Дан график производной найти минимум функции. Читаем график производной

24.09.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Решение заданий части В ЕГЭ по математике

Решение. Точки максимума соответствуют точкам смены знака производной с плюса на минус. На рисунке изображен график производной функции f(x) , определенной на интервале (−10; 8). Найдите количество точек максимума функции f(x) на отрезке [−9;6].

Решение. Точки максимума соответствуют точкам смены знака производной с плюса на минус. На отрезке [−9;6] функция имеет две точки максимума x = − 4 и x = 4. Ответ: 2 . На рисунке изображен график производной функции f(x) , определенной на интервале (−10; 8). Найдите количество точек максимума функции f(x) на отрезке [−9;6].

Решение. На рисунке изображен график функции y=f(x), определенной на интервале (−1; 12). Определите количество целых точек, в которых производная функции отрицательна. Производная функции отрицательна на тех интервалах, на которых функция убывает.

Решение. На рисунке изображен график функции y=f(x), определенной на интервале (−1; 12). Определите количество целых точек, в которых производная функции отрицательна. Производная функции отрицательна на тех интервалах, на которых функция убывает, т. е. на интервалах (0,5; 3), (6; 10) и (11; 12). В них содержатся целые точки 1, 2, 7, 8 и 9. Всего 5 точек. Ответ: 5.

На рисунке изображен график производной функции f(x), определенной на интервале (−10; 4). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них. Решение. Промежутки убывания функции f(x) соответствуют промежуткам, на которых производная функции отрицательна.

На рисунке изображен график производной функции f(x), определенной на интервале (−10; 4). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них. Решение. Промежутки убывания функции f(x) соответствуют промежуткам, на которых производная функции отрицательна, то есть интервалу (−9; −6) длиной 3 и интервалу (−2; 3) длиной 5. Длина наибольшего из них равна 5. Ответ: 5.

На рисунке изображен график производной функции f(x) , определенной на интервале (−7; 14). Найдите количество точек максимума функции f(x) на отрезке [−6; 9]. Решение. Точки максимума соответствуют точкам смены знака производной с положительного на отрицательный.

На рисунке изображен график производной функции f(x) , определенной на интервале (−7; 14). Найдите количество точек максимума функции f(x) на отрезке [−6; 9]. Решение. Точки максимума соответствуют точкам смены знака производной с положительного на отрицательный. На отрезке [−6; 9] функция имеет одну точку максимума x = 7. Ответ: 1.

На рисунке изображен график производной функции f(x), определенной на интервале (−8; 6). Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них. Решение. Промежутки возрастания функции f(x) соответствуют промежуткам, на которых производная функции положительна.

На рисунке изображен график производной функции f(x), определенной на интервале (−8; 6). Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них. Решение. Промежутки возрастания функции f(x) соответствуют промежуткам, на которых производная функции положительна, то есть интервалам (−7; −5), (2; 5). Наибольший из них - интервал (2; 5), длина которого 3.

На рисунке изображен график производной функции f(x) , определенной на интервале (−7; 10). Найдите количество точек минимума функции f(x) на отрезке [−3; 8]. Решение. Точки минимума соответствуют точкам смены знака производной с минуса на плюс.

На рисунке изображен график производной функции f(x) , определенной на интервале (−7; 10). Найдите количество точек минимума функции f(x) на отрезке [−3; 8]. Решение. Точки минимума соответствуют точкам смены знака производной с минуса на плюс. На отрезке [−3; 8] функция имеет одну точку минимума x = 2. Ответ: 1.

На рисунке изображен график производной функции f(x) , определенной на интервале (−16; 4). Найдите количество точек экстремума функции f(x) на отрезке [−14; 2]. Решение. Точки экстремума соответствуют точкам смены знака производной - изображенным на графике нулям производной. Производная обращается в нуль в точках −13, −11, −9, −7. На отрезке [−14; 2] функция имеет 4 точки экстремума. Ответ: 4.

На рисунке изображен график функции y=f(x) , определенной на интервале (−2; 12). Найдите сумму точек экстремума функции f(x) . Решение. Заданная функция имеет максимумы в точках 1, 4, 9, 11 и минимумы в точках 2, 7, 10. Поэтому сумма точек экстремума равна 1 + 4 + 9 + 11 + 2 + 7 + 10 = 44. Ответ: 44.

