Окружность описанная около прямоугольного треугольника. Окружность, описанная около треугольника.Треугольник, вписанный в окружность. Теорема синусов

24.09.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Треугольник – простейшая из плоских многоугольных фигур. Если величина какого-нибудь угла в его вершинах равна 90°, то треугольник именуется прямоугольным. Около такого многоугольника дозволено начертить круг таким методом, дабы всякая из 3 вершин имела одну всеобщую точку с его рубежом (окружностью). Эта окружность будет именоваться описанной, а присутствие прямого угла гораздо упрощает задачу ее построения.

Вам понадобится

  • Линейка, циркуль, калькулятор.

Инструкция

1. Начните с определения радиуса окружности, которую нужно будет возвести. Если есть вероятность измерить длины сторон треугольника, то обратите внимание на его гипотенузу – сторону, лежащую наоборот прямого угла. Измерьте ее и поделите полученное значение напополам – это и будет радиус описываемой около прямоугольного треугольника окружности.

2. Если длина гипотенузы неведома, но есть длины (a и b) катетов (2-х сторон, прилегающих к прямому углу), то радиус (R) обнаружьте с применением теоремы Пифагора. Из нее вытекает, что данный параметр будет равен половине квадратного корня, извлеченного из суммы возведенных в квадрат длин катетов: R=?*?(a?+b?).

3. Если вестима длина лишь одного из катетов (a) и величина прилегающего к нему острого угла (?), то для определения радиуса описанной окружности (R) используйте тригонометрическую функцию – косинус. В прямоугольном треугольнике она определяет соотношение длин гипотенузы и этого катета. Рассчитайте половину частного от деления длины катета на косинус знаменитого угла: R=?*a/cos(?).

4. Если помимо длины одного из катетов (a) вестима величина острого угла (?), лежащего наоборот него, то для вычисления радиуса (R) воспользуйтесь иной тригонометрической функцией – синусом. Помимо замены функции и стороны в формуле ничего не изменится – поделите длину катета на синус вестимого острого угла, а итог поделите напополам: R=?*b/sin(?).

5. Позже нахождения радиуса любым из перечисленных методов определите центр описываемой окружности. Для этого отложите на циркуле полученное значение и установите его в всякую вершину треугольника. Описывать полный круг нет необходимости, легко подметьте место его пресечения с гипотенузой – эта точка и будет центром окружности. Таково качество прямоугольного треугольника – центр описанной около него окружности неизменно находится в середине его самой длинной стороны. Начертите круг отложенного на циркуле радиуса с центром в обнаруженной точке. На этом построение будет закончено.

Изредка около выпуклого многоугольника дозволено начертить окружность таким образом, дабы вершины всех углов лежали на ней. Такую окружность по отношению к многоугольнику нужно называть описанной. Ее центр не непременно должен находиться внутри периметра вписанной фигуры, но пользуясь свойствами описанной окружности , обнаружить эту точку, как водится, не дюже сложно.

Вам понадобится

  • Линейка, карандаш, транспортир либо угольник, циркуль.

Инструкция

1. Если многоугольник, около которого необходимо описать окружность, начерчен на бумаге, для нахождения центр а круга довольно линейки, карандаша и транспортира либо угольника. Измерьте длину всякий из сторон фигуры, определите ее середину и поставьте в этом месте чертежа вспомогательную точку. С поддержкой угольника либо транспортира проведите внутри многоугольника перпендикулярный этой стороне отрезок до пересечения с противоположной стороной.

2. Проделайте эту же операцию с всякий иной стороной многоугольника. Пересечение 2-х построенных отрезков и будет желанной точкой. Это вытекает из основного свойства описанной окружности – ее центр в выпуклом многоугольнике с любым числом сторон неизменно лежит в точке пересечения серединных перпендикуляров, проведенных к этим сторонам.

