Световая и темновая адаптация. Световая адаптация Световая адаптация органа зрения в обычном состоянии

15.03.2020
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Чувствительность глаза зависит от исходной освещенности, т. е. от того, находится ли человек или животное в ярко освещенном или в темном помещении.

При переходе из темного помещения в светлое в первое время наступает ослепление. Постепенно чувствительность глаз снижается; они адаптируются к свету. Это приспособление глаза к условиям яркой освещенности называется световой адаптацией .

Обратное явление наблюдается, когда из светлого помещения, в котором чувствительность глаза к свету сильно притуплена, человек переходит в темное помещение. В первое время он вследствие пониженной возбудимости глаза ничего не видит. Постепенно начинают появляться контуры предметов, затем начинают различаться их детали; возбудимость сетчатки постепенно повышается. Это повышение чувствительности глаза в темноте, являющееся приспособлением глаза к условиям малой освещенности, называют темновой адаптацией.

В экспериментах на животных с регистрацией или импульсов в зрительном нерве световая адаптация проявляется в повышении порога светового раздражения (понижении возбудимости фоторецепторного аппарата) и урежении частоты потенциалов действия в зрительном нерве.

При пребывании в темноте световая адаптация , т. е. понижение чувствительности сетчатки, постоянно имеющееся в условиях естественного дневного или искусственного ночного освещения, постепенно исчезает, и вследствие этого происходит восстановление максимальной чувствительности сетчатки; следовательно, темновая адаптация, т. е. повышение возбудимости зрительного аппарата при отсутствии светового раздражения, может рассматриваться как постепенное устранение световой адаптации.

Ход повышения чувствительности при пребывании в темноте представлен на рис. 221 . В первые 10 минут чувствительность глаза нарастает в 50-80 раз, а затем в течение часа во много десятков тысяч раз. Повышение чувствительности глаза в темноте имеет сложный механизм. Важное значение в этом явлении, согласно теории П. П. Лазарева, имеет востановление зрительных пигментов.

Следующий период адаптации связан с восстановлением родопсина. Этот процесс протекает медленно и завершается к концу первого часа пребывания в темноте. Восстановление родопсина сопровождается резким повышением чувствительности палочек сетчатки к свету. Она становится после длительного пребывания в темноте в 100 000 - 200 000 раз больше, чем была в условиях резкого освещения. Так как после длительного пребывания в темноте максимальной чувствительностью обладают палочки, то очень слабо освещенные предметы видны только тогда, когда лежат не в центре поля зрения, т. е. при раздражении ими периферических частей сетчатки. Если же смотреть на источник слабого света прямо, то он становится невидимым, так как повышение вследствие темновой адаптации чувствительности колбочек, находящихся в центре сетчатки, слишком мало, чтобы они могли воспринять раздражение светом малой интенсивности.

Представление о значении разложения и восстановления зрительного пурпура в явлениях световой и темповой адаптации встречает некоторые возражения. Они связаны с тем, что при действии на глаз света большой яркости количество родопсина уменьшается лишь незначительно и это по расчетам не может вызвать столь большого понижения чувствительности сетчатки, какое имеется при световой адаптации. Поэтому сейчас считают, что явления адаптации зависят не от расщепления и ресинтеза фоточувствительных пигментов, но от других причин, в частности, от процессов, происходящих в нервных элементах сетчатки. В пользу этого можно привести тот факт, что адаптация к длительно действующему раздражению является свойством многих рецепторов.

Возможно, что при адаптации к освещенности имеют значение способы подключения фоторецепторов к ганглиозным клеткам. Установлено, что в темноте площадь рецептивного поля ганглиозной клетки увеличивается т. е. большее число фоторецепторов может быть подключено к одной ганглиозной клетке. Предполагают, что в темноте начинают функционировать так называемые горизонтальные нейроны сетчатки - звездчатые клетки Догеля, отростки которых оканчиваются на многих фоторецепторах.