На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .

На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 . Решение. Значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс. Построим треугольник с вершинами в точках A (2; −2), B (2; 0), C (−6; 0). Угол наклона касательной к оси абсцисс будет равен углу, смежному с углом ACB

На рисунке изображен график функции y = f(x) и касательная к этому графику в точке абсциссой, равной 3. Найдите значение производной этой функции в точке x = 3. Для решения используем геометрический смысл производной: значение производной функции в точке равняется угловому коэффициенту касательной к графику этой функции, проведенной в этой точке. Угловой коэффициент касательной равен тангенсу угла между касательной и положительным направлением оси х (tg α). Угол α = β, как накрест лежащие углы при параллельных прямых y=0, y=1 и секущей-касательной. Для треугольника ABC

На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .

На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 . По свойствам касательной y=f ′ (x 0)⋅x+b, b=const По рисунку видно, что касательная к функции f(x) в точке x 0 проходит через точки (-3;2), (5,4). Следовательно, можно составить систему уравнений

Источники http://reshuege.ru/

В задаче B9 дается график функции или производной, по которому требуется определить одну из следующих величин:

  1. Значение производной в некоторой точке x 0 ,
  2. Точки максимума или минимума (точки экстремума),
  3. Интервалы возрастания и убывания функции (интервалы монотонности).

Функции и производные, представленные в этой задаче, всегда непрерывны, что значительно упрощает решение. Не смотря на то, что задача относится к разделу математического анализа, она вполне по силам даже самым слабым ученикам, поскольку никаких глубоких теоретических познаний здесь не требуется.

Для нахождения значения производной, точек экстремума и интервалов монотонности существуют простые и универсальные алгоритмы — все они будут рассмотрены ниже.

Внимательно читайте условие задачи B9, чтобы не допускать глупых ошибок: иногда попадаются довольно объемные тексты, но важных условий, которые влияют на ход решения, там немного.

Вычисление значения производной. Метод двух точек

Если в задаче дан график функции f(x), касательная к этому графику в некоторой точке x 0 , и требуется найти значение производной в этой точке, применяется следующий алгоритм:

  1. Найти на графике касательной две «адекватные» точки: их координаты должны быть целочисленными. Обозначим эти точки A (x 1 ; y 1) и B (x 2 ; y 2). Правильно выписывайте координаты — это ключевой момент решения, и любая ошибка здесь приводит к неправильному ответу.
  2. Зная координаты, легко вычислить приращение аргумента Δx = x 2 − x 1 и приращение функции Δy = y 2 − y 1 .
  3. Наконец, находим значение производной D = Δy/Δx. Иными словами, надо разделить приращение функции на приращение аргумента — и это будет ответ.

Еще раз отметим: точки A и B надо искать именно на касательной, а не на графике функции f(x), как это часто случается. Касательная обязательно будет содержать хотя бы две таких точки — иначе задача составлена некорректно.

Рассмотрим точки A (−3; 2) и B (−1; 6) и найдем приращения:
Δx = x 2 − x 1 = −1 − (−3) = 2; Δy = y 2 − y 1 = 6 − 2 = 4.

Найдем значение производной: D = Δy/Δx = 4/2 = 2.

Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .

Рассмотрим точки A (0; 3) и B (3; 0), найдем приращения:
Δx = x 2 − x 1 = 3 − 0 = 3; Δy = y 2 − y 1 = 0 − 3 = −3.

Теперь находим значение производной: D = Δy/Δx = −3/3 = −1.

Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .

Рассмотрим точки A (0; 2) и B (5; 2) и найдем приращения:
Δx = x 2 − x 1 = 5 − 0 = 5; Δy = y 2 − y 1 = 2 − 2 = 0.

Осталось найти значение производной: D = Δy/Δx = 0/5 = 0.

Из последнего примера можно сформулировать правило: если касательная параллельна оси OX, производная функции в точке касания равна нулю. В этом случае даже не надо ничего считать — достаточно взглянуть на график.

