Амеба обыкновенная сократительная вакуоль. Сократительная вакуоль и ее фукция. Строение сократительной вакуоли. Ее особенности

24.10.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Вопрос 24. Вакуоли. Параплазматические (эргастические) включения

Функции гилоксисом

Гилоксисомы

Их характеристика

Микротельца - это гладкостенные пузырьки величиной 0,1-1,5 мкм с относительно проницаемой мембраной, тонкозернистым матриксом (главный компонент - белок) и кристаллоидами белка или аморфными включениями.

Их основной фермент - каталаза - встречается только в микротельцах.

Микротельца образуются из расширенных и заполненных ферментом цистерн ЭР, которые отделяются от ЭР или, возможно, сохраняют с ним связь.

Микротельца представлены двумя основными видами:

  • пероксисомы;
  • гилоксисомы.


2. Пероксисомы

Пероксисомы содержат оксидазы, образующие Н 2 О 2 . Их субстратом являются вещества с общей структурой типа RH 2 , например:

  • мочевая кислота в перокисомах печени;
  • этанол или метанол в печени;
  • гликолевая кислота в пероксисомах листьев.

Образующаяся в процессе метаболизма Н 2 О 2 расщепляется по каталазному или пероксидазному типу. Эти реакции используются в различных метаболических процессах, например, при фотодыхании в листьях растений.

Гилоксисомы - специализированные периксисомы с малатсинтазой в качестве главного фермента.

Они участвуют в образовании углеводов из жиров, ацетата или этанола (глюконеогенез). Расщепляя жирные кислоты до ацетил-СоА, они превращают его потом в сукцинат в цикле гилоксисоновой кислоты (специфическим для гилоксисом способом). В дальнейшем вне гилоксисом сукцинат может использоваться для синтеза углеводов.

Гилоксисомы встречаются в жиронакопляющих тканях растений, а также у водорослей, грибов и некоторых простейших.

Вакуолями называют крупные пузырьки с преимущественно водным содержимым. Они образуются из пузыревидных расширений ЭР или из пузырьков Гольджи.

Сократительные (пульсирующие) вакуоли служат для осмотической регуляции (прежде всего - у пресноводных простейших), так как в их клетки путем осмоса непрерывно проникает вода из окружающего гипотонического раствора. Эту воду, а также воду, поглощенную путем пиноцитоза, вакуоли осмотически всасывают и затем выводят наружу, периодически сокращаясь с помощью пучков эластических волокон, имеющихся в их мембране. У сложных форм происходят волнообразные сокращения центрального резервуара с выделительной порой, ведущей наружу, и лучеобразно расположенных радиальных каналов.

Окружающая ее мембрана - тонопласт - имеет толщину мембраны ЭР (6 нм) в отличие от более толстой, более плотной и менее проницаемой плазмолеммы. Содержимое вакуоли - клеточный сок.



В эмбриональных клетках растений возникает много небольших вакуолей из пузыревидных расширений ЭР. Увеличиваясь, они сливаются в центральную вакуоль, которая занимает большую часть объема клетки и может быть пронизана тяжами протоплазмы. Однако такая вакуоль отсутствует во многих железистых клетках.


2. Центральные вакуоли, их функции

Центральная вакуоль необходима клетке в качестве:

  • накопительного пространства - для обособления растворимых промежуточных продуктов обмена:

    Углеводов (глюкозы, фруктозы);

    Органических кислот (яблочной и лимонной);

    Аминокислот;

  • места для экскретов - для обособления конечных продуктов обмена:

    Некоторых пигментов (красные, фиолетовые и синие антоцианы, желтые флавоны и флавонолы);

    Токсичных веществ (полифенолов, алкалоидов);

    Других вторичных веществ;

    Осмотического пространства. Вакуоль играет главную роль в поглощении воды растительными клетками и в создании осмотически обусловленного тургорного давления, которое растягивает упругую клеточную стену и таким образом придает жесткость неодеревеневшим частям растения;

    Лизосомного пространства для аутофагии, в которое уже при самом образовании вакуолей поступают лизосомные ферменты из пузырьков Гольджи.