3. Для верных многоугольников определение центр а вписанной окружности может быть гораздо проще. Скажем, если это квадрат, то начертите две диагонали – их пересечение и будет центр ом вписанной окружности . В положительном многоугольнике с любым четным числом сторон довольно объединить вспомогательными отрезками две пары лежащих друг наоборот друга углов – центр описанной окружности должен совпадать с точкой их пересечения. В прямоугольном треугольнике для решения задачи легко определите середину самой длинной стороны фигуры – гипотенузы.

4. Если из условий незнакомо, дозволено ли в тезисе начертить описанную окружность для данного многоугольника, позже определения полагаемой точки центр а любым из описанных методов вы можете это узнать. Отложите на циркуле расстояние между обнаруженной точкой и всякий из вершин, установите циркуль в полагаемый центр окружности и начертите круг – вся вершина должна лежать на этой окружности . Если это не так, значит, не выполняется одно из основных свойств и описать окружность около данного многоугольника невозможно.

Согласно определению, описанная окружность должна проходить через все вершины углов заданного многоугольника. При этом идеально неважно, что это за многоугольник - треугольник, квадрат, прямоугольник, трапеция либо что-то иное. Также не играет роли, верный либо неверный это многоугольник. Нужно лишь рассматривать, что существуют многоугольники, вокруг которых окружность описать невозможно. Неизменно дозволено описать окружность вокруг треугольника. Что касается четырехугольников, то окружность дозволено описать около квадрата либо прямоугольника либо равнобедренной трапеции.

Вам понадобится

  • Заданный многоугольника
  • Линейка
  • Угольник
  • Карандаш
  • Циркуль
  • Транспортир
  • Таблицы синусов и косинусов
  • Математические представления и формулы
  • Теорема Пифагора
  • Теорема синусов
  • Теорема косинусов
  • Признаки подобия треугольников

Инструкция

1. Постройте многоугольник с заданными параметрами и определите, дозволено ли описать вокруг него окружность . Если вам дан четырехугольник, посчитайте суммы его противоположных углов. Всякая из них должна равняться 180°.

2. Для того, дабы описать окружность , необходимо вычислить ее радиус. Припомните, где лежит центр описанной окружности в различных многоугольниках. В треугольнике он находится в точке пересечения всех высот данного треугольника. В квадрате и прямоугольники - в точке пересечения диагоналей, для трапеции- в точке пересечения оси симметрии к линии, соединяющей середины боковых сторон, а для всякого иного выпуклого многоугольника - в точке пересечения серединных перпендикуляров к сторонам.

3. Диаметр окружности, описанной вокруг квадрата и прямоугольника, вычислите по теореме Пифагора. Он будет равняться квадратному корню из суммы квадратов сторон прямоугольника. Для квадрата, у которого все стороны равны, диагональ равна квадратному корню из удвоенного квадрата стороны. Поделив диаметр на 2, получаете радиус.

4. Вычислите радиус описанной окружности для треугольника. От того что параметры треугольника заданы в условиях, вычислите радиус по формуле R = a/(2·sinA), где а - одна из сторон треугольника, ? - противолежащий ей угол. Взамен этой стороны дозволено взять всякую иную сторону и противолежащий ей угол.

5. Вычислите радиус окружности, описанной вокруг трапеции. R = a*d*c / 4 v(p*(p-a)*(p-d)*(p-c)) В этой формуле a и b - вестимые по условиям задания основания трапеции, h – высота, d – диагональ, p = 1/2*(a+d+c) . Вычислите недостающие значения. Высоту дозволено вычислить по теореме синусов либо косинусов, от того что длины сторон трапеции и углы заданы в условиях задачи. Зная высоту и рассматривая знаки подобия треугольников, вычислите диагональ. Позже этого останется только вычислить радиус по указанной выше формуле.

Видео по теме

Полезный совет
Дабы вычислить радиус окружности, описанной вокруг иного многоугольника, исполните ряд дополнительных построений. Получите больше примитивные фигуры, параметры которых вам знамениты.