Вычисление точек максимума и минимума

Иногда вместо графика функции в задаче B9 дается график производной и требуется найти точку максимума или минимума функции. При таком раскладе метод двух точек бесполезен, но существует другой, еще более простой алгоритм. Для начала определимся с терминологией:

  1. Точка x 0 называется точкой максимума функции f(x), если в некоторой окрестности этой точки выполняется неравенство: f(x 0) ≥ f(x).
  2. Точка x 0 называется точкой минимума функции f(x), если в некоторой окрестности этой точки выполняется неравенство: f(x 0) ≤ f(x).

Для того чтобы найти точки максимума и минимума по графику производной, достаточно выполнить следующие шаги:

  1. Перечертить график производной, убрав всю лишнюю информацию. Как показывает практика, лишние данные только мешают решению. Поэтому отмечаем на координатной оси нули производной — и все.
  2. Выяснить знаки производной на промежутках между нулями. Если для некоторой точки x 0 известно, что f’(x 0) ≠ 0, то возможны лишь два варианта: f’(x 0) ≥ 0 или f’(x 0) ≤ 0. Знак производной легко определить по исходному чертежу: если график производной лежит выше оси OX, значит f’(x) ≥ 0. И наоборот, если график производной проходит под осью OX, то f’(x) ≤ 0.
  3. Снова проверяем нули и знаки производной. Там, где знак меняется с минуса на плюс, находится точка минимума. И наоборот, если знак производной меняется с плюса на минус, это точка максимума. Отсчет всегда ведется слева направо.

Эта схема работает только для непрерывных функций — других в задаче B9 не встречается.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−5; 5]. Найдите точку минимума функции f(x) на этом отрезке.

Избавимся от лишней информации — оставим только границы [−5; 5] и нули производной x = −3 и x = 2,5. Также отметим знаки:

Очевидно, в точке x = −3 знак производной меняется с минуса на плюс. Это и есть точка минимума.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−3; 7]. Найдите точку максимума функции f(x) на этом отрезке.

Перечертим график, оставив на координатной оси только границы [−3; 7] и нули производной x = −1,7 и x = 5. Отметим на полученном графике знаки производной. Имеем:

Очевидно, в точке x = 5 знак производной меняется с плюса на минус — это точка максимума.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−6; 4]. Найдите количество точек максимума функции f(x), принадлежащих отрезку [−4; 3].

Из условия задачи следует, что достаточно рассмотреть только часть графика, ограниченную отрезком [−4; 3]. Поэтому строим новый график, на котором отмечаем только границы [−4; 3] и нули производной внутри него. А именно, точки x = −3,5 и x = 2. Получаем:

На этом графике есть лишь одна точка максимума x = 2. Именно в ней знак производной меняется с плюса на минус.

Небольшое замечание по поводу точек с нецелочисленными координатами. Например, в последней задаче была рассмотрена точка x = −3,5, но с тем же успехом можно взять x = −3,4. Если задача составлена корректно, такие изменения не должны влиять на ответ, поскольку точки «без определенного места жительства» не принимают непосредственного участия в решении задачи. Разумеется, с целочисленными точками такой фокус не пройдет.

Нахождение интервалов возрастания и убывания функции

В такой задаче, подобно точкам максимума и минимума, предлагается по графику производной отыскать области, в которых сама функция возрастает или убывает. Для начала определим, что такое возрастание и убывание:

  1. Функция f(x) называется возрастающей на отрезке если для любых двух точек x 1 и x 2 из этого отрезка верно утверждение: x 1 ≤ x 2 ⇒ f(x 1) ≤ f(x 2). Другими словами, чем больше значение аргумента, тем больше значение функции.
  2. Функция f(x) называется убывающей на отрезке если для любых двух точек x 1 и x 2 из этого отрезка верно утверждение: x 1 ≤ x 2 ⇒ f(x 1) ≥ f(x 2). Т.е. большему значению аргумента соответствует меньшее значение функции.

Сформулируем достаточные условия возрастания и убывания:

  1. Для того чтобы непрерывная функция f(x) возрастала на отрезке , достаточно, чтобы ее производная внутри отрезка была положительна, т.е. f’(x) ≥ 0.
  2. Для того чтобы непрерывная функция f(x) убывала на отрезке , достаточно, чтобы ее производная внутри отрезка была отрицательна, т.е. f’(x) ≤ 0.