3. Вакуоли в тканях растений

В запасающих тканях растений вместо одной центральной вакуоли часто бывает несколько вакуолей:

  • жировые вакуоли с жировой эмульсией;
  • белковые (алейроновые) вакуоли с:
    - коллоидными белками;
    - кристаллоидными белками;
    - глобоидами фитина (кальциево-магниевая соль эфира гексафосфорной кислоты и миоинозитола - форма накопления фосфата).

Такие вакуоли называются накопительными.

Запасные белки образуются в гранулярном ЭР и через гладкий ЭР попадают в расширенные цистерны, которые становятся белковыми вакуолями. При необходимости расщепления накопленного белка белковые вакуоли превращаются в лизосомы.

Данная статья ознакомит читателя со строением простейших организмов, а именно - акцентирует внимание на строении сократительной вакуоли, выполняющей выделительную (и не только) функцию, расскажет о значении простейших и опишет способы их существования в окружающей среде.

Сократительная вакуоль. Понятие

Вакуоль (от франц. vacuole, от латинского слова vacuus - пустой), шаровидной формы небольшие полости в растительных и животных клетках или одноклеточных организмах. Сократительные вакуоли в первую очередь распространены среди простейших организмов, которые обитают в пресноводной воде, например, среди протистов, таких как амеба протей и инфузория туфелька, которая получила такое оригинальное название из-за формы тела, схожего с формой подошвы туфли. Помимо перечисленных простейших, идентичные структуры также были обнаружены и в клетках различных пресноводных губок, которые принадлежат к семейству Бадяговые.

Строение сократительной вакуоли. Ее особенности

Сократительная вакуоль является мембранным органоидом, который осуществляет выброс лишней жидкости из цитоплазмы. Локализация и строение этого аппарата варьируется у различных микроорганизмов. Из комплекса пузыревидных или трубчатых вакуолей, называемых спонгиями, жидкость попадает в сократительную вакуоль. Благодаря постоянной работе этой системы поддерживается стабильный объём клетки. У простейших имеются сократительные вакуоли, которые представляют собой аппарат, регулирующий осмотическое давление, а также служащий для выделения из организма продуктов распада. Тело простейших состоит всего лишь из одной клетки, которая, в свою очередь, осуществляет все необходимые жизненные функции. Представители этого подцарства, такие как инфузория туфелька, амеба обыкновенная, другие одноклеточные обладают всеми свойствами самостоятельного организма.

Роль простейших организмов

Клетка выполняет все жизненные функции: выделение, дыхание, раздражимость, движение, размножение, обмен веществ. Простейшие распространены повсеместно. Наибольшее количество видов обитает в морских и пресных водах, многие населяют влажную почву, могут поражать растения, жить в телах многоклеточных животных и человека. В природе простейшие выполняют санитарную роль, также они участвуют в круговороте веществ, являются пищей для многих животных.

Сократительная вакуоль у амебы обыкновенной

Амеба обыкновенная - представитель класса корненожки, не имеет в отличие от других представителей постоянной формы тела. Передвижение осуществляет с помощью ложноножек. Теперь разберемся с тем, какую функцию выполняет сократительная вакуоль у амебы. Это регуляция уровня осмотического давления внутри ее клетки. Она у может образоваться в любом участке клетки. Через наружную мембрану вода из окружающей среды поступает внутрь осмотически. Концентрация растворенных веществ в клетке амебы выше, чем в окружающей среде. Таким образом, создается разность давления внутри клетки простейшего и за ее пределами. Функции сократительной вакуоли у амебы - это своеобразный откачивающий аппарат, который выводит избыток воды из клетки простейшего организма. Выбрасывать в окружающую среду накопившуюся жидкость амеба протей может в любом участке поверхности тела.