Совет 4: Как начертить прямоугольный треугольник по острому углу и гипотенузе

Прямоугольным называют треугольник, угол в одной из вершин которого равен 90°. Сторону, лежащую наоборот этого угла, называют гипотенузой, а стороны, противолежащие двум острым углам треугольника, именуются катетами. Если знаменита длина гипотенузы и величина одного из острых углов, то этих данных довольно, чтоб возвести треугольник, как минимум, двумя методами.

Вам понадобится

  • Лист бумаги, карандаш, линейка, циркуль, калькулятор.

Инструкция

1. 1-й метод требует наличия помимо карандаша и бумаги еще и линейки, транспортира и угольника. Вначале начертите ту сторону, которая является гипотенузой – поставьте точку A, отложите от нее вестимую длину гипотенузы, поставьте точку С и объедините точки.

2. Приложите транспортир к проведенному отрезку таким образом, дабы нулевая отметка совпала с точкой A, отмерьте величину вестимого острого угла и поставьте вспомогательную точку. Проведите линию, которая будет начинаться в точке A и проходить через вспомогательную точку.

3. Приложите угольник к отрезку AC таким образом, дабы прямой угол начинался от точки C. Точку пересечения угольником линии, проведенной на предыдущем шаге, обозначьте буквой B и объедините ее с точкой C. На этом построение прямоугольного треугольника с знаменитой длиной стороны AC (гипотенузы) и острым углом в вершине A будет завершено.

4. Иной метод помимо карандаша и бумаги затребует наличия линейки, циркуля и калькулятора. Начните с вычисления длин катетов – умения величины одного острого угла и длины гипотенузы для этого абсолютно довольно.

5. Рассчитайте длину того катета (AB), тот, что лежит наоборот угла вестимой величины (β) – он будет равен произведению длины гипотенузы (AC) на синус знаменитого угла AB=AC*sin(β).

6. Определите длину иного катета (BC) – она будет равна произведению длины гипотенузы на косинус вестимого угла BC=AC*cos(β).

7. Поставьте точку A, отмерьте от нее длину гипотенузы, поставьте точку C и проведите между ними линию.

8. Отложите на циркуле длину катета AB, рассчитанную в пятом шаге и начертите вспомогательный полукруг с центром в точке A.

9. Отложите на циркуле длину катета BC, рассчитанную в шестом шаге и начертите вспомогательный полукруг с центром в точке С.

10. Подметьте точку пересечения 2-х полукругов буквой B и проведите отрезки между точками A и B, C и B. На этом построение прямоугольного треугольника будет закончено.

Совет 5: Как именуются стороны прямоугольного треугольника

Ошеломительными свойствами прямоугольных треугольников люди заинтересовались еще во времена древности. Многие из этих свойств были описаны древнегреческим ученым Пифагором. В Старинной Греции возникли и наименования сторон прямоугольного треугольника.

Какой треугольник называют прямоугольным?

Есть несколько типов треугольников. У одних все углы острые, у других – один тупой и два острых, у третьих – два острых и прямой. По этому знаку всякий тип этих геометрических фигур и получил наименование: остроугольные, тупоугольные и прямоугольные. То есть, прямоугольным именуется такой треугольник, у которого один из углов составляет 90°. Есть и другое определение, аналогичное с первым. Прямоугольным именуется треугольник, у которого две стороны перпендикулярны.

Гипотенуза и катеты

У остроугольного и тупоугольного треугольников отрезки, соединяющие вершины углов, именуются примитивно сторонами. У треугольника прямоугольного стороны имеют и другие наименования. Те, которые прилегают к прямому углу, именуются катетами. Сторона, противолежащая прямому углу, именуется гипотенузой. В переводе с греческого слово «гипотенуза» обозначает «натянутая», а «катет» – «перпендикуляр».

