Гипотеза о том что мир виртуальный. Компьютерная симуляция вселенной — жизнь внутри «матрицы»

23.09.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Экология сознания. Жизнь: В этой дискуссии о том, настоящий наш мир или выдуманный, практически не звучит другой важный довод...

Вы, наверное, это уже слышали: наш мир может оказаться изощренной компьютерной симуляцией, которая создает ощущение, что мы живем в реальной вселенной . Недавно эту тему поднял Илон Маск. И очень может быть, он прав. Но в этой дискуссии о том, настоящий наш мир или выдуманный, практически не звучит другой важный довод: это совершенно не важно .

Но сперва давайте разберемся, почему же мир может быть симуляцией. Подобные идеи выдвигали еще древние греки - то, что мы можем назвать компьютерной симуляцией, они считали, например, снами. И первое, что нужно понять - наше восприятие реальности не равняется самой реальности . Реальность - это просто набор электрических импульсов, интерпретируемых нашим мозгом. Мы воспринимаем мир не напрямую и не самым совершенным образом. Если бы мы могли видеть мир таким, какой он есть, не было бы ни оптических иллюзий, ни дальтонизма, ни разного рода трюков, позволяющих вводить мозг в заблуждение.

Более того, мы воспринимаем лишь упрощенную версию этой сенсорной информации. Видеть мир таким, какой он есть, требует слишком много вычислительной мощи, так что наш мозг упрощает его. Он постоянно ищет в мире паттерны и соотносит их с нашим восприятием. Поэтому то, что мы называем реальностью, есть лишь попытка мозга обработать входящие данные с органов чувств.

И если наше восприятие зависит от этого упрощенного потока информации, не важно, каков его источник - физический мир или компьютерная симуляция, которая подбрасывает нам ту же самую информацию. Но возможно ли создать столь мощную симуляцию? Давайте посмотрим на вселенную с точки зрения физиков.

Фундаментальные законы

С физической точки зрения, в основе мира лежат четыре фундаментальных взаимодействия:

  • сильное,
  • слабое,
  • электромагнитное,
  • гравитационное.

Они управляют поведением всех частиц в известной нам вселенной. Просчитать действие этих сил и симулировать простейшие взаимодействия довольно легко, и в какой-то степени мы это уже делаем. Но чем больше взаимодействующих друг с другом частиц добавляется в эту картину, тем сложнее ее моделировать. Впрочем, это вопрос вычислительной мощи.

Сейчас нам не хватает вычислительной мощи, чтобы смоделировать всю вселенную. Физики даже могут сказать, что такое моделирование невозможно - не потому, что это слишком сложно, а потому, что компьютер, моделирующий вселенную, будет больше, чем вся эта вселенная. И это, очевидно, невозможная задача. Однако в этой логике есть изъян: симулировать вселенную целиком и создать ощущение, что вы живете в некой вселенной - это не одно и тоже .

Многие компьютерные задачи было бы невозможно решить, если бы наш мозг не удавалось так легко обмануть. Например, мы смотрим кино или видео в интернете, которое передается с задержкой и фрагментарно, но мы воспринимаем все это как один последовательный поток. Логика простая: нужно снизить детализацию до уровня, на котором достигается оптимальный компромисс между качеством и сложностью и на котором мозг перестает проводить различия.

Есть масса приемов, позволяющих снизить потребность в вычислительных мощностях при симулировании вселенной. Самое очевидное: не обрабатывать и не показывать то, на что никто не смотрит. Другой прием - изобразить, как будто вселенная огромна и беспредельна, хотя на самом деле это не так. Этот прием используется во многих видеоиграх: снижая детализацию при изображении «далеких» объектов, мы экономим массу усилий и генерируем объекты только тогда, когда игрок их реально обнаруживает. Например, в игре No Man’s Sky огромная виртуальная вселенная генерируется на ходу, по мере того, как игрок ее исследует.

Наконец, можно внедрить фундаментальные физические принципы, ввиду которых крайне трудно или вообще невозможно достичь любой другой планеты, а значит, те, кто испытывает симуляцию, заперты в своем собственном мире (скорость света, постоянно расширяющаяся вселенная - ага, ага).

Если соединить эти подходы с некоторыми математическими приемами (например, фрактальной геометрией), можно создать достаточно приличную симуляцию вселенной, которая опирается на эвристические принципы нашего мозга. Эта вселенная кажется бесконечной, но это всего лишь трюк.

Впрочем, это само по себе не доказывает, что - как говорят Маск и другие сторонники этой идеи, - мы с высокой вероятностью живем в виртуальном мире.

В чем состоит аргумент?

Симуляция и математика

Аргумент о симуляции проработал оксфордский философ Ник Бостром. Он опирается на несколько предпосылок, которые - при определенной их интерпретации - позволяют сделать вывод, что наша вселенная, скорее всего, симуляция . Все довольно просто:

1. Вселенную вполне возможно симулировать (см. выше).

2. Каждая цивилизация или вымирает (пессимистический взгляд) до того, как приобретает возможность симулировать вселенную, или теряет интерес к симуляции, или же продолжает развиваться, достигает технологического уровня, позволяющего создавать такие симуляции - и делает это. Это лишь вопрос времени. (Поступим ли мы так же? А как же…)

3. Достигнув этого уровня, цивилизация создает множество разных симуляций. (Каждому хочется иметь свою вселенную.)

4. Когда симуляция достигает определенного уровня, она сама начинает создавать собственные симуляции (и так далее).

Если проанализировать все это автоматически, то придется заключить, что вероятность обитания в реальном мире крайне невелика - слишком много потенциальных симуляций. С этой точки зрения вероятнее, что наш мир - симуляция 20 уровня, а не оригинальная вселенная.

В первый раз, когда я услышал этот аргумент, я несколько испугался. Но вот хорошая новость: это не имеет значения.

«Реальность» - это лишь слово

Мы уже обсудили, что наше восприятие реальности сильно отличается от самой реальности. Предположим на минуту, что наша вселенная - действительно компьютерная симуляция. Это порождает следующую логическую цепочку:

1. Если вселенная - лишь модель, она представляет собой сочетание битов и байтов, попросту говоря, информацию.

2. Если вселенная - это информация, то и вы - информация, и я - информация.

3. Если все мы - информация, то наши тела - лишь воплощение этой информации, своего рода аватары. Информация не привязана к конкретному объекту. Ее можно копировать, преобразовывать, менять как захочется (нужны только соответствующие методики программирования).

4. Любое общество, способное создать симуляцию мира, также способно дать вашей «персональной» информации новый аватар (поскольку для этого требуется меньше знаний, чем для симуляции вселенной).