Благодаря этому, один и тот же фоторецептор может быть подключен к разным биполярным и гаиглиозным клеткам, а каждая такая клетка становится связанной с большим числом фоторецепторов ( ). Поэтому при очень слабом освещении увеличивается вследствие процессов суммации рецепторный потенциал, вызывающий разряды импульсов в ганглиозных клетках и волокнах зрительного нерва. На свету функционирование горизонтальных клеток прекращается и тогда меньшее число фоторецепторов связано с ганглиозной клеткой и, следовательно, меньшее число фоторецепторов будет возбуждать се при действии света. По-видимому, включение горизонтальных клеток регулируется центральной нервной системой.

Кривые двух опытов. Время раздражения ретикулярной формации отмечено пунктирной линией.

Влияние центральной нервной системы на адаптацию сетчатки к свету иллюстрируется наблюдениями С. В. Кравкова, который установил, что освещение одного глаза приводит к резкому повышению чувствительности к свету другого, неосвещенного глаза. Подобно этому действуют раздражения других органов чувств, например, слабые и средней силы звуковые сигналы, обонятельные и вкусовые раздражения.

Если действие света на темноадаптированный глаз сочетать с каким-нибудь индифферентным раздражителем, например звонком, то после ряда сочетаний одно включение звонка вызывает такое же понижение чувствительности сетчатки, какое раньше наблюдалось лишь при включении света. Этот опыт показывает, что процессы адаптации могут регулироваться условнорефлекторным путем, т. е. что они подчинены регулирующему влиянию коры головного мозга (А. В. Богословский).

На процессы адаптации сетчатки влияет также симпатическая нервная система. Одностороннее удаление у человека шейных симпатических ганглиев вызывает понижение скорости темновой адаптации десимпатизированного глаза. Введение адреналина дает противоположный эффект.

Светоощущение (световосприятие) – важнейшая функция зрительного анализатора, заключающаяся в способности воспринимать свет, а также различать его светлоту (яркость).

Нарушения, связанные со световосприятием, являются первыми симптомами многих заболеваний, как глаза, так и других органов и систем (например, болезни печени, гипо- и авитаминозы).

Светоощущение в большей степени отвечают фоторецепторы-палочки, которых больше всего расположено в периферических отделах сетчатой оболочки. Именно поэтому чувствительность к свету выше на периферии сетчатки, чем в ее центральной области.

Как известно, колбочки отвечают за дневное зрение, палочки – за сумеречное (ночное).

Всего 1 квант света может возбуждение фоторецепторов сетчатки, но способность различать свет появляется только при действии не менее 6 квантов.

Светоощущение отвечает за следующие характеристики:

  • порог раздражения – минимальный световой поток, который вызывает раздражение рецепторов сетчатки;
  • порог различения – способность зрительного анализатора различать минимальную разницу в интенсивности света.

Световая адаптация

Очень важной способностью глаза является световая адаптация – приспособление к усилению яркости света (освещенности). Сам процесс адаптации длится приблизительно минуту (чем ярче свет, тем длительнее он происходит). Первоначально (в первые секунды после усиления освещенности) чувствительность резко снижается, а приходит в норму только через 50-70 секунд.

Это способность зрительного органа приспосабливаться к уменьшению яркости. При снижении освещенности светочувствительность сначала резко усиливается, но через 15-20 минут начинает ослабевать, а приблизительно через час наступает полная темновая адаптация.

Исследование светоощущения

Наиболее часто применяемая методика для определения нарушения восприятия света – проба Кравкова. В затемненном помещении пациенту показывают квадрат (размеры – 20×20 см.), на углах которого приклеены маленькие квадратики (3×3 см.) зеленого, желтого, синего и голубого цветов. Если световосприятие не нарушено, человек через 40-60 секунд сможет различить желтый и голубой цвет, в противном случае он не определит голубой цвет, а вместо желтого квадрата будет видеть светлый участок.

Также для определения патологии световой чувствительности используются специальные приборы – адаптометры. Суть методики.

Пациент должен приспособиться к свету, глядя на светлый экран, как минимум, в течение 15 минут. Затем выключают свет в помещении. Пациенту показывают слегка освещенный предмет, постепенно усиливая его яркость. Когда пациент сможет различить предмет, он нажимает на специальную кнопку (при этом на бланке адаптометра ставится точка). Яркость предмета изменяют сначала через три минут, а затем каждые пять минут. Исследование длится час, после чего соединяют все точки на бланке, в итоге получается кривая светочувствительности пациента.