Соотношения между гипотенузой и катетами

Стороны прямоугольного треугольника связаны между собой определенными соотношениями, которые гораздо облегчают вычисления. Скажем, зная размеры катетов, дозволено вычислить длину гипотенузы. Это соотношение по имени открывшего его математика получило наименование теоремы Пифагора и выглядит оно так:c2=a2+b2, где с – гипотенуза, a и b – катеты. То есть, гипотенуза будет равна квадратному корню из суммы квадратов катетов. Дабы обнаружить всякий из катетов, довольно из квадрата гипотенузы вычесть квадрат иного катета и извлечь из полученной разности квадратный корень.

Прилежащий и противолежащий катет

Начертите прямоугольный треугольник АСВ. Буквой С принято обозначать вершину прямого угла, А и В – вершины острых углов. Стороны, противолежащие всему углу, комфортно назвать а, b и с, по наименованиям лежащих наоборот них углов. Разглядите угол А. Катет а для него будет противолежащим, катет b – прилежащим. Отношение противолежащего катета к гипотенузе именуется синусом. Вычислить эту тригонометрическую функцию дозволено по формуле: sinA=a/c. Отношение прилежащего катета к гипотенузе именуется косинусом. Вычисляется он по формуле: cosA=b/c. Таким образом, зная угол и одну из сторон, дозволено по этим формулам вычислить иную сторону. Тригонометрическими соотношениями связаны и оба катета. Отношение противолежащего к прилежащему именуется тангенсом, а прилежащего к противолежащему – котангенсом. Выразить эти соотношения дозволено формулами tgA=a/b либо ctgA=b/a.

Окружность описанная около прямоугольного треугольника. В этой публикации мы с вами рассмотрим доказательство одного «математического факта», который широко используется при решении задач по геометрии. В одних источниках сей факт обозначается как теорема, в других как свойство, формулировки имеются разные, но суть их одна:

Любой треугольник построенный на диаметре окружности, третья вершина которого лежит на этой окружности является прямоугольным!

То есть закономерность в этом геометрическом узоре состоит в том, что, куда бы вы ни поместили вершину треугольника, угол при этой вершине всегда будет прямым:

Заданий присутствующих с составе экзамена по математике, в ходе решений которых используется это свойство, достаточно много.

Стандартное доказательство считаю весьма путанным и перегруженным математическими символами, его вы найдёте в учебнике. Мы же рассмотрим простое и интуитивно понятное. Его я обнаружил в одном замечательном эссе под названием "Плач математика ", рекомендую к прочтению учителям и ученикам.

Сначала вспомним некоторые теоретические моменты:

Признак параллелограмма. У параллелограмма противолежащие стороны равны. То есть если у четырехугольника обе пары противолежащих сторон равны, то этот четырехугольник – параллелограмм.

Признак прямоугольника. Прямоугольник является параллелограммом, и его диагонали равны. То есть если у параллелограмма диагонали равны, то он является прямоугольником.

*Прямоугольник является параллелограммом, это его частный случай.

Итак, приступим:

Возьмем треугольник и относительно центра окружности повернем его на 180 0 (перевернём его). У нас получится четырехугольник, вписанный в окружность:

Поскольку мы просто повернули треугольник, то противолежащие стороны четырехугольника равны, значит это параллелограмм. Поскольку треугольник повернут ровно на 180 градусов, значит его вершина диаметрально противоположна вершине «исходного» треугольника.

Получается, что диагонали четырёхугольника равны, так они являются диаметрами. Имеем четырёхугольник у которого противолежащие стороны равны и диагонали равны, следовательно это есть прямоугольник, а у него все углы прямые.

Вот и всё доказательство!

Можно рассмотреть и такое, тоже простое и понятное:

Посмотреть ещё одно доказательство =>>

Из точки С построим отрезок проходящий через центр окружности, другой конец которого будет лежать на противоположной точке окружности (точка D). Точку D соединим с вершинами А и В: Получили четырёхугольник. Треугольник АОD равен треугольнику СОВ по двум сторонам и углу между ними:

Из равенства треугольников следует, что AD = CB.