Помимо осморегуляторной, выполняет функцию дыхания в жизнедеятельности, так как в результате осмоса поступающая вода доставляет растворенный в ней кислород. Какую же еще функцию выполняет сократительная вакуоль? Так же выполняет выделительную функцию, а именно вместе с водой выводятся продукты обмена веществ в окружающую их среду.

Дыхание, выделение, осморегуляция у инфузории туфельки

Тело простейших покрыто плотной оболочкой, которое имеет постоянную форму. так и водорослями, в том числе и некоторыми простейшими. Организм инфузории имеет более сложное, чем у амебы строение. В клетке туфельки спереди и сзади расположены две сократительные вакуоли. В этом аппарате различимы резервуар и несколько небольших канальцев. Сократительные вакуоли постоянно находятся, благодаря такому строению (из микротрубочек), на постоянном месте в клетке.

Главная функция сократительной вакуоли в жизнедеятельности данного представителя простейших - осморегуляция, также она выводит из клетки лишнюю воду, которое проникает в клетку за счет осмоса. Сначала происходит набухание приводящих каналов, потом вода из них перекачивается в специальный резервуар. Резервуар сокращается, отделяется от приводящих каналов, через поры вода выбрасывается наружу. В клетке инфузории находится две сократительные вакуоли, которые, в свою очередь, действуют в противофазе. За счет работы двух таких аппаратов обеспечивается непрерывный процесс. Помимо этого, вода непрерывно циркулирует благодаря деятельности сократительных вакуолей. Они сжимаются поочередно, и частота сокращений зависит от температуры окружающей среды.

Так, при комнатной температуре (+18 - +20 градусов по Цельсию) частота сокращений вакуолей составляет, по некоторым данным, 10-15 секунд. А учитывая, что естественной средой обитания туфельки являются любые пресные водоемы со стоячей водой и наличием в ней разлагающихся органических веществ, температура этой среды на несколько градусов меняется в зависимости от времени года и, следовательно, частота сокращений может достигать 20-25 секунд. За час сократительная вакуоль простейшего организма способна выбросить из клетки воду в количестве. соизмеримом с ее размерами. В них скапливаются питательные вещества, непереваренные остатки пищи, конечные продукты обмена веществ, также можно обнаружить кислород и азот.

Очистка сточных вод простейшими

Влияние простейших на круговорот веществ в природе имеет огромное значение. В водоемах, вследствие спуска сточных вод, размножаются в большом количестве бактерии. В результате появляются различные простейшие организмы, которые и используют в пищу эти бактерии и таким образом способствуют естественной

Заключение

Несмотря на простое строение этих одноклеточных организмов, тело которых но выполняет функции целого организма, удивительным образом приспособленного к окружающей среде. Это можно наблюдать даже на примере строения сократительной вакуоли. На сегодняшний день уже доказано огромное значение простейших в природе и участие их в круговороте веществ.

Сократительными вакуолями обладают две группы животных- простейшие и губки. По-видимому, такие вакуоли есть у всех пресноводных простейших. Не столь ясно, имеются ли они у всех морских форм, но они обнаружены по крайней мере у некоторых морских инфузорий. Наличие сократительных вакуолей у пресноводных губок раньше подвергалось сомнению, но теперь доказано бесспорно (Jepps, 1947).
Так как пресноводные формы всегда гиперосмогичны по отношению к среде и поверхность их проницаема для воды, им постоянно приходится выводить из организма воду. Они должны не только удалять излишек воды, но также возмещать утраченные растворенные вещества, вероятно, путем активного поглощения солей из внешней среды. Определение водной проницаемости крупной амебы Chaos chaos показало, что вычисленный осмотический приток воды хорошо согласуется с наблюдаемой скоростью выведения жидкости сократительной вакуолью. Этим подтверждается широко распространенное мнение, что главная функция сократительной вакуоли состоит в оеморегуляции и регуляции объема клетки (L^vtrup, Pigon, 1951).
Наблюдая сократительную вакуоль у пресноводных простейших под микроскопом, можно видеть непрерывные циклические изменения. Вакуоль набирает воду и постепенно увеличивается в объеме, пока не достигнет критических размеров. Тогда она внезапно выбрасывает свое содержимое наружу и уменьшается