Для более полного ознакомления с болезнями глаз и их лечением – воспользуйтесь удобным поиском по сайту или задайте вопрос специалисту.

При переходе от яркого света в полную темноту (так называемая темновая адаптация) и при переходе от темноты к свету (световая адаптация). Если глаз, находившийся ранее на ярком свету, поместить в темноту, то его чувствительность возрастает вначале быстро, а затем более медленно.

Процесс темновой адаптации занимает несколько часов, и уже к концу первого часа чувствительность глаза увеличивается в раз, так что зрительный анализатор оказывается способным различить изменения яркости очень слабого источника света, вызванные статистическими флуктуациями количества излучаемых фотонов.

Световая адаптация происходит значительно быстрее и занимает при средних яркостях 1-3 минуты. Столь большие изменения чувствительности наблюдаются только в глазах человека и тех животных, сетчатка которых, как и у человека, содержит палочки . Темновая адаптация свойственна и колбочкам : она заканчивается быстрее и чувствительность колбочек возрастает лишь в 10-100 раз.

Темновая и световая адаптация глаз животных изучены путём исследования электрических потенциалов , возникающих в сетчатке (электроретинограмма) и в зрительном нерве при действии света. Полученные результаты в основном согласуются с данными, полученными для человека методом адаптометрии, основанном на исследовании появления субъективного ощущения света во времени после резкого перехода от яркого света к полной темноте.

См. также

Ссылки

  • Лаврус В. С. Глава 1. Свет. Свет, зрение и цвет // Свет и тепло. - Международная общественная организация «Наука и техника», Октябрь 1997. - С. 8.

Wikimedia Foundation . 2010 .

Смотреть что такое "Адаптация глаза" в других словарях:

    - (от позднелат. adaptatio прилаживание, приспособление), приспособление чувствительности глаза к изменяющимся условиям освещения. При переходе от яркого света к темноте чувствительность глаза возрастает, т. н. темновая А., при переходе от темноты… … Физическая энциклопедия

    Приспособление глаза к изменяющимся условиям освещения. При переходе от яркого света к темноте чувствительность глаза возрастает, при переходе от темноты к свету уменьшается. Меняется и спектр. чувствительность глаза: восприятие наблюдаемых… … Естествознание. Энциклопедический словарь

    - [лат. adaptatio прилаживание, приноровление] 1) приспособление организма к условиям среды; 2) переработка текста с целью его упрощения (напр., художественного прозаического произведения на иностранном языке для тех, кто недостаточно хорошо… … Словарь иностранных слов русского языка

    Не следует путать с Адоптация. Адаптация (лат. adapto приспособляю) процесс приспособления к изменяющимся условиям внешней среды. Адаптивная система Адаптация (биология) Адаптация (теория управления) Адаптация в обработке… … Википедия

    Адаптация - внесение в ИР ЕГКО г. Москвы изменений, осуществляемых исключительно в целях их функционирования на конкретных технических средствах пользователя или под управлением конкретных программ пользователя, без согласования указанных изменений с… … Словарь-справочник терминов нормативно-технической документации

    адаптация сенсорная - (от лат. sensus чувство, ощущение) приспособительное изменение чувствительности к интенсивности действующего на орган чувств раздражителя; может проявляться также в разнообразных субъективных эффектах (см. последовательный о … Большая психологическая энциклопедия

    АДАПТАЦИЯ К ТЕМНОТЕ, медленное изменение чувствительности человеческого ГЛАЗА в момент, когда человек из ярко освещенного пространства попадает в неосвещенное. Изменение происходит из за того, что в СЕТЧАТКЕ глаза при уменьшении общей… …

    АДАПТАЦИЯ - (от лат. adaptare приспособлять), приспособление живых существ к окружающим условиям. А. процесс пассивный и сводится к реакции организма на изменения физ. или физ. хим. условий среды. Примеры А. У пресноводных про стейших осмотич. концентрация… … Большая медицинская энциклопедия

    - (Adaptation) способность сетчатой оболочки глаза приспособляться к данной силе освещения (яркости). Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 Адаптация приспосабливаемость организма … Морской словарь