Аналогично и АС = DB.

Можем сделать вывод, что четырёхугольник является параллелограммом. Кроме того, его диагонали равны – АВ изначально дан как диаметр, СD также диаметр (проходит через точку О).

Таким образом, АСВD прямоугольник, значит все его углы прямые. Доказано!

Ещё один примечательный подход, который ярко и «красиво» говорит нам о том, что рассматриваемый угол всегда прямой.

Посмотрите и вспомните информацию про . А теперь посмотрите на эскиз:

Угол АОВ не что иное как центральный угол опирающийся на дугу АDB, и равен он 180 градусам. Да, АВ это диаметр окружности, но ничто нам не мешает считать АОВ центральным углом (это развёрнутый угол). Угол же АСВ является вписанным для него, он опирается также же дугу на АDB.

А мы знаем, что вписанный угол равен половине центрального, то есть как бы мы не разместили точку С на окружности, угол АСВ всегда будет равен 90 градусам, то является прямым.

Какие выводы можно сделать применительно к решению задач, в частности включённых в экзамен?

Если в условии речь идёт о треугольнике вписанном в окружность и построенном на диаметре этой окружности, то однозначно этот треугольник является прямоугольным.

Если сказано, что прямоугольный треугольник вписан в окружность, то это означает, что его гипотенуза является совпадает с её диаметром (равна ему) и центр гипотенузы совпадает с центром окружности.

На этом всё. Успеха вам!

С уважением, Александр Крутицких.

Начальный уровень

Описанная окружность. Визуальный гид (2019)

Первый вопрос, который может возникнуть: описанная - вокруг чего?

Ну, вообще-то иногда бывает и вокруг чего угодно, а мы будем рассуждать об окружности, описанной вокруг (иногда ещё говорят «около») треугольника. Что же это такое?

И вот, представь себе, имеет место удивительный факт:

Почему этот факт удивительный?

Но ведь треугольники - то бывают разные!

И для всякого найдётся окружность, которая пройдёт через все три вершины , то есть описанная окружность.

Доказательство этого удивительного факта можешь найти в следующих уровнях теории, а здесь заметим только, что если взять, к примеру, четырехугольник, то уже вовсе не для всякого найдётся окружность, проходящая через четыре вершины. Вот, скажем, параллелограмм - отличный четырехугольник, а окружности, проходящей через все его четыре вершины - нет!

А есть только для прямоугольника:

Ну вот, а треугольник всякий и всегда имеет собственную описанную окружность! И даже всегда довольно просто найти центр этой окружности.

Знаешь ли ты, что такое серединный перпендикуляр ?

А теперь посмотрим, что получится, если мы рассмотрим целых три серединных перпендикуляра к сторонам треугольника.

Вот оказывается (и это как раз и нужно доказывать, хотя мы и не будем), что все три перпендикуляра пересекутся в одной точке. Смотри на рисунок - все три серединных перпендикуляра пересекаются в одной точке.

Как ты думаешь, всегда ли центр описанной окружности лежит внутри треугольника? Представь себе - вовсе не всегда!

А вот если остроугольный, то - внутри:

Что же делать с прямоугольным треугольником?

Да ещё с дополнительным бонусом:

Раз уж заговорили о радиусе описанной окружности: чему он равен для произвольного треугольника? И есть ответ на этот вопрос: так называемая .

А именно:

Ну и, конечно,

1. Существование и центр описанной окружности

Тут возникает вопрос: а для всякого ли треугольника существует такая окружность? Вот оказывается, что да, для всякого. И более того, мы сейчас сформулируем теорему, которая ещё и отвечает на вопрос, где же находится центр описанной окружности.

Смотри, вот так:

Давай наберёмся мужества и докажем эту теорему. Если ты читал уже тему « » разбирался в том, почему же три биссектрисы пересекаются в одной точке, то тебе будет легче, но и если не читал - не переживай: сейчас во всём разберёмся.