Иными словами, информация, определяющая вас, не привязана к вашему телу. Философы и теологи давно спорят о дуальности тела и души (разума, личности и т.п.). Так что эта концепция наверняка вам знакома.

Таким образом, реальность - информация, и мы - информация. Симуляция - часть реальности, которую она симулирует, и все, что мы симулируем, тоже реальность с точки зрения тех, кого мы симулируем. Значит, реальность - это то, что мы переживаем. Есть довольно популярные теории, утверждающие, что каждый объект, который мы видим - это проекция информации с другого конца вселенной или даже из другой вселенной.

То есть, если вы что-то испытываете, воспринимаете - это «реально». И симулированная вселенная столь же реальна, как вселенная, управляющая симуляцией, поскольку реальность определяется содержанием информации - а не тем, где эта информация хранится. опубликовано

П о оценкам многих специалистов, примерно лет через 50-100 вычислительные возможности компьютеров вырастут в миллионы раз. Благодаря этому мы сможем создавать виртуальные миры настолько реалистичными, что их персонажи фактически обретут разум, но не будут знать о том, что живут в симуляции.

Кое-кто из учёных даже выдвинул идею, что гипотетически мы все можем быть героями компьютерной игры.

Гипотеза о виртуальности нашего мира была впервые широко представлена в 2003 году философом Ником Бостромом. Он предположил, что если существуют множество достаточно развитых цивилизаций, они склонны создавать симуляции Вселенной или её частей, и мы с большой вероятностью живём в одной из них.

Ник Бостром

Летом 2016 года Илон Маск заявил, что существует лишь один шанс из миллиарда, что наша реальность не подделка. То есть по факту он на все 100 уверен, что мы живём в матрице (про это несколько месяцев назад мы уже делали отдельное видео).

Илон Маск

Ну а сегодня попытаемся найти доказательства тому, что наш мир и правда является всего лишь симуляцией. Поехали!

Видеоигры

Для того чтобы понять суть первого доказательства, надо зайти издалека, а именно с того, как работают видеоигры.

Grand Theft Auto V

Например, играя в GTA V , находясь на одной из улиц города этой игры, вы можете видеть, как по дороге едут машины, по тротуару ходят люди и, в целом, кипит жизнь.

Свернув за угол и перейдя на другую улицу, вы видите то же самое.

Из-за этого создаётся иллюзия, что это же сейчас происходит и на других улицах данного города. Но это не так.

На самом деле, на других районах в этот момент ничего не происходит. Пока вы там не появитесь, эти улицы будут пусты, там даже текстуры не будут прогружены. Но как только вы туда придёте, незаметно для вас там моментально появятся всё те же пешеходы, автомобили, животные и т. д.

Так вот – по такому принципу работают все видеоигры. Делается это с целью оптимизации нагрузки на «железо» вашего компьютера. То есть, когда в игре вы смотрите вперёд, компьютер максимально фокусирует изображение перед вашим взором. При этом текстуры и объекты позади вас, на которые вы не смотрите, сильно упрощаются или вовсе исчезают.

Это и позволяет облегчить нагрузку на вашу игровую платформу, выдавая максимально красивую графику.

Теперь попробуем всё в той же GTA V посмотреть на город с высоты. Перед нами всё становится видно как на ладони.

Мы можем наблюдать, как одновременно по многочисленным улицам едут машины. Спрашивается, как мощности игровой консоли хватает на просчёт такого числа машин? А вся хитрость состоит в том, что у автомобилей вдали включается очень упрощённая физика.

Например, если мы выпустим ракету в те машины, то от взрыва они даже не разлетятся в разные стороны.

Но как только мы подойдём поближе к одной из улиц, так сразу физика автомобилей усложнится, и они, наконец, начнут реагировать на взрывы.

Sid Meier’s Civilization V

Теперь давайте посмотрим на игру Цивилизация V .

Если я резко перемещу камеру в другой конец карты, то мы можем увидеть, как на наших глазах локация быстро прогружается, хотя она это должна была сделать за пару мгновений до того, как мы на неё посмотрели.

Но дело в том, что у Цивилизации V несовершенный игровой движок, потому мы можем замечать такие задержки. Локация будто бы понимает, что за ней начали наблюдать и быстро внешне становится такой, какой её задумывали разработчики. Получается, что наблюдатель влияет на игровой мир даже простым своим наблюдением.

Так вот, как я и говорил, по такому принципу видеоигры будут работать всегда. Даже через много лет, когда компьютеры будут настолько мощными, что смогут одновременно просчитывать все крупные объекты в виртуальном большом городе, всё равно останутся какие-нибудь мелкие детали, например, насекомые или микробы, которые прогружаться будут только тогда, когда на них смотрит наблюдатель, т. е. игрок. И всё ради оптимизации! Это было важное предисловие.

Теперь перейдём к первому доказательству теории матрицы.

Эксперимент с двумя щелями

Давайте познакомимся с квантовой механикой, а точнее с экспериментом с двумя щелями. Это самый знаменитый эксперимент в истории физики. Его повторяли больше чем любые другие эксперименты, потому что у него были ошеломляющие результаты, и все учёные хотели получить их лично. Именно этот эксперимент перевернул с ног на голову всю физику и вдохновил многих учёных изучать квантовую механику.

Твёрдые частицы

Чтобы понять суть этого эксперимента, мы сначала должны посмотреть на то, как ведут себя частицы.

Если мы будем обстреливать щит с прорезью небольшими твёрдыми шариками, то на экране, о который они бьются, мы увидим одну полоску.

Если мы добавим ещё одну щель и будем обстреливать щит, то на экране мы закономерно увидим две полоски.

Волны

А теперь давайте посмотрим, как в этом случае себя поведут волны.

Волны прошли сквозь прорезь и распространились, ударяя экран с наибольшей силой строго по линии прорези.

Яркая полоска на экране показывает силу удара. Она похожа на полосу в первом эксперименте с твёрдыми шариками.

Но! Когда мы добавляем вторую щель, то происходит нечто иное. Если вершина одной волны встречается с вершиной другой, то они гасят друг друга, и на экране мы увидим интерференционный узор из многих полосок.

Точка, где пересекаются две вершины волн, даёт наивысшую силу удара, и мы видим яркие полосы, а там, где волны гасят друг друга, ничего нет.

Таким образом, если мы пропускаем твёрдые шарики через две щели, то видим две полоски.

А вот с волнами мы видим интерференционный узор из многих полосок.

Пока всё понятно.

Элементарные частицы

А теперь давайте посмотрим на кванты. Фотон – это очень маленькая частица света. Если мы пропустим фотоны через одну щель, то увидим одну полоску на экране, как и в случае с твёрдыми шариками.