    АДАПТАЦИЯ К СВЕТУ, сдвиг в функциональном доминировании от палочек к колбочкам (зрительным клеткам разных типов) в СЕТЧАТКЕ ГЛАЗА при увеличении яркости освещения. В отличии от АДАПТАЦИИ к ТЕМНОТЕ, световая адаптация проходит быстро, но создает… … Научно-технический энциклопедический словарь

Книги

  • The Painted Veil: Intermediate /Узорный покров. Книга для чтения , Моэм Уильям Сомерсет. В названии романа Узорный покров, написанного в 1925 году британским классиком Уильямом Сомерсетом Моэмом, получили отражение строки сонета Перси Биши Шелли Lift not thepainted veil which…

Если человек находится на ярком свете в течение нескольких часов, и в палочках, и в колбочках происходит разрушение фоточувствительных веществ до ретиналя и опсинов. Кроме того, большое количество ретиналя в обоих типах рецепторов превращается в витамин А. В результате концентрация фоточувствительных веществ в рецепторах сетчатки значительно уменьшается, и чувствительность глаз к свету снижается. Этот процесс называют световой адаптацией .

Наоборот, если человек длительно находится в темноте, ретиналь и опсины в палочках и колбочках снова превращаются в светочувствительные пигменты. Кроме того, витамин А переходит в ретиналь, пополняя запасы светочувствительного пигмента, предельная концентрация которого определяется количеством опсинов в палочках и колбочках, способных соединяться с ретиналем. Этот процесс называют темповой адаптацией.

На рисунке показан ход темновой адаптации у человека, находящегося в полной темноте после нескольких часов пребывания на ярком свете. Видно, что сразу после попадания человека в темноту чувствительность его сетчатки очень низкая, но в течение 1 мин она увеличивается уже в 10 раз, т.е. сетчатка может реагировать на свет, интенсивность которого составляет 1/10 часть от предварительно требуемой интенсивности. Через 20 мин чувствительность возрастает в 6000 раз, а через 40 мин - примерно в 25000 раз.

Законы световой и темновой адаптации

  1. Темновая адаптация определяется достижением максимума световой чувствительности в течение первых 30 - 45 мин;
  2. Световая чувствительность нарастает тем скорее, чем менее до этого глаз был адаптирован к свету;
  3. Во время темновой адаптации светочувствительность повышается в 8 - 10 тысяч раз и более;
  4. После 45 мин пребывания в темноте световая чувствительность повышается, но незначительно, если обследуемый остается в темноте.

Темновая адаптация глаза есть приспособление органа зрения к работе в условиях пониженного освещения. Адаптация колбочек завершается в пределах 7 мин, а палочек - в течение приблизительно часа. Существует тесная связь между фотохимией зрительного пурпура (родопсина) и изменяющейся чувствительностью палочкового аппарата глаз, т. е. интенсивность ощущения в принципе связана с количеством родопсина, «обесцвечиваемого» под воздействием света. Если перед исследованием темновой адаптации сделать яркий за-свет глаза, например, предложить смотреть на ярко освещенную белую поверхность 10-20 мин, то в сетчатке произойдет значительное изменение молекул зрительного пурпура, и чувствительность глаза к свету будет ничтожной (свето(фото) стресс). После перехода к полной темноте чувствительность к свету начнет весьма быстро расти. Способность глаза восстанавливать чувствительность к свету измеряют с помощью специальных приборов - адаптометров Нагеля, Дашевского, Белостоцкого - Гофмана, Гартингера и др. Максимум чувствительности глаза к свету достигается в течение приблизительно 1-2 ч, повышаясь по сравнению с первоначальной в 5000-10 000 раз и более.

Измерение темновой адаптации
Темновая адаптация может быть измерена следующим образом. Сначала испытуемый в течение короткого промежутка времени смотрит на ярко освещенную поверхность (обычно до достижения им определенной, контролируемой степени световой адаптации). При этом чувствительность испытуемого уменьшается, и тем самым создается точно регистрируемая точка отсчета времени, необходимого для его темновой адаптации. Затем выключают свет и через определенные промежутки времени определяют порог восприятия испытуемым светового стимула. Определенный участок сетчатки стимулируется раздражителем с определенной длиной волны, имеющим определенные продолжительность и интенсивность. По результатам такого эксперимента строится кривая зависимости минимального количества энергии, необходимого для достижения порога, от времени пребывания в темноте. Кривая показывает, что увеличение времени пребывания в темноте (абсцисса) приводит к снижению порога (или к возрастанию чувствительности) (ордината).