Примем эти утверждения без доказательств. Таким образом, получаем схему для нахождения интервалов возрастания и убывания, которая во многом похожа на алгоритм вычисления точек экстремума:

  1. Убрать всю лишнюю информацию. На исходном графике производной нас интересуют в первую очередь нули функции, поэтому оставим только их.
  2. Отметить знаки производной на интервалах между нулями. Там, где f’(x) ≥ 0, функция возрастает, а где f’(x) ≤ 0 — убывает. Если в задаче установлены ограничения на переменную x, дополнительно отмечаем их на новом графике.
  3. Теперь, когда нам известно поведение функции и ограничения, остается вычислить требуемую в задаче величину.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−3; 7,5]. Найдите промежутки убывания функции f(x). В ответе укажите сумму целых чисел, входящих в эти промежутки.

Как обычно, перечертим график и отметим границы [−3; 7,5], а также нули производной x = −1,5 и x = 5,3. Затем отметим знаки производной. Имеем:

Поскольку на интервале (− 1,5) производная отрицательна, это и есть интервал убывания функции. Осталось просуммировать все целые числа, которые находятся внутри этого интервала:
−1 + 0 + 1 + 2 + 3 + 4 + 5 = 14.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−10; 4]. Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них.

Избавимся от лишней информации. Оставим только границы [−10; 4] и нули производной, которых в этот раз оказалось четыре: x = −8, x = −6, x = −3 и x = 2. Отметим знаки производной и получим следующую картинку:

Нас интересуют промежутки возрастания функции, т.е. такие, где f’(x) ≥ 0. На графике таких промежутков два: (−8; −6) и (−3; 2). Вычислим их длины:
l 1 = − 6 − (−8) = 2;
l 2 = 2 − (−3) = 5.

Поскольку требуется найти длину наибольшего из интервалов, в ответ записываем значение l 2 = 5.

Далее в классе целесообразно рассмотреть ключевую задачу: по приведенному графику производной ученики должны придумать (конечно же, с помощью учителя) различные вопросы, относящиеся к свойствам самой функции. Естественно, что эти вопросы обсуждаются, в случае необходимости корректируются, обобщаются, фиксируются в тетради, после чего наступает этап решения этих заданий. Здесь необходимо добиться того, чтобы ученики не просто давали правильный ответ, а умели его аргументировать (доказывать), с использованием соответствующих определений, свойств, правил.
Приведем пример такой задачи: на доске (например, с помощью проектора) учащимся предлагается график производной, по нему было сформулировано 10 заданий (не совсем корректные или дублирующие вопросы отвергались).
Функция y = f(x) определена и непрерывна на отрезке [–6; 6].
По графику производной y = f"(x) определите:


1) количество промежутков возрастания функции y = f(x);
2) длину промежутка убывания функции y = f(x);
3) количество точек экстремума функции y = f(x);
4) точку максимума функции y = f(x);
5) критическую (стационарную) точку функции y = f(x), которая не является точкой экстремума;
6) абсциссу точки графика, в которой функция y = f(x) принимает наибольшее значение на отрезке ;
7) абсциссу точки графика, в которой функция y = f(x) принимает наименьшее значение на отрезке [–2; 2];
8) количество точек графика функции y = f(x), в которых касательная перпендикулярна оси Oy;
9) количество точек графика функции y = f(x), в которых касательная образует с положительным направлением оси Ox угол 60°;
10) абсциссу точки графика функции y = f(x), в которой угловой коэффициент касательной принимает наименьшее значение.
Ответ : 1) 2; 2) 2; 3) 2; 4) –3; 5) –5; 6) 4; 7) –1; 8) 3; 9) 4; 10) –2.
Для закрепления навыков исследования свойств функции на дом ученикам можно предложить задачу, связанную с чтением одного и того же графика, но в одном случае - это график функции, а в другом - график ее производной.