Но если мы пропустим фотоны через две щели, то ожидаем увидеть две полоски. Но нет!

Каким-то мистическим образом на экране появляется интерференционный узор из многих полосок.

Как же так? Мы выпустили фотоны, – маленькие частицы света – ожидая увидеть две полоски, но вместо этого видим много полосок, как в случае с волнами. Это ведь невозможно!

Позже учёные выяснили, что такое же странное поведение показывают не только фотоны, но и электроны, протоны и различные атомы. Физики долго ломали голову над этой загадкой.

Они подумали: быть может, эти маленькие шарики бьются друг о друга, из-за чего отталкиваются в разные стороны и поэтому создают интерференционный узор из многих полосок?

Тогда физики стали выстреливать по одной микрочастице друг за другом, чтобы не было ни малейшего шанса их взаимодействия. И вот тут у учёных случился когнитивный диссонанс: вскоре на экране вновь появился интерференционный узор, нарушая все законы физики.

Как же так? Как элементарные частицы могут создавать узор, словно волны? Ведь их выпускали по одной! Этого никто не понимал.

По логике получалось, что частица будто бы разделялась надвое, проходила через обе щели и ударялась сама о себя. Просто бред какой-то!

Физики были полностью обескуражены этим. Они решили подсмотреть, через какую щель частица проходит на самом деле. Они поставили измеряющий прибор возле одной из щелей и выпустили электрон.

Но в квантовой механике – больше мистики, чем учёные могли себе представить. Когда они начали наблюдать, частицы снова стали вести себя как маленькие шарики и произвели изображение двух полосок, а не интерференционный узор из многих полосок.

То есть сам факт измерения или наблюдения за тем, через какую щель прошёл электрон, выявил, что он проходит через одну прорезь, а не через две. Электрон решил повести себя иначе, как будто знал, что за ним наблюдают. Наблюдатель разрушил волновую функцию частицы лишь только фактом своего наблюдения! Это вам ничего не напоминает?

Да, всё это очень сильно похоже на работу игрового движка. Создаётся впечатление, что наша Вселенная будто запущена на каком-то компьютере, мощности которого недостаточно, чтобы с точностью просчитывать движение каждой отдельной микрочастицы в пространстве, поэтому он это делает по упрощённой модели в виде волны вероятности. А более точные просчёты начинает делать только тогда, когда за конкретной частицей начинают наблюдать, чтобы не сломать для наблюдателя иллюзию реальности его мира. Такой приём облегчает нагрузку на «железо» вычислительной машины – всё, как в видеоиграх!

Но вся проблема в том, что 100 лет назад, когда учёные пытались дать объяснение аномальным результатам эксперимента с двумя щелями, не было видеоигр, и потому физики не додумались выдвинуть гипотезу о том, что мы живём в виртуальной реальности.

Интерпретации квантовой механики

Вместо этого было выдвинуто множество других теорий. Самой известной из них была придумана в 1927 году в городе Копенгаген.

Копенгагенская интерпретация

Учёные Нильс Бор и Вернер Гейзенберг предположили, что элементарные частицы – это как бы одновременно и волны, и частицы.

Нильс Бор и Вернер Гейзенберг

Так вот, для того чтобы измерить электрон, т. е. провести над ним наблюдение, его надо ударить о кванты измерительного прибора. И именно из-за этого удара волновые функции электрона «схлопываются», и он становится только частицей. Таким образом, сам наблюдатель не влияет своим наблюдением на частицу – влияют только кванты измерительного прибора.

Так как это объяснение квантовой механики было сформулировано в городе Копенгаген, его назвали Копенгагенской интерпретацией.

Забавно, но если эта интерпретация верна, то она всё равно не опровергает гипотезу матрицы, т. к. её можно подстроить и под это объяснение.

Например, фотоновая программа может распространяться в сети как волна, а затем перезапускаться в тот момент, когда узел перегружен, превращаясь в частицу. Это объясняет и квантовые волны, и коллапс волновой функции.

Многомировая интерпретация

После Копенгагенской интерпретации второй по популярности объяснение причин странного поведения микрочастиц в эксперименте с двумя щелями стала Многомировая интерпретация.

Её суть заключается в том, что, возможно, существуют как бы параллельные вселенные, в каждой из которых действуют одни и те же законы природы.

И что при каждом акте измерения квантового объекта наблюдатель как бы расщепляется на несколько версий. Каждая из этих версий «видит» свой результат измерения и действует в соответствии с ним в своей вселенной.

Вот такое странное объяснение!

В какую из этих интерпретаций больше верить – решайте сами.

Например, опрос учёных, сделанный в 1997 году, на симпозиуме под эгидой UMBC (University of Maryland, Baltimore County – Мэрилендский университет в Балтиморе) показал, что большинство физиков не верят ни копенгагенской, ни многомировой интерпретации. Голоса распределились следующим образом:

  • 13 человек проголосовало за Копенгагенскую интерпретацию;
  • 8 – за Многомировую;
  • несколько учёных – за другие, менее популярные интерпретации;
  • 18 физиков высказались против всех предложенных интерпретаций на тот момент времени.

До сих пор спор насчёт правильной интерпретации квантовой механики продолжается по всему миру. Он ведётся между учёными университетов, на конференциях и даже в барах и кафе.

Ну а тем временем в 2006 году развитие технологий позволило впервые провести ещё более хитроумную версию эксперимента с двумя щелями.

Называется она эксперимент с отложенным выбором.

Эксперимент с отложенным выбором

В упрощённом варианте суть эксперимента примерно такая: микрочастицы всё так же пропускаются сквозь барьер с двумя отверстиями. Однако на этот раз физики смогли провести наблюдение тогда, когда частицы уже прошли сквозь отверстия, но ещё не ударились о проекционный экран.

Представьте, что вы стоите перед экраном с закрытыми глазами, а сквозь отверстия проходят микрочастицы в виде волн, но в последнюю секунду перед их ударом об экран вы решили открыть глаза. И вот тут произошло нечто удивительное.

В этот момент электроны становятся частицами, такими, какими они были при запуске из электронной пушки.

Электроны ведут себя так, как будто бы они вернулись в прошлое, будто не прошли сквозь два отверстия, а только через одно, будто они никогда не проявляли свойств волны. Это не укладывается в голове!

Вселенная, пространство, время, скорость света

Следующим намёком, что мы живём в матрице, может являться тот факт, что у нашей Вселенной есть максимальная скорость, хотя и не ясно почему.

Благодаря Эйнштейну все мы знаем, что ничего не может двигаться быстрее, чем фотоны в вакууме. Скорость света является константой.