Кривая адаптации к темноте состоит из двух фрагментов: верхний относится к колбочкам, нижний - к палочкам. Эти фрагменты отражают разные стадии адаптации, скорость протекания которых различна. В начале адаптационного периода порог резко снижается и быстро достигает постоянного значения, что связано с увеличением чувствительности колбочек. Общее возрастание чувствительности зрения за счет колбочек значительно уступает возрастанию чувствительности за счет палочек, и темновая адаптация наступает за 5-10 мин пребывания в темном помещении. Нижний фрагмент кривой описывает темновую адаптацию палочкового зрения. Рост чувствительности палочек наступает после 20-30-минутного пребывания в темноте. Это значит, что в результате примерно получасовой адаптации к темноте глаз становится примерно в тысячу раз более чувствительным, чем был в начале адаптации. Однако хотя увеличение чувствительности в результате темновой адаптации, как правило, происходит постепенно и для завершения этого процесса требуется время, даже весьма непродолжительное воздействие света может прервать его.

Ход кривой темновой адаптации зависит от скорости фотохимической реакции в сетчатке, а достигнутый уровень зависит уже не от периферического, а от центрального процесса, а именно от возбудимости высших корковых зрительных центров.

3-11-2012, 22:44

Описание

Диапазон воспринимаемых глазом яркостей

Адаптацией называется перестройка зрительной системы для наилучшего приспособления к данному уровню яркости. Глазу приходится работать при яркостях, меняющихся в чрезвычайно широком диапазоне, примерно от 104 до 10-6 кд/м2, т. е. в пределах десяти порядков. При изменении уровня яркости поля зрения автоматически включается целый ряд механизмов, которые и обеспечивают адаптационную перестройку зрения. Если уровень яркости длительное время существенно не меняется, состояние адаптации приходит в соответствие с этим уровнем. В таких случаях можно говорить уже не о процессе адаптации, а о состоянии: адаптации глаза к такой-то яркости L.

При резком изменении яркости происходит разрыв между яркостью и состоянием зрительной системы , разрыв, который и служит сигналом для включения адаптационных механизмов.

В зависимости от знака изменения яркости различают световую адаптацию - перестройку на более высокую яркость и темновую - перестройку на более низкую яркость.

Световая адаптация

Световая адаптация протекает значительно быстрее темновой. Выходя из темного помещения на яркий дневной свет, человек бывает ослеплен и в первые секунды почти ничего не видит. Образно выражаясь, зрительный прибор зашкаливает. Но если милливольтметр перегорает при попытке измерить им напряжение в десятки вольт, то глаз отказывается работать только короткое время. Чувствительность его автоматически и достаточно быстро падает. Прежде всего сужается зрачок. Кроме того, под непосредственным действием света выцветает зрительный пурпур палочек, в результате их чувствительность резко падает. Начинают действовать колбочки, которые, по-видимому, оказывают тормозящее действие на палочковый аппарат и выключают его. Наконец, происходит перестройка нервных связей в сетчатке и понижение возбудимости мозговых центров. В результате уже через несколько секунд человек начинает видеть в общих чертах окружающую картину, а минут через пять световая чувствительность его зрения приходит в полное соответствие с окружающей яркостью, что обеспечивает нормальную работу глаза в новых условиях.

Темновая адаптация. Адаптометр

Темновая адаптация изучена гораздо лучше, чем световая, что в значительной степени объясняется практической важностью этого процесса. Во многих случаях, когда человек попадает в условия низкой освещенности, важно заранее знать, через сколько времени и что он сможет видеть. Кроме того, нормальное течение темновой адаптации нарушается при некоторых болезнях, и поэтому ее изучение имеет диагностическое значение. Поэтому созданы специальные приборы для исследования темновой адаптации - адаптометры . В Советском Союзе серийно выпускается адаптометр АДМ. Опишем его устройство и метод работы с ним. Оптическая схема прибора изображена на рис. 22.