Статья опубликована при поддержке форума сисадминов и программистов. На "CyberForum.ru" Вы найдёте форумы о таких темах, как программирование, компьютеры, обсуждение софта, web-программирование, наука, электроника и бытовая техника, карьера и бизнес, отдых, человек и общество, культура и искусство, дом и хозяйство, авто, мото и многое другое. На форуме Вы сможете получить бесплатную помощь. Подробнее Вы узнаете на сайте, который располагается по адресу: http://www.cyberforum.ru/differential-equations/ .

Функция y = f(x) определена и непрерывна на отрезке [–6; 5]. На рисунке приведен:
а) график функции y = f(x);
б) график производной y = f"(x).
По графику определите:
1) точки минимума функции y = f(x);
2) количество промежутков убывания функции y = f(x);
3) абсциссу точки графика функции y = f(x), в которой она принимает наибольшее значение на отрезке ;
4) количество точек графика функции y = f(x), в которых касательная параллельна оси Ox (или совпадает с ней).
Ответы :
а) 1) –3; 2; 4; 2) 3; 3) 3; 4) 4;
б) 1) –2; 4,6;2) 2; 3) 2; 4) 5.
Для проведения контроля можно организовать работу в парах: каждый учащийся заранее заготавливает на карточке своему партнеру график производной и ниже предлагает 4–5 вопросов на определение свойств функции. На уроках они обмениваются карточками, выполняют предложенные задания, после чего каждый проверяет и оценивает работу партнера.

Показывающая связь знака производной с характером монотонности функции.

Пожалуйста, будьте предельно внимательны в следующем. Смотрите, график ЧЕГО вам дан! Функции или ее производной

Если дан график производной , то интересовать нас будут только знаки функции и нули. Никакие «холмики» и «впадины» не интересуют нас в принципе!

Задача 1.

На рисунке изображен график функции , определенной на интервале . Определите количество целых точек, в которых производная функции отрицательна.


Решение:

На рисунке выделены цветом области убывания функции :


В эти области убывания функции попадает 4 целые значения .


Задача 2.

На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.


Решение:

Раз касательная к графику функции параллельна (или совпадает) прямой (или, что тоже самое, ), имеющей угловой коэффициент , равный нулю, то и касательная имеет угловой коэффициент .

Это в свою очередь означает, что касательная параллельна оси , так как угловой коэффициент есть тангенс угла наклона касательной к оси .

Поэтому мы находим на графике точки экстремума (точки максимума и минимума), – именно в них касательные к графику функции будут параллельны оси .


Таких точек – 4.

Задача 3.

На рисунке изображен график производной функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.


Решение:

Раз касательная к графику функции параллельна (или совпадает) прямой , имеющей угловой коэффициент , то и касательная имеет угловой коэффициент .

Это в свою очередь означает, что в точках касания.

Поэтому смотрим, сколько точек на графике имеют ординату , равную .

Как видим, таких точек – четыре.

Задача 4.

На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых производная функции равна 0.


Решение:

Производная равна нулю в точках экстремума. У нас их 4:


Задача 5.

На рисунке изображён график функции и одиннадцать точек на оси абсцисс:. В скольких из этих точек производная функции отрицательна?


Решение:

На промежутках убывания функции её производная принимает отрицательные значения. А убывает функция в точках. Таких точек 4.

Задача 6.

На рисунке изображен график функции , определенной на интервале . Найдите сумму точек экстремума функции .


Решение:

Точки экстремума – это точки максимума (-3, -1, 1) и точки минимума (-2, 0, 3).

Сумма точек экстремума: -3-1+1-2+0+3=-2.

Задача 7.

На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите сумму целых точек, входящих в эти промежутки.


Решение:

На рисунке выделены промежутки, на которых производная функции неотрицательная.

На малом промежутке возрастания целых точек нет, на промежутке возрастания четыре целых значения : , , и .


Их сумма:

Задача 8.

На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите длину наибольшего из них.


Решение:

На рисунке выделены цветом все промежутки, на которых производная положительна, а значит сама функция возрастает на этих промежутках.


Длина наибольшего из них – 6.

Задача 9.

На рисунке изображен график производной функции , определенной на интервале . В какой точке отрезка принимает наибольшее значение.


Решение:

Смотрим как ведет себя график на отрезке , а именно нас интересует только знак производной .


Знак производной на – минус, так как график на этом отрезке ниже оси .

Последние материалы сайта