Доказательство будем проводить, используя понятие геометрического места точек (ГМТ).

Ну вот, например, является ли множество мячей - «геометрическим местом» круглых предметов? Нет, конечно, потому что бывают круглые …арбузы. А является ли множество людей, «геометрическим местом», умеющих говорить? Тоже нет, потому что есть младенцы, которые говорить не умеют. В жизни вообще сложно найти пример настоящего «геометрического места точек». В геометрии проще. Вот, к примеру, как раз то, что нам нужно:

Тут множество - это серединный перпендикуляр, а свойство « » - это «быть равноудаленной (точкой) от концов отрезка».

Проверим? Итак, нужно удостовериться в двух вещах:

  1. Всякая точка, которая равноудалена от концов отрезка - находится на серединном перпендикуляре к ему.

Соединим с и с.Тогда линия является медианой и высотой в. Значит, - равнобедренный, - убедились, что любая точка, лежащая на серединном перпендикуляре, одинаково удалена от точек и.

Возьмём - середину и соединим и. Получилась медиана. Но - равнобедренный по условию не только медиана, но и высота, то есть - серединный перпендикуляр. Значит, точка - точно лежит на серединном перпендикуляре.

Всё! Полностью проверили тот факт, что серединный перпендикуляр к отрезку является геометрическим местом точек, равноудаленных от концов отрезка.

Это все хорошо, но не забыли ли мы об описанной окружности? Вовсе нет, мы как раз подготовили себе «плацдарм для нападения».

Рассмотрим треугольник. Проведём два серединных перпендикуляра и, скажем, к отрезкам и. Они пересекутся в какой-то точке, которую мы назовем.

А теперь, внимание!

Точка лежит на серединном перпендикуляре;
точка лежит на серединном перпендикуляре.
И значит, и.

Отсюда следует сразу несколько вещей:

Во - первых , точка обязана лежать на третьем серединном перпендикуляре, к отрезку.

То есть серединный перпендикуляр тоже обязан пройти через точку, и все три серединных перпендикуляра пересеклись в одной точке.

Во - вторых : если мы проведём окружность с центром в точке и радиусом, то эта окружность также пройдёт и через точку, и через точку, то есть будет описанной окружностью. Значит, уже есть, что пересечение трёх серединных перпендикуляров - центр описанной окружности для любого треугольника.

И последнее: о единственности. Ясно (почти), что точку можно получить единственным образом, поэтому и окружность - единственная. Ну, а «почти» - оставим на твоё размышление. Вот и доказали теорему. Можно кричать «Ура!».

А если в задаче стоит вопрос «найдите радиус описанной окружности»? Или наоборот, радиус дан, а требуется найти что - то другое? Есть ли формула, связывающая радиус описанной окружность с другими элементами треугольника?

Обрати внимание: теорема синусов сообщает, что для того чтобы найти радиус описанной окружности, тебе нужна одна сторона (любая!) и противолежащий ей угол . И всё!

3. Центр окружности - внутри или снаружи

А теперь вопрос: может ли центр описанной окружности лежать снаружи треугольника.
Ответ: ещё как может. Более того, так всегда бывает в тупоугольном треугольнике.

И вообще:

ОПИСАННАЯ ОКРУЖНОСТЬ. КОРОТКО О ГЛАВНОМ

1. Окружность, описанная около треугольника

Это окружность, которая проходит через все три вершины этого треугольника.

2. Существование и центр описанной окружности

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье - 299 руб.
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - 999 руб.

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Во втором случае мы подарим тебе тренажер “6000 задач с решениями и ответами, по каждой теме, по всем уровням сложности”. Его точно хватит, чтобы набить руку на решении задач по любой теме.

На самом деле это намного больше, чем просто тренажер - целая программа подготовки. Если понадобится, ты сможешь ею так же воспользоваться БЕСПЛАТНО.

Доступ ко всем текстам и программам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Последние материалы сайта