Рис. 22. Схема адаптометра АДМ

Пациент прижимает лицо к резиновой полумаске 2 и смотрит обоими глазами внутрь шара 1, покрытого изнутри белой окисью бария. Через отверстие 12 врач может видеть глаза пациента. С помощью лампы 3 и фильтров 4 стенкам шара можно сообщить яркость Lc, создающую предварительную световую адаптацию, во время которой отверстия шара закрывают заслонками 6 и 33, белыми с внутренней стороны.

При измерении световой чувствительности лампу 3 выключают и открывают заслонки 6 и 33. Включают лампу 22 и по изображению на пластинке 20 проверяют центрирование ее нити. Лампа 22 освещает через конденсор 23 и светофильтр дневного света 24 молочное стекло 25, которое служит вторичным источником света для пластинки из молочного стекла 16. Часть этой пластинки, видимая пациентом через один из вырезов в диске 15, служит тест-объектом при измерении пороговой яркости. Регулировка яркости тест-объекта производится ступенями с помощью фильтров 27-31 и плавно с помощью диафрагмы 26, площадь котором изменяется при вращении барабана 17. Фильтр 31 имеет оптическую плотность 2, т. е. пропускание 1%, а остальные фильтры - плотность 1,3, т. е. пропускание 5%. Осветитель 7-11 служит для боковой засветки глаз через отверстие 5 при исследовании остроты зрения в условиях ослепления. При снятии кривой адаптации лампа 7 выключена.

Небольшое, прикрытое красным светофильтром отверстие в пластинке 14, освещаемое лампой 22 с помощью матовой пластинки 18 и зеркальца 19, служит фиксационной точкой, которую пациент видит через отверстие 13.

Основная процедура измерения хода темновой адаптации состоит в следующем . В затемненном помещении пациент садится перед адаптометром и смотрит внутрь шара, плотно прижав лицо к полумаске. Врач включает лампу 3, установив с помощью фильтров 4 яркость Lc - 38 кд/м2. Пациент адаптируется к этой яркости в течение 10 мин. Установив поворотом диска 15 круглую диафрагму, видимую пациентом под углом 10°, врач по истечении 10 мин гасит лампу 3, включает лампу 22, фильтр 31 и открывает отверстие 32. При полностью открытой диафрагме и фильтре 31 яркость L1 стекла 16 равна 0,07 кд/м2. Пациенту дается указание смотреть на фиксационную точку 14 и сказать «вижу», как только он увидит светлое пятно на месте пластинки 16. Врач отмечает это время t1 уменьшает яркость пластинки 16 до значения L2, ждет, пока пациент снова скажет «вижу», отмечает время t2 и снова уменьшает яркость. Измерение длится 1 ч после выключения адаптирующей яркости. Получается ряд значений ti, каждому из которых соответствует свое, L1, что позволяет построить зависимость пороговой яркости Ln или световой чувствительности Sc от времени темновой адаптации t.

Обозначим через Lm максимальную яркость пластинки 16, т. е. ее яркость при полном раскрытии диафрагмы 26 и при выключенных фильтрах. Суммарное пропускание фильтров и диафрагмы обозначим?ф. Оптическая плотность Dф системы, ослабляющей яркость, равна логарифму обратной ему величины.

Значит, яркость при введенных ослабителях L = Lm ?ф, a lgL, = lgLm - Dф.

Так как световая чувствительность обратно пропорциональна пороговой яркости, т. е.

В адаптометре АДМ Lm - 7 кд/м2.

В описании адаптометра приведена зависимость D от времени темновой адаптации t, принимаемая врачами за норму. Отклонение хода темновой адаптации от нормы указывает на ряд заболеваний не только глаза, но и всего организма . Приведены средние значения Dф и допустимые граничные значения, еще не выходящие за пределы нормы. Исходя из значений Dф, мы вычислили по формуле (50) и на рис. 24

Рис. 24. Нормальный ход зависимости Sc от времени темновой адаптации t

приводим зависимость Sc от t в полулогарифмическом масштабе.

