеет вид:

Дана система m линейных уравнений и неравенств с n переменными

и линейная функция F = c 1 x 1 + c 2 x 2 +… + c n x n min (max)

Система (1) называется системой ограничений, а функция F - линейной функцией, линейной формой, целевой функцией или функцией цели.

Более кратко общую задачу линейного программирования можно представить в виде:

x={x|Axb, A=, b=( T )}

Задачу линейного программирования записывают и в других формах - канонической и нормальной. Канонической задачей - обозначение Зк, назовем такую:

x={x|Axb, ?0, j=)}

Нормальной задачей - обозначение Зн, назовем такую

x={x|Axb, ?0, j=)}

Выпуклые множества и функции

Определение выпуклого множества: множество - - выпуклое, если вместе с любыми двумя точками множеству принадлежат все точки отрезка, соединяющего в пространстве точку с точкой.

На следующем рисунке изображены два множества на плоскости: одно выпуклое, а другое нет.

Рис. 1

Выпуклыми в пространстве являются, например, такие множества: всё пространство, его положительный октант и неотрицательный октант, любой шар, как открытый, так и замкнутый, любая гиперплоскость (заданная некоторым уравнением вида, а также открытое и замкнутое полупространства, заданные, соответственно, условиями и.

Среди точек выпуклого множества можно выделить внутренние, граничные и угловые точки.

Точка множества называется внутренней , если в некоторой ее окрестности содержатся точки только данного множества.

Точка множества называется граничной , если в любой ее окрестности содержатся как точки, принадлежащие данному множеству, так и точки, не принадлежащие ему.

Особый интерес в задачах линейного программирования представляют угловые точки. Точка множества называется угловой (или крайней), если она не является внутренней ни для какого отрезка, целиком принадлежащего данному множеству.

На рис. приведены примеры различных точек многоугольника: внутренней (точки М), граничной (точка N) и угловых (точки А, В, С, D, Е). Точка А - угловая, так как для любого отрезка, целиком принадлежащего многоугольнику, например, отрезка АР, она не является внутренней; точка А - внутренняя для отрезка KL, но этот отрезок не принадлежит целиком многоугольнику.

Для выпуклого множества угловые точки всегда совпадают с вершинами многоугольника (многогранника), в то же время для невыпуклого множества это не обязательно. Множество точек называется замкнутым, если включает все свои граничные точки. Множество точек называется ограниченным , если существует шар (круг) радиуса конечной длины с центром в любой точке множества, который полностью содержит в себе данное множество; в противном случае множество называется неограниченным. Выпуклое замкнутое множество точек плоскости, имеющее конечное число угловых точек, называется выпуклым многоугольником, если оно ограниченное, и выпуклой многоугольной областью, если оно неограниченное.

Функция f: называется выпуклой, если ее надграфик epi f= является выпуклым множеством. На рисунке изображена выпуклая функция, её график выделен синим и надграфик закрашен зеленым.

Функция f: называется замкнутой, если ее надграфик - замкнутое множество.

Геометрический смысл решений неравенств, уравнений и их систем

Рассмотрим решения неравенств.

Утверждение 1. Множество решений неравенства с двумя переменными a11x1+a12x2<=b1 является одной из двух полуплоскостей, на которые вся плоскость делится прямой a11x1+a12x2=b1, включая и эту прямую, а другая полуплоскость с той же прямой есть множество решений неравенства a11x1+a12x2>=b1.

Для определения искомой полуплоскости (верхней или нижней) рекомендуется задать произвольную контрольную точку, не лежащую на ее границе - построенной прямой. Если неравенство выполняется в контрольной точке, то оно выполняется и во всех точках полуплоскости, содержащей контрольную точку, и не выполняется во всех точках другой полуплоскости. И наоборот, в случае невыполнения неравенства в контрольной точке, оно не выполняется во всех точках полуплоскости, содержащей контрольную точку, и выполняется во всех точках другой полуплоскости. В качестве контрольной точки удобно взять начало координат О (0; 0), не лежащее на построенной прямой.

Рассмотрим множество решений систем неравенств.

