Сходимость и расходимость числовых рядов примеры. Сумма ряда на практике. Абсолютная и условная сходимости

30.10.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Такие суммы называются бесконечными рядами , а их слагаемые – членами ряда. (Многоточие означает, что число слагаемых бесконечно.) Решения сложных математических задач редко удается представить в точном виде посредством формул. Однако в большинстве случаев эти решения можно записать в виде рядов. После того, как такое решение найдено, методы теории рядов позволяют оценить, сколько членов ряда необходимо взять для конкретных вычислений или как записать ответ в наиболее удобном виде. Наряду с числовыми рядами мы можем рассматривать т.н. функциональные ряды , слагаемыми которых являются функции . Многие функции можно представить с помощью функциональных рядов. Изучение числовых и функциональных рядов является важной частью математического анализа .

В примерах (1) и (2) сравнительно легко догадаться, по какому закону образуются последовательные члены. Закон образования членов ряда может быть гораздо менее очевидным. Например, для ряда (3) он станет ясен, если этот ряд записать в следующем виде:

Сходящиеся ряды.

Поскольку сложение бесконечного числа членов ряда физически невозможно, необходимо определить, что именно следует понимать под суммой бесконечного ряда . Можно представить себе, что указанные операции сложения и вычитания выполняются последовательно, одна за другой, например, на компьютере. Если возникающие при этом суммы (частичные суммы) все ближе и ближе подходят к некоторому числу, то это число разумно назвать суммой бесконечного ряда. Таким образом, сумму бесконечного ряда можно определить как предел последовательности частичных сумм. При этом такой ряд называется сходящимся.

Найти сумму ряда (3) нетрудно, если заметить, что преобразованный ряд (4) можно записать в виде

Последовательные частичные суммы ряда (5) равны

и т.д.; можно заметить, что частичные суммы стремятся к 1. Таким образом, этот ряд сходится и его сумма равна 1.

В качестве примера бесконечных рядов можно рассматривать бесконечные десятичные дроби. Так, 0,353535... – это бесконечная периодическая десятичная дробь, являющаяся компактным способом записи ряда

Закон образования последовательных членов здесь понятен. Аналогично, 3,14159265... означает

но закон образования последующих членов ряда здесь неочевиден: цифры образуют десятичное разложение числа p , и трудно сразу сказать, какова, например, 100 000-я цифра, хотя теоретически эту цифру можно вычислить.

Расходящиеся ряды.

О бесконечном ряде, который не сходится, говорят, что он расходится (такой ряд называют расходящимся ). Например, ряд

расходится, так как его частичные суммы равны 1/2, 1, 1 1 / 2 , 2,.... Эти суммы не стремятся ни к какому числу как к пределу, поскольку, взяв достаточно много членов ряда, мы можем сделать частичную сумму сколь угодно большой. Ряд

также расходится, но по другой причине: частичные суммы этого ряда попеременно обращаются то в 1, то в 0 и не стремятся к пределу.

Суммирование.

Найти сумму сходящегося ряда (с заданной точностью), последовательно суммируя его члены, хотя теоретически и возможно, но практически трудно осуществимо. Например, ряд

сходится, и сумма его с точностью до десяти знаков после запятой равна 1,6449340668, но для того, чтобы вычислить ее с этой точностью, потребовалось бы взять ок. 20 млрд. членов. Такие ряды обычно суммируют, первоначально преобразуя их с помощью различных приемов. При этом используют алгебраические или вычислительные методы; например, можно показать, что сумма ряда (8) равна p 2 /6.

Обозначения.

Работая с бесконечными рядами, полезно иметь удобные обозначения. Например, конечную сумму ряда (8) можно записать как

Такая запись указывает на то, что n последовательно полагается равным 1, 2, 3, 4 и 5, а результаты складываются:

Аналогично, ряд (4) можно записать в виде

где символ Ґ указывает на то, что мы имеем дело с бесконечным рядом, а не с конечной его частью. Символ S (сигма) называют знаком суммирования.

Бесконечная геометрическая прогрессия.

Мы смогли просуммировать ряд (4), так как существовала простая формула для его частичных сумм. Аналогично, можно найти сумму ряда (2), или в общем виде,

если r принимает значения между –1 и 1. В этом случае сумма ряда (9) равна 1/(1 – r ); при других значениях r ряд (9) расходится.

Можно рассматривать периодические десятичные дроби вроде 0,353535... как иной способ записи бесконечной геометрической прогрессии

Это выражение можно записать также в виде

где в скобках стоит ряд (9) с r = 0,01; следовательно, сумма ряда (10) равна

Тем же способом можно представить в виде обычной дроби любую периодическую десятичную дробь.

Признаки сходимости.

В общем случае простой формулы для частичных сумм бесконечного ряда не существует, так что для установления сходимости или расходимости ряда прибегают к специальным методам. Например, если все члены ряда положительны, то можно показать, что ряд сходится, если каждый его член не превосходит соответствующего члена другого ряда, о котором известно, что он сходится. В принятых обозначения это можно записать следующим образом: если a n і 0 и сходится, то сходится, если 0 Ј b n Ј a n . Например, так как ряд (4) сходится и

то можно сделать вывод, что ряд (8) тоже сходится. Сравнение представляет собой основной метод, позволяющий устанавливать сходимость многих рядов, сопоставляя их с простейшими сходящимися рядами. Иногда используют более