Дело в том, что наш мир устроен настолько странным образом, что чем быстрее движется объект, тем сильнее замедляется его время. Это было доказано многочисленными экспериментальными проверками.

Доходя до скорости 300 тыс. км / с, время вообще останавливается. Говоря простым языком, если бы у вас был космический корабль, способный разгоняться до 300 тыс. км /с, и вы бы решили на нём полететь в далёкую галактику, которая находится на расстоянии 3 млрд. световых лет от нас, то вы бы туда долетели за одно мгновение, т. к. в процессе полёта время на корабле остановилось бы полностью, а в этот момент на Земле прошло бы 3 млрд. лет.

Так вот, фотоны света и двигаются со скоростью 300 тыс. км / с, и поэтому их время стоит на нуле, а потому разогнаться ещё быстрее просто невозможно. Ведь для увеличения скорости надо ещё сильнее замедлить время, а оно и так на нуле. Вот и возникает вопрос: почему наша Вселенная устроена таким образом, что скорость замедляет время? Почему пространство и время взаимосвязаны? Это очень и очень странно для реального мира, но довольно понятно для виртуального.

Если мы живём в матрице, то скорость света – это продукт обработки информации, следовательно, наш мир обновляется с определённой скоростью.

Процессор суперкомпьютера обновляется 10 квадриллионов раз в секунду.

А наша Вселенная обновляется в триллион раз быстрее, но принципы в основном те же.

Ну а время при росте скорости замедляется, потому что виртуальная реальность зависит от виртуального времени, где каждый цикл обработки является одним «тиком».

Многие геймеры знают, что когда компьютер подвисает, вследствие лага, игровое время тоже замедляется. Точно так же время в нашем мире замедляется с ростом скорости или рядом с массивными объектами, что свидетельствует о виртуальности Вселенной, в которой мы живём.

В корабле, летящем на огромной скорости, все циклы обработки его системы подвисают в целях экономии. Во всяком случае, такое можно допустить.

Квантовая запутанность

Принцип неопределённости

Представьте себе летящую в пространстве микрочастицу, например, фотон света. Во время полёта фотон, так сказать, вращается вверх или вниз, т. е. обладает спином.

Хотя на самом деле фотоны не вращаются, но для простоты понимания это сравнение сюда подходит.

Так вот, когда все физики планеты ломали голову над причинами столь мистических результатов эксперимента с двумя щелями, учёные пришли к выводу, что, скорее всего, до того, как над микрочастицей проводится наблюдение, у неё даже не бывает конкретного спина.

То есть, пока мы не посмотрим на фотон, он летит и при этом не может определиться, в какую сторону ему вертеться, находясь в суперпозиции неопределённости. Словно матушке-природе слишком тяжело точно просчитывать вращение каждой отдельной элементарной частицы в пространстве.

А потому это всё делается по упрощённой схеме, и только после того, как на частицу смотрит наблюдатель, она становится более физически сложной и её вращение, наконец, начинает просчитываться в одном из двух направлений.

Возможность передачи информации быстрее скорости света

Так вот – дальше всё оказалось ещё более невероятным. Когда Эйнштейн размышлял над теорией квантовой механики, он предложил очень интересный эксперимент, который, по его мнению, должен был показать ошибочность или неполноту Копенгагенской интерпретации.

Альберт Эйнштейн

Суть эксперимента такова. Если атом цезия испускает два фотона в разных направлениях, то их состояние из-за закона сохранения импульса становится взаимосвязанным. Это называется квантовая запутанность.

Чтобы было проще понять, объясним так: если один из запутанных фотонов вертится сверху вниз, значит, второй фотон обязан вращаться снизу вверх, т. е. в противоположную сторону. Иначе и быть не может.

Мы с вами уже знаем, что учёные предполагали, что до проведения наблюдения фотон не может определиться, в какую сторону ему вертеться. Выходило, что это происходит, даже если он запутан с другим фотоном и их вращение обязано идти в противоположные друг другу стороны.

Получается, что проведя измерение над одним из запутанных фотонов и узнав, в какую сторону он крутится, мы автоматически заставим второй фотон крутиться в противоположном направлении, хотя над ним мы даже не проводили наблюдения. Причём, второй фотон обязан моментально принять свой спин, как бы далеко он ни находился от первого фотона, над которым мы провели измерение.

Получалось, что даже если запутанные фотоны разнести друг от друга в разные концы Вселенной и провести наблюдение над одним из них, то второй фотон получит информацию об этом в квадриллионы раз быстрее скорости света и моментально изменит свой спин на противоположный. Просто невероятно!

Это нарушало законы физики. Ведь, насколько нам известно, ничего не может двигаться быстрее скорости света. Тогда каким образом второй фотон узнаёт так быстро, что над первым провели измерение? Каким образом до него информация доходит так быстро? Что-то не сходится…

Вот потому Эйнштейн был не согласен с объяснением квантовой механики, говоря, что мгновенная связь между микрочастицами в физической реальности просто невозможна. Он предполагал, что, скорее всего, когда запутанные фотоны вылетают из атома, в них уже бывает изначально заложена информация о том, кто в какую сторону будет вращаться, когда над ними проведут наблюдение. То есть фотоны ещё до измерения запрограммированы на вращение в определённую сторону. Тогда получалось, что проведя измерение над одной частицей, мы никак не влияли на другую, а только узнавали её спин.

Но в квантовой механике гораздо больше мистики, чем предполагал Эйнштейн. Через 17 лет после того, как он умер с чувством правоты, выяснилось, что этот гений жестоко ошибался.

Ирландский физик Джон Белл сделал нечто невозможное.

Джон Белл

Он додумался до одного невероятно хитроумного и очень сложного эксперимента, который бы доказывал или опровергал теорию того, что в элементарные частицы заранее бывает вложена информация о том, в какую сторону им надо будет вертеться, когда над ними проведут наблюдение.

Результаты эксперимента были поразительными: они чётко и ясно показали, что до наблюдения частица действительно понятия не имеет, в какую сторону она должна будет вертеться, даже если она находится в запутанном состоянии с другой частицей. Только строго после измерения фотон рандомно выбирает себе спин. Получается, что запутанные элементарные частицы могут очень легко передавать друг другу информацию гораздо быстрее скорости света!

Физики были полностью ошеломлены этим. Никто не мог понять, как такое вообще возможно. В квантовой механике появилось ещё больше загадок, чем раньше.

Практическое измерение скорости передачи информации между элементарными частицами

В 2008 году группа швейцарских исследователей из университета Женевы задалась целью выяснить, а насколько быстро вторая запутанная частица узнает о том, что над первой провели измерение?