Утверждение 2. Множество решений совместной системы т линейных неравенств с двумя переменными является выпуклым многоугольником (или выпуклой многоугольной областью).

Каждое из неравенств в соответствии с утверждением 1 определяет одну из полуплоскостей, являющуюся выпуклым множеством точек. Множеством решений совместной системы линейных неравенств служат точки, которые принадлежат полуплоскостям решений всех неравенств, т.е. принадлежат их пересечению. Согласно утверждению о пересечении выпуклых множеств это множество является выпуклым и содержит конечное число угловых точек, т.е. является выпуклым многоугольником (выпуклой многоугольной областью).

Координаты угловых точек - вершин многоугольника находят как координаты точек пересечения соответствующих прямых.

При построении областей решений систем неравенств могут встретиться и другие случаи: множество решений - выпуклая многоугольная область (рис. а); одна точка (рис. б); пустое множество, когда система неравенств несовместна (рис. в).

Определение понятия двойственности с помощью преобразования Лежандра

Пусть f:. Функция f*: определенная равенством f*(x*)==(x*), называется сопряженной функцией к f, а функция f**: определенная по правилу f**(x*)==(x*), называется второй сопряженной функцией к f.

Отображение f* (x*) =< x*, x> ? f(x) называется преобразованием Лежандра.

Обычный прием построения двойственной задачи состоит в следующем. Задача минимизации

где X - линейное пространство, включается в класс подобных ей задач, зависящих от параметра:

где Y - некоторое другое линейное пространство, F (x, 0)=f(x) (функцию F называют возмущением f). Обычно F предполагается выпуклой. Двойственной к задаче по отношению к данному возмущению наз. задача

где F* - функция, двойственная (сопряженная) с F в смысле Лежандра - Юнга - Фенхеля. Такая двойственность позволяет связать с каждой выпуклой функцией f: X-> R двойственный объект - сопряженную функцию, заданную на сопряженном пространстве X* и определяемую формулой

Для простейших задач выпуклого программирования типа

где X - линейное пространство, выпуклые функции на X, В-выпуклое множество в X (частными случаями (3) являются задачи линейного программирования), обычно применяются следующие стандартные возмущения, зависящие от параметров y=(у 1 ,…, y m), m, Теоремы двойственности для общих классов задач выпуклого программирования утверждают, что при некоторых допущениях на возмущение F значения задач (2) и (2*) совпадают, и более того, решение одной из задач является множителем Лагранжа для другой.

Множество X называется выпуклым, если для любых двух его точек A,B ∈ X все точки отрезка также принадлежат множеству X, то есть если для любых двух его точек A,B ∈ X и для любого значения α in точка M = αA + (1 − α)B также принадлежит множеству X: M ∈ X.

Пусть дано X1, ...Xn - выпуклые множества. Обозначим Y =Xi - пересечение выпуклых множеств. Покажем, что Y - выпуклое множество. Для этого покажем, что длялюбых точек A,B ∈ Y и для любого значения α in точка M = αA + (1 − α)B также принадлежит множеству Y: M ∈ Y . Так как Y - суть пересечение выпуклых множеств X1, ...Xn, то выбранные произвольным образом точки A,B принадлежат каждому из этих множеств Xi, i = 1..n. В силу выпуклости каждого из множеств Xi по определению следует, что для произвольно выбранного значения α ∈ точка M = αA+(1−α)B принадлежит каждому из множеств (все они выпуклы и содержат A,B). Так как все множества Xi содержат точку M, то и

пересечение этих множеств также содержит точку M: M ∈ Y . Из последнего включения в силу произвольности A,B ∈ Y и произвольности параметра α ∈ следует выпуклость множества Y , что и требовалось показать.

95. Является ли множество точек , удовлетворяющих условию , выпуклым? Ответ обоснуйте.

Да, очевидно, что это равенство задаёт линейную полуплоскость в R4.

Обоснуем это по оределению:

A = (a1, a2, a3, a4), B= (b1, b2, b3, b4) ∈ X,

удовлетворяющие вышеуказанному неравенству.