Более детальное изучение темновой адаптации указывает на большую сложность этого процесса. Ход кривой зависит от многих факторов : от яркости предварительной засветки глаз Lc, от места на сетчатке, на которое проецируется тест-объект, от его площади и т. д. Не входя в подробности, укажем на различие адаптационных свойств колбочек и палочек. На рис. 25

Рис. 25. Кривая темновой адаптации по Н. И. Пинегину

изображен график уменьшения пороговой яркости, взятый из работы Пинегина. Кривая снята после сильной засветки глаз белым светом с Lс = 27 000 кд/м2. Тестовое поле освещалось зеленым светом с? = 546 нм, тест-объект размером 20" проецировался на периферию сетчатки По оси абсцисс отложено время темновой адаптации t, по оси ординат lg (Lп/L0), где L0-пороговая яркость в момент t = 0, a Ln - в любой другой момент. Мы видим, что примерно за 2 мин чувствительность повышается в 10 раз, а за следующие 8 мин - еще в 6 раз. На 10-й минуте возрастание чувствительности опять ускоряется (пороговая яркость уменьшается), а затем снова становится медленным. Объяснение хода кривой такое. Сначала быстро адаптируются колбочки, но они могут повысить чувствительность только примерно в 60 раз. Через 10 мин. адаптации возможности колбочек исчерпаны. Но к этому времени уже расторможены палочки, обеспечивающие дальнейший рост чувствительности.

Факторы, повышающие световую чувствительность при адаптации

Раньше, изучая темновую адаптацию, основное значение придавали возрастанию концентрации светочувствительного вещества в рецепторах сетчатки, главным образом родопсина . Академик П. П. Лазарев при построении теории процесса темновой адаптации исходил нз допущения, что световая чувствительность Sс пропорциональна концентрации а светочувствительного вещества. Таких же взглядов придерживался и Хехт. Между тем легко показать, что вклад повышения концентрации в общее увеличение чувствительности не так уж велик.

В § 30 мы указали границы яркостей, при которых приходится работать глазу - от 104 до 10-6 кд/м2. При нижнем пределе пороговую яркость можно считать равной самому пределу Lп = 10-6 кд/м2. А при верхнем? При высоком уровне адаптации L пороговой яркостью Lп можно назвать минимальную яркость, которую еще можно отличить от полной темноты. Используя экспериментальный материал работы, можно сделать вывод, что Lп при высоких яркостях составляет примерно 0,006L. Итак, нужно оценить роль различных факторов при уменьшении пороговой яркости от 60 до 10_6 кд/м2, т. ". в 60 млн. раз. Перечислим эти факторы :

  1. Переход от колбочкового зрения к палочковому. Из того, что для точечного источника, когда можно считать, что свет действует на один рецептор, Еп = 2-10-9 лк, а Ец = 2-10-8 лк, можно сделать вывод, что палочка чувствительней колбочки в 10 раз.
  2. Расширение зрачка от 2 до 8 мм, т. е. по площади в 16 раз.
  3. Увеличение времени инерции зрения от 0,05 до 0,2 с, т. е. в 4 раза.
  4. Увеличение площади, по которой производится суммирование воздействия света на сетчатку. При большой яркости угловой предел разрешения? = 0,6", а при малой? = 50". Увеличение этого числа означает, что множество рецепторов объединяется для совместного восприятия света, образуя, как обычно говорят физиологи, одно рецептивное поле (Глезер). Площадь рецептивного поля увеличивается в 6900 раз.
  5. Увеличение чувствительности мозговых центров зрения.
  6. Увеличение концентрации а светочувствительного вещества. Именно этот фактор мы и хотим оценить.

Допустим, что увеличение чувствительности мозга мало и им можно пренебречь. Тогда мы сможем оценить влияние возрастания а или, по крайней мере, верхний предел возможного увеличения концентрации.

Таким образом, повышение чувствительности, обусловленное только первыми факторами, будет 10X16X4X6900 = 4,4-106. Теперь можно оценить, во сколько раз чувствительность возрастает из-за увеличения концентрации светочувствительного вещества: (60-106)/(4,4-10)6= 13,6, т. е. примерно в 14 раз. Это число невелико по сравнению с 60 миллионами.

Как мы уже упоминали, адаптация - это весьма сложный процесс. Сейчас, не углубляясь в механизм его, мы количественно оценили значимость отдельных его звеньев.

Следует отметить, что ухудшение остроты зрения с падением яркости есть не просто недостаток зрения, а активный процесс, позволяющий при недостатке света видеть в поле зрения хотя бы крупные предметы или детали.

Последние материалы сайта