Рис. 10.1. Сократительная вакуоль Amoeba proteus ограничена мембраной ю окружена слоем мелких пузырьков, которые наполнены жидкостью и, по-видимому, опорожняются в вакуоль. Вокруг этой структуры лежит слой митохондрий, которые, вероятно, доставляют энергию для секреторного процесса. (Mercer,

в объеме, после чего снова начинает увеличиваться, и цикл повторяется.
Просвет сократительной вакуоли у амебы окружен одиночной тонкой мембраной. К этой мембране снаружи прилегает толстый (0,5-2 мкм) слой плотно упакованных мелких пузырьков диаметром от 0,02 до 0,2 мкм. Вокруг этого слоя мелких пузырьков лежит слой митохондрий, которые, по-видимому, доставляют энергию для осмотической работы, создающей гипо- тоничность содержимого вакуоли (рис. 10.1). Судя по электронным микрофотографиям, пузырьки опорожняются в сократительную вакуоль в результате слияния мембран.
Роль сократительной вакуоли в осморегуляции хорошо продемонстрирована у эвригалинной амебы Amoeba lacerata. Эта амеба исходно является пресноводным организмом, но обладает высокой толерантностью к соли и даже может адаптироваться к 50%-ной морской воде. Скорость опорожнения ее сократи,-
тельной вакуоли при адаптации к разным концентрациям солей находится в обратной зависимости от осмотической концентрации среды (рис. 10.2).
По-видимому, сократительные вакуоли удаляют воду с той же скоростью, с какой происходит ее осмотический приток, так. как по мере повышения концентрации среды количество посту-

Рис. 10.2. Скорость выведения жидкости сократительной вакуолью Amoeba lacerate в зависимости от концентрации внешней среды (выраженной в процентах от концентрации морской воды). Амебы исследовались в том же растворе, в каком были выращены. (Hopkins, 1946.)

пающей воды снижается. В морской среде, где, как надо полагать, внутренняя и внешняя осмотические концентрации почти одинаковы, сократительные вакуоли (у тех форм, у которых их наблюдали) опорожняются очень медленно. В этих случаях приходится предположить, что они не служат в первую очередь для осмо регуляции, а выполняют другие экскреторные функции.
Если у пресноводных простейших главная функция сократительной вакуоли состоит в удалении воды, то ее содержимое должно быть гипотоничным по отношению к остальной части клетки. Так и обстоит дело в действительности. В микроскопических пробах жидкости, взятых из сократительной вакуоли, осмотическая концентрация примерно в три раза ниже, чем в цитоплазме, но в несколько раз выше, чем во внешней среде (В. Sichmidt-Nielsen, Schrauger, 1963).

Сократительная вакуоль может удалять гипотоничную жидкость и служить для выведения воды. Но из-за того, что выводимая жидкость обладает более высокой осмотической концентрацией, чем внешняя среда, происходит непрерывная потеря растворенных веществ, и из этого следует, что амеба должна быть способна поглощать нужные ей вещества, вероятно, путем их активного переноса прямо из внешней среды.
Каким образом вакуоль может увеличиваться в объеме и в то же время содержать жидкость менее концентрированную, чем цитоплазма? Здесь возможны разные объяснения. Согласно одному из них, происходит активный транспорт воды в вакуоль. Но по ряду причин такая гипотеза мало правдоподобна. Другая возможность состоит в том, что вначале вакуоль содержит изо- тоничную жидкость, из которой осмотически активные вещества извлекаются, перед тем как жидкость будет выведена наружу.. Но такое предположение противоречит данным о том, что жидкость гипотонична и состав ее относительно постоянен на протяжении всего периода увеличения вакуоли.
Сведения о составе вакуолярной жидкости позволяют нам предположить третий механизм. Как видно из табл. 10.1, осмо-
Таблица ЮЛ
Концентрация веществ, растворенных в цитоплазме и в сократительной вакуоли пресноводной амебы. Средний объем вакуоли составлял около 0,2 нл. (Riddick, 1968)