Рассмотрим произвольную точку M = αA + (1 − α)B, где α ∈ – произвольное значение параметра. ТогдаM(m1,m2,m3,m4) = αA + (1 − α)B

m1 = αa1 + (1 − αb1)

m2 = αa2 + (1 − αb2)

m3 = αa3 + (1 − αb3)

m4 = αa4 + (1 − αb4)

выполнимости заданного неравенства:

5 + 2m1 + 3m2 − m3 + 5m4 ≥ 0

5 + 2(αa1 + (1 − αb1)) + 3(αa2 + (1 − αb2)) − (αa3 + (1 − αb3)) + 5(αa4 + (1 − αb4)) ≥ 0

Представим 5 = α5+(1−α)5, раскроем и сгруппируем слагаемые для ai и bi. Получим:

α(5 + 2a1 + 3a2 − a3 + 5a4) + (1 − α)(5 + 2b1 + 3b2 − b3 + 5b4) ≥ 0

Так как точки A,B лежат в множестве X, то их координаты удовлетворяют неравенству,

задающему множество. Значит, оба слагаемых неотрицательны в силу неотрицательности



α и 1 − α. Поэтому последнее неравенство выполнено для любых A,B и любого значения

параметра α ∈ . По определению мы показали, что данное множество X является

выпуклым.

96. Является ли множество точек удовлетворяющих условию , выпуклым? Ответ обоснуйте.

Да, очевидно, что это равенство задаёт линейную гиперплоскость в R4.

Обоснуемэто по оределению:

Рассмотрим любые две точки этого пространства

A = (a1, a2, a3, a4), B= (b1, b2, b3, b4) ∈ X

удовлетворяющие вышеуказанному равенству.

Рассмотрим произвольную точку M = αA + (1 − α)B, где α ∈ – произвольное значение параметра. Тогда M(m1,m2,m3,m4) = αA + (1 − α)B

m1 = αa1 + (1 − αb1)

m2 = αa2 + (1 − αb2)

m3 = αa3 + (1 − αb3)

m4 = αa4 + (1 − αb4)

Проверим для точки M(m1,m2,m3,m4) принадлежность к множеству X с помощью

выполнимости заданного равенства:

m1 + 2m2 − 3m3 + 4m4 = 55

(αa1 + (1 − αb1)) + 2(αa2 + (1 − αb2)) − 3(αa3 + (1 − αb3)) + 4(αa4 + (1 − αb4)) = 55

Раскроем скобки и сгруппируем слагаемые для ai и bi. Получим:

α(a1 + 2a2 − 3a3 + 4a4) + (1 − α)(b1 + 2b2 − 3b3 + 4b4) = 55

Так как точки A,B лежат в множестве X, то их координаты удовлетворяют равенству,

задающему множество, то есть (a1 + 2a2 − 3a3 + 4a4) = 55 и (b1 + 2b2 − 3b3 + 4b4) = 55.

Подставив эти равенства в последнее выражение получим:

α55 + (1 − α)55 = 55

Последнее равенство выполнено для любых A,B и любого значения параметра α ∈ . По определению мы показали, что данное множество X является выпуклым.

97. Приведите примеры выпуклого множества: а) имеющего угловую точку; б) не имеющего угловой точки. Может ли не ограниченное выпуклое множество иметь угловую точку? Приведите пример.

а) квадрат имеет 4 угловые точки

б) окружность не имеет угловых точек

в) неограниченное множество может иметь угловые точки: имеет одну угловую точку (0;0)

98. Дайте определение выпуклой оболочки системы точек. Пусть - выпуклая оболочка точек , , , . Принадлежат ли множеству точки: , ? Ответ обоснуйте.

то есть выполнено условие того, что это выпуклая линейная комбинация, а значит X входит в состав выпуклой оболочки. Предположим, что Y входит также в выпуклую комбинацию, тогда все точки отрезка должны входить в линейную комбинацию, но по исходным точкам видно (все они находятся правей прямой x = -1), что вся выпуклая комбинация расположена справа от прямой x =-1, а точка Y - слева, что подтверждает, что ни весь отрезок ни точка Y - не принадлежат выпуклой оболочке.

Последние материалы сайта