Они разнесли два запутанных фотона на расстояние 18 км друг от друга, провели измерение одной частицы и стали регистрировать, с какой скоростью на это отреагирует вторая.

У учёных была технология, которая позволила бы заметить задержку в 100 тыс. раз превышающую скорость света.

Но никаких задержек выявлено не было. Это означало, что запутанные фотоны умеют сообщаться друг с другом как минимум 100 тыс. раз быстрее скорости света, а скорее всего, вообще моментально!

Теория симуляции

Но хотя насчёт запутанных фотонов Эйнштейн и ошибался, в одном он, возможно, всё же был прав, это когда говорил, что мгновенная связь в физическом мире невозможна.

Что ж, в реальном физическом мире, может, и правда, невозможна. Вот только Эйнштейн не предполагал, что мы, вероятно, живём в цифровой виртуальной реальности.

И вот именно и в ней-то как раз мгновенная связь очень легко объясняется.

С этой точки зрения, когда два фотона запутываются, их программы объединяются для совместного ведения двух точек. Если одна программа отвечает за верхний спин, а другая – за нижний, их объединение будет отвечать за оба пикселя, где бы те ни были.

В моменте измерения одной запутанной частицы её программа рандомно выбирает ей один из спинов, а программа второй запутанной частицы реагирует на это соответствующим образом.

Этот код перераспределения игнорирует расстояния, потому что процессору не нужно ходить к пикселю, чтобы попросить его перевернуться, даже если экран большой, как сама Вселенная!

Уже много лет существует устойчивое выражение, что квантовую механику никто не понимает. Однако если предположить, что наш мир виртуален, то всё становится очень даже понятно.

Для описания мира элементарных частиц и их взаимодействий учёные прибегают к квантовой механике, а для изучения макромира, т. е. больших объектов, используется Общая теория относительности Эйнштейна. Но природа каким-то образом объединила два эти мира, а значит, должна существовать теория, которая одинаково бы подходила к описанию субатомного мира и мира крупнейших тел во Вселенной. И вот как раз гипотеза симуляции прекрасно с этим справляется!

Ею также легко можно объяснить загадку Большого взрыва, искривление пространства, туннельный эффект, тёмную энергию, тёмную материю и много чего ещё.

В последнее время некоторые умы говорят, что теория симуляции даже в случае своего подтверждения не изменит ничего.

Однако с этим утверждением очень трудно согласиться, т. к. официальное подтверждение может сильно подстегнуть более глубокие исследования в этом направлении, благодаря чему нам, возможно, удастся найти новые недостатки нашего мира, т. е. условности, а их уже можно использовать для создания новых технологий.

Например, если квантовые эффекты вызваны именно тем, что мы живём в симуляции, значит, создание таких вещей, как квантовые компьютеры или квантовая криптография и можно назвать использованием условностей нашего мира. Потому теория симуляции в случае своего подтверждения может изменить многое…

Как бы там ни было, с каждым годом учёные находят всё больше и больше косвенных намёков на то, что мы живём в матрице. И если это продолжится теми же темпами, то лет через 30 теория виртуальности нашего мира станет такой же официальной в мире науки, как и теория эволюции.

Возможно, уже скоро в школах ученикам будут рассказывать, что они живут не в реальном мире. Хотя знать, что ты являешься всего лишь сложной программой, обладающей чувствами, самосознанием, немного демотивирует.

Однако Илон Маск, наоборот, считает, что это как раз-таки мотивирует, т. к. данная гипотеза симуляции решает парадокс Ферми и показывает, что разумные цивилизации способны избежать самоуничтожения и технологически доходить до создания своих виртуальных миров. Потому для Маска жизнь в матрице является приятной утопией, и он очень хочет, чтобы это оказалось правдой.

Наверняка вы задумывались о том, что окружающая действительность в чем-то похожа на компьютерную игру. Однозначных доказательств, что наша реальность является виртуальной пока нет, впрочем, как и доказательств обратного. Однако, «ЗА» эту, на первый взгляд, абсурдную идею, говорят некоторые странности строения нашего мира.
В 2003 году Илон Маск сделал обескураживающее заявление: мы находимся внутри компьютерной симуляции. Веским доводом, по его мнению, является то, что ещё 30 лет назад графика игр была на самом низком примитивном уровне, а сейчас – почти не отличить от реальности, а через 100 лет у человечества появится возможность смоделировать вселенную. А что если какая-нибудь суперцивилизация уже спрограммировала нашу вселенную и множество других, и в этих искусственных мирах стало возможным сделать свои виртуальные симуляции, и так бесчисленное количество раз. Тогда получается, что симулированных миров – миллиарды, а настоящая реальность – одна, и шанс оказаться в этой единственной истинной реальности — один к миллиарду. Вывод – мы живём в компьютерной симуляции.
Но давайте отойдём от этих абстрактных рассуждений и обратимся к фактам из жизни. Какие обоснованные аргументы есть в пользу устройства мира, как матрицы.
1. В нашей вселенной господствуют точные науки. Это говорит о том, что наш мир может быть описан при помощи цифрового кода.
2. Идеальные условия для зарождения и существования жизни. Расстояние до солнца (комфортный температурный режим), размеры и масса Земли (подходящая сила гравитации), и многие другие параметры как будто специально созданы для этого.
3. Человеку не доступна большая часть светового и звукового спектра. Возможно, именно там спрятано то, что нам не следует видеть и слышать (какие-то лишние детали, условные проводки или какой-нибудь мусор, всё то, что могло бы навести на идею о нереальности мира).
4. Религия. Возможно, эта вера в создателя, заложенное в нашу программу врождённо, или это ощущение, что «он есть» у нас присутствует на интуитивном уровне.
5. Противники концепции цифровой симуляции утверждают, что искусственный мир должен быть проработан с колоссальной точностью и детализацией, коей является наша реальность, а это невозможно. Но откуда нам знать, какая действительность на самом деле, может, она в разы более усложнённая, нежели наша. К тому же всё многообразие мира можно подробно не прорабатывать, в тех местах, куда игрок никогда не попадёт (далёкий космос), или там, куда он не смотрит в данный момент (эффект наблюдателя в микромире), что снижает нагрузку на мощность компьютера.
6. Почему мы одни во вселенной? Не наблюдается ничего, что указывало бы на существование разумной жизни в космосе. Может, он просто картинка?
Что будет если человечество вплотную приблизится к разгадке? Для нас ничего не изменится: выйти из симуляции мы не сможем, потому что являемся всего лишь строчками программного кода и наша реальность, это то, что транслируют в мозг органы чувств. Нас можно только выключить.