тическая концентрация жидкости в вакуоли примерно вдвое ниже, чем в цитоплнзме, но более чем в 25 раз превышает концентрацию в наружной среде. Содержание натрия в жидкости вакуоли относительно велико - оно в 3 раза выше, чем в цитоплазме. В то же времи калия в вакуоли сравнительно мало, его концентрация здесь существенно ниже, чем в цитоплазме. В сумме натрий и калий в вакуолярной жидкости составляют около 25 ммоль/л, а если анионом является С’1_, то эти три иона обеспечивают почти всю осмотическую концентрацию жидкобти (51 мобмоль/л).

Наиболее вероятен следующий механизм образования сократительной вакуоли. Окружающие ее мелкие пузырьки вначале наполняются жидкостью, изотрничной по отношению к цитоплазме. Затем пузырьки путем активного транспорта накачивают в эту жидкость натрий и удаляют калий - таким образом, что удаление калия превышает накопление натрия. Мембрана пузырьков должна быть относительно непроницаема для воды, чтобы в пузырьке могла образоваться жидкость, гипотоничная по отношению к цитоплазме. Если затем эти гипотоничные пузырьки будут сливаться и опорожняться в сократительную вакуоль, как на это указывают электронные микрофотографии, то вакуоль будет вместилищем вырабатываемой пузырьками жидкости. Энергия для осмотической работы поставляется слоем митохондрий, смежным с пузырьками. Поскольку активность сократительной вакуоли приводит к непрерывной потере натрия, необходимо предположить,. что эта потеря возмещается активным захватом натрия поверхностью клетки (Riddick, 1968).

Вакуоли - это одномембранные органоиды эукариотических клеток. При этом их содержат не все клетки эукариот.

Функции вакуолей разнообразны. В основном сводятся к секреции, хранение запасных веществ, аутофагия, автолиз, поддержанию тургорного давления.

Формируются путем слияния провакуолей, которые образуют ЭПС и комплекс Гольджи.

В животных клетках имеются небольшие вакуоли: фазоцитозные , пищеварительные и др. Сократительные вакуоли регулируют осмотическое давление, вывод продуктов распада. В растительных клетках обычно имеется одна большая центральная вакуоль .

Центральная вакуоль

Центральная вакуоль занимает более половины объема зрелых клеток, особенно в паренхиме и колленхиме. Основные функции – запас воды, накопление ионов, поддержание тургора.

Мембрана вакуоли называется тонопластом , а внутреннее содержимое - клеточным соком . Он представляет собой концентрированный раствор. Состав клеточного сока: вода, минеральные соли, сахара, танины, органические кислоты, кислород, диоксид углерода, пигменты антоцианы, продукты клеточного метаболизма и др.

Тонопласт избирательно проницаем. Через него в вакуоль поступает вода. Возникает тургорное давление, и цитоплазма прижимается к клеточной стенке. За счет такого осмотического поглощения воды клетка растягивается во время роста.

Центральная вакуоль может содержать гидролитические ферменты, что позволяет ей выполнять функцию лизосом. После гибели клетки ферменты попадают в цитоплазму, и происходит автолиз.

В вакуолях накапливаются такие отходы жизнедеятельности как кристаллы оксалата кальция. Среди вторичных продуктов метаболизма - алкалоиды, которые предположительно выполняют защитную функцию наряду с танинами, препятствуя поеданию животными.

У некоторых растений в клеточном соке накапливается млечный сок , представляющий собой беловатую эмульсию. У ряда растений есть клетки, которые его экскретируют.

В центральных вакуолях также запасаются питательные вещества (сахароза, инулин), которые используются при необходимости, как и содержащиеся здесь минеральные соли.

Последние материалы сайта