Вы никогда не допускали подобную мысль? Что мир вокруг нас может быть создан на огромном мощном компьютере и вас окружают люди-программы? Об этом говорят не только физика и наука, а говорили ещё и древние философы, что всё иллюзорно.

Кажется абсурдом?

Тогда следующие доказательства Матрицы могут разрушить ваш мир до основания. Но, не переживайте сильно. Это всего лишь игра.

Учёные готовятся признать этот факт, проверяют каждый «признак». Побудьте сегодня Вы на их месте. Оцените 10 признаков того, что вокруг вас — Виртуальный компьютерный мир, компьютерная симуляция Вселенной .

Факт 1. РЕАЛЬНОСТЬ работает на электричестве .

Физика : Что находится на самом мельчайшем уровне? Небольшие шарики с отрицательным зарядом (электроны), поток которых и называется электричеством, из атомов с электронами создано абсолютно всё. Материя, газы, жидкости и все неживые предметы состоят из атомов. То есть, фундаментальная основа мира — Электричество во всём живом и неживом! Абсолютно ВСЁ.

Техника : современные Устройства, Гаджеты, бытовые и промышленные машины используют то же Электричество .

Анатомия : Ваш Мозг, Сердце, Органы чувств работают на Электричестве ! Помните, как оживляют людей? Используют «дефибрилляторы», которые прикладывают к груди и заряд тока течёт вам прямо в сердце. Все связи между нейронами в тканях построены на импульсах электричества.

Современные имплантанты в мозгу. Это невозможно, если бы мозг не работал на электричестве.

Сердце бьётся 3 миллиона раз за всю жизнь. Каждый импульс — прожитая секунда. Электрический импульс.

Факт 2. Мир — точные механические Часы.

Чтобы сделать симуляцию Вселенной предсказуемой, Вам нужны законы.

В нашем мире есть законы физики , и на них основано всё. Заметим, что сами законы мы не создавали . Они есть, мы можем только описать то, что уже существует, придерживаться, использовать в своих целях. К данным законам относятся закон сохранения энергии, законы Ньютона, законы Ампера, Ома, Фарадея, постулаты Бора, закон распространения света, законы термодинамики, и направления электромагнитной индукции.

Мир очень точный, здесь нет места хаосу, всё подчинено формулам. Это — доказательство Матрицы ?

Факт 3. Мир вокруг нас — не твёрдый .

Если вам КАЖЕТСЯ , что вокруг твёрдые предметы: стол, стул, пол, стены , то это только ваши ощущения. На самом деле нет ничего твёрдого . Это — только иллюзия. Ваши глаза, руки, ощущают электрические поля, которые по определению не бывают твёрдыми. Атомы руки ощущают атомы стены, и первое и второе — только энергетические волны разной частоты.

Объяснение : Представьте себе компьютерную игру, где герой ходит по коридору, стены его не пускают вправо-влево,

Ничего из этого не существует на самом деле. Ни стены, ни коридора, ни стен, ни героя. Всё это код, который обрабатывается на процессоре Вашего компьютера. А что ощущает герой в игре? Что есть законы, которые он не может преодолеть . Есть стены, которые он не может пробить, ходит по туннелю, не проваливаясь вниз. Некие законы описывают его мир, а он им подчиняется.

Ничего не напоминает?

Мы родились в нашей реальности. Есть законы, которые мы не создавали, но мы им подчиняемся. Есть электричество, которое всё питает вокруг. И мир цифровой, работает по формулам.

Теперь легко можно объяснить следующую аномалию, которая ставила физиков в тупик почти 200 лет, с 1803 года. Читайте ниже.

А если код?

Факт 4. Корпускулярно-волновой дуализм.

Физика, 11 класс общеобразовательной школы.

В 1803 году Томас Юнг провёл эксперимент, в котором показал, что свет ведёт себя двояко, как частица и как волна, одновременно . То есть, когда вы близко-близко наблюдаете за экспериментом, то свет ведёт себя как мелкая частица , как только перестаёте наблюдать, то свет становится волной . Как это объяснить? Очень просто, возвращаясь к нашей «цифровой вселенной = компьютерной симуляции мира » и процессу обработки информации процессором.

Есть такое понятие в программировании, как простая и сложная прорисовка деталей.

Когда вы в игре смотрите на улицу, то ближние здания, деревья, пешеходы, трава и машины отрисовываются очень детально. Как только уходите с улицы, то жизнь на ней прекращается. Что это значит? То, что процессору не надо обрабатывать все предметы здания, деревья, пешеходов, траву и машины, когда вы не находитесь рядом с ними. Как только приближаетесь снова — обработки идёт в полную силу. Так экономятся огромные ресурсы процессора .

И возвращаемся к нашему миру и эксперименту «фотоны — частицы или волны?». Наблюдаете издалека? Видите только неопределённую «фотонную» волну. Наблюдаете вблизи — «фотоны» превращаются в «частицы». Эксперимент никогда не решался так легко. Потому что 200 лет назад не было компьютеров и подобной аналогии!

Сюда же относится и «принцип неопределённости Гейзенберга» и «Кот Шрёдингера». Это один и тот же эффект «отрисовки» реальности . Вот так. Учёные видят то, что сверхмалые частицы ведут себя не так, как ведут себя большие объекты. И это ставит их в тупик.

Эксперимент . 1 щель — даёт 1 линию из шариков фотонов.


2 щели — дают 9 линий (!!) из шариков. А должно быть 2!

Давайте посмотрим близко, что там происходит.

Вуаля! 2 щели — 2 линии на экране. Теперь «волна» стала «частицей». Парадокс решён за счёт наблюдателя! Надо было только приблизиться достаточно хорошо.

Как это проявляется в цифровых технологиях? Современные игры строятся по принципу, что детально просчитывается только то, что находится перед вами. А дальние объекты всегда размыты.

Факт 5. ДНК — код всего живого.

ДНК — ещё один элегантный способ , как можно описать ВСЕ живые организмы . Для этого понадобится всего лишь 4 нуклеотида: аденин «А», гуанин «G», цитозин «С», и тимин «Т» . Комбинаций этих 4 нуклеотидов может быть бесконечное множество, начиная кодом микроскопических вирусов, до кодов огромных многотонных китов.

Теперь вопрос на миллион. Если мы разберём ДНК отдельного человека до базовых кирпичиков, сделаем с них копию, создадим ещё одного человека, то получим ли мы идентичного клона? Ответ — да, получим . Он будет отличаться разве что характером, но внешне и внутренне он будет копией. А если мы повторим этот эксперимент с небольшими модификациями друг от друга, то получим всех жителей планеты, которые якобы отличаются друг от друга на 0,0001%. Технически осталось собрать образцы, изучить, сделать копии и можно загружать обратно в программу. Тем более, что ДНК-код уж слишком похож на программный код любой современной компьютерной программы. Разве это не очевидно? Даже видно, когда отдельные куски кода копируются по банальному принципу CTRL+C — CTRL+V . Смотрите на цветные зоны.

Факт 6. Числа Фибоначчи

История. В далёкой средневековой Европе был себе математик Леонардо Пизанский . Его ещё называли Фибоначчи . И однажды к нему пришли и спросили, что будет, если мы возьмём пару кроликов и посадим её в клетку. Каждая пара кроликов делает копию через 1 месяц, сколько кроликов будет в клетке через год (12 месяцев)? Он подумал, и сказал. Ответом были 233 пары кроликов. То есть, последовательность цифр была 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987… Следующее число получается прибавлением предыдущих двух чисел. История закончилась? Нет.

1: 1 + 1 = 2 2: 1 + 2 = 3 3: 2 + 3 = 5 4: 3 + 5 = 8 5: 5 + 8 = 13 6: 8 + 13 = 21 7: 13 + 21 = 34 8: 21 + 34 = 55 9: 34 + 55 = 89 ... и т. д.

Наше время. Открыт алгоритм, как рисовать растения, вещи, предметы в нашей компьютерной симуляции Вселенной. Начиная с правильных спиральных форм.

Надо использовать последовательность чисел, которая в нашей реальности известна как последовательность Фибоначчи . Здесь используется последовательность, когда к каждому следующему числу добавляется предыдущее: «0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89″ Правильная геометрия в природе, на примере цветов, строения подсолнечника, шишек, морских раковин, торнадо, волн, брызг и т.д. Вы увидите, как объекты расходятся по правильным геометрическим линиям от центра. Похоже на доказательства Матрицы в Природе?

Как это выглядит в нашем мире? Смотрите ниже.

И ещё, прекрасное видео.

Факт 7. Фракталы.

Второй вещью стала фрактальная геометрия , открытая учёным Мандельбротом в 1977 году. Чрезвычайно простой алгоритм , позволяющий получить неправильные геометрические формы (не Фибоначчи!), но по самому простому принципу. Структуры повторяет себя до бесконечности, от малого, до самого большого масштаба .

Тут нет места Хаосу. Фрактал — самоподобная геометрическая структура , каждый фрагмент которой повторяется при уменьшении масштабов.

Будете вы смотреть в телескоп, или в микроскоп, вы увидите одну и тот же принцип построения. Примеры? Микробы, бактерии, человек, горный хребет — одинаковый рисунок. От малого к огромному.

Наверное, микробы, реки и снежинки тоже учили математику в школе..? Или их просто рисует гигантский процессор на компьютере Бога?

Ниже — правильный геометрический фрактал.

Объяснение «на пальцах».

Теперь наша реальность.

Реальность . Колония бактерий в чашке.

Реальность . Вид со спутника на плато Путорана, Российская Федерация.

Реальность . Кровеносная система человека.

Корни дерева или лёгкие человека?

Факт 8. Двойники и NPC.

Теперь надо заселить свою симуляцию людьми , чтобы не было скучно.

Уже сколько раз случались такие вещи, что люди встречали своих двойников на улицах, в интернете, в других странах. Причём, это были полные копии, до деталей. Мы уже писали . И они не родственники! объяснить подобную схожесть очень сложно, если не принимать во внимание, что в рамках теории «Матрицы» (), не надо быть родственниками, чтобы быть идентичными на 100%. База данных лиц всё равно одна и игроки могут себе создать такого же персонажа, как и Ваш. Вот и весь секрет.

Англия+Англия. Копии, но не родственники.

Эксперимент ‘Twin Strangers». На фото Karen Branigan (cлева) и Niamh Geaney (справа).

Англия+Италия.

Тот же эксперимент «Twin Stranger». Niamh Geaney (слева) и Luisa Guizzardi (справа).

Теперь побольше NPC .

Не забудем добавить NPC (non-player character) . Это программы-люди, которыми управляет компьютер. У них всего пару мыслей, минимум эмоций, минимум знаний. Живёте в городе на 100 тысяч человек? Скольких людей вы в нём знаете хорошо? 100, 1000? А кто тогда все остальные, что они делают вокруг? Ходят вокруг, стоят в очередях, ездят на машинах. Создают иллюзию заселённости… правда?

Вы не сможете с ними поговорить . Они заняты и уходят от вас по своим делам. Считайте, ваш круг общения ограничен живыми игроками, с которыми вас будет сталкивать «судьба» и «сценаристы». К живым относятся: семья, родственники, коллеги по работе, не более того. Вы не сможете пойти на ту работу, которая вам не предназначена, и думаю к нашему с вами возрасту Вы уже это поняли. Никогда не удивлял тот факт, что вы рассылаете по 100 резюме на работу, а отвечает вам только 1 работодатель? Куда деваются все остальные резюме? Где все остальные фирмы?

Кто все эти люди в моём городе?

Факт 9. Что нравится миллионам людей .

либо

«Как прожить ещё одну жизнь»?

Вычислительные мощности первых компьютеров были настолько ограниченными, что первая игра выглядела как квадратный мяч и прямоугольные платформы, удары от стен справа или слева. Это игра называлась «PONG «.

1972 год . «PONG «.

Потом игры усложнялись и совершенствовались. Появились сложные: стрелялки , и первые рисованные стратегии .

1993 год . «DOOM и «Warcraft 2″. 20 лет прогресса.

2009 год. Эпоха Тотальных Войн. 36 лет прогресса.



2012 год. Эпоха ММО. 40 лет прогресса.

Для вас ММО ничего не говорит? Это — Массовые Многопользовательские Онлайн игры, в которую играют миллионы людей одновременно , они все подключаются к одному серверу и видят друг друга. Это значит, что миллионы людей одновременно находятся в игре и развивают своих персонажей, командиров. Second Life, World of Warcraft, World of Tanks только некоторые из них. То есть, если в прошлом вы могли командовать целыми армиями из тысяч солдат, то теперь вы можете играть за отдельного солдата, отдельный танк на поле боя и т.д. Вы ищете ему оружие, ищете ему броню, развиваете, улучшаете, делаете его сильнее.

То есть, эволюция игр прошла так: квадратные игры -> сложные игры -> командование армиями -> развитие 1 героя в мире ММО. Мы в шаге от нашего мира.

Вам не кажется, что следующим этапом как раз будут игры, в которых Вы проживаете любое интересующее вас время (античность, средневековье, феодализм, мировую войну) «прямо в игре «, чувствуя её изнутри, политику, предательства, радости и любовь.

Тем более, что современные игры по реалистичности графики улучшаются сумасшедшими темпами. Вот для сравнения движок: Unreal Engine 2015. Как вам комната и детализация? Вы скажете, что это компьютерная игра?

Unreal Engine — цифровая графика.

Достаточно реально?

Графика сегодня. EVE: Valkyrie — 45 лет после «Pong»

Факт 10. Финальный аргумент.

А если есть возможность и ресурсы , то почему бы и не попробовать сделать такую Игру, как НАШ МИР ?

Реалистично, жестоко, по правилам выживания . Не заработал денег — не поел. Не поел — ослаб, заболел, умер. Это очень жёсткая игра для новичков. Тем более, что о вас должны заботиться как минимум лет 7-10 после рождения. Иначе вы выходите из игры, так и не начав играть.

Итоги : какие признаки компьютерной симуляции Вселенной ?

Наша 10-ка :

1. Всё работает на электричестве.

2. Есть законы, которым мы подчиняемся.

3. Электрические поля — иллюзия твёрдого мира.

4. ДНК — программный код.

5. Корпускулярно — волновой дуализм — детализация окружающего мира (близко/далеко).

6. Золотое сечение Фибоначчи: простая геометрия. Ракушки, цветы, вода, прочее.

7. Фракталы: сложная геометрия. От снежинок до горных массивов, рек, бактерий и строения тканей человека.

8. Двойники + NPC = иллюзия заселённости мира.

9. ММО — выбрали миллионы людей, и миллионы ещё на подходе.

10. Если есть возможность — почему бы не создать такой мир?

Правообладатель иллюстрации Thinkstock Image caption Разговоры ученых о нереальности нашего мира ложатся на подготовленную массовой культурой почву

Гипотеза о том, что наша Вселенная - это компьютерная симуляция или голограмма, все активнее будоражит умы ученых и филантропов.

Образованное человечество еще никогда не было так уверено в иллюзорности всего происходящего.

В июне 2016 года американский предприниматель, создатель SpaceX и Tesla Илон Маск, оценил вероятность того, что известная нам "реальность" является основной - как "одну многомиллиардную". "Для нас будет даже лучше, если окажется, что то, что мы принимаем за реальность, - уже является симулятором, созданным другой расой или людьми будущего", - отметил Маск.

В сентябре Банк Америки предупредил своих клиентов, что с вероятностью 20-50% они живут в Матрице. Эту гипотезу аналитики банка рассмотрели наряду с другими приметами будущего, в частности, наступлением (то есть, если верить изначальной гипотезе, виртуальной реальности внутри виртуальной реальности).

В свежем материале New Yorker про венчурного капиталиста Сэма Алтмана говорится, что в Кремниевой долине многие одержимы идеей, что мы живем внутри компьютерной симуляции. Два техно-миллиардера якобы пошли по стопам героев фильма "Матрица" и тайно профинансировали исследования по вызволению человечества из этой симуляции. Их имена издание не раскрывает.

Стоит ли воспринимать эту гипотезу буквально?

Короткий ответ - да. Гипотеза исходит из того, что ощущаемая нами "реальность" обусловлена лишь небольшим объемом информации, которую мы получаем и которую способен обработать наш мозг. Мы ощущаем предметы твердыми из-за электромагнитного взаимодействия, а видимый нами свет - лишь небольшой раздел спектра электромагнитных волн.

Правообладатель иллюстрации Getty Images Image caption Илон Маск считает, что человечество создаст виртуальный мир в будущем, либо мы уже являемся персонажами чьей-то симуляции

Чем больше мы расширяем границы собственного восприятия, тем больше убеждаемся, что Вселенная состоит по большей части из пустоты.

Атомы состоят из пустого пространства на 99,999999999999%. Если ядро атома водорода увеличить до размеров футбольного мяча, то его единственный электрон расположится на расстоянии 23 километров. Состоящая же из атомов материя составляет всего 5% известной нам Вселенной. А 68% составляет темная энергия, о которой науке практически ничего не известно.

Иными словами, наше восприятие реальности - это "тетрис" по сравнению с тем, что в действительности представляет собой Вселенная.

Что по этому поводу говорит официальная наука?

Словно герои романа, пытающиеся прямо на его страницах постичь замысел автора, современные ученые - астрофизики и квантовые физики - проверяют гипотезу, которую еще в XVII веке выдвинул философ Рене Декарт. Он предположил, что "какой-то злокозненный гений, весьма могущественный и склонный к обману", мог заставить нас думать, что существует внешний для нас физический мир, в то время как на самом деле небо, воздух, земля, свет, очертания и звуки - это "ловушки, расставленные гением".

В 1991 году писатель Майкл Талбот в книге "Голографическая Вселенная" одним из первых предположил, что физический мир подобен гигантской голограмме. Некоторые ученые, впрочем, считают "квантовый мистицизм" Талбота псевдонаукой, а связанные с ним эзотерические практики - шарлатанством.

Куда большее признание в профессиональной среде получила книга 2006 года "Программируя Вселенную" профессора Массачусетского технологического института Сета Ллойда. Он считает, что Вселенная - это квантовый компьютер, который вычисляет сам себя. Также в книге говорится, что для создания компьютерной модели Вселенной человечеству недостает теории квантовой гравитации - одного из звеньев гипотетической "теории всего".

Правообладатель иллюстрации Fermilab Image caption "Голометр" стоимостью 2,5 млн долларов не смог опровергнуть известные нам основы мироздания

Наш мир и сам может быть компьютерной симуляцией. В 2012 году команда исследователей Калифорнийского университета в Сан-Диего под руководством россиянина Дмитрия Крюкова пришла к выводу, что такие сложные сети, как Вселенная, человеческий мозг и интернет имеют одинаковую структуру и динамику развития.

Эта концепция мироустройства предполагает "небольшую" проблему: что произойдет с миром, если вычислительные способности создавшего его компьютера исчерпаются?

Можно ли экспериментально подтвердить гипотезу?

Единственный подобный эксперимент поставил директор Центра квантовой астрофизики лаборатории Ферми в США Крейг Хоган. В 2011 году он создал "голометр" : анализ поведения пучков света, исходящих из лазерных излучателей этого устройства, помог ответить по меньшей мере на один вопрос - является ли наш мир двухмерной голограммой.

Ответ: не является. То, что мы наблюдаем, действительно существует; это не "пиксели" продвинутой компьютерной анимации.

Что позволяет надеяться, что в один прекрасный день наш мир не "зависнет", как это часто происходит с компьютерными играми.

Последние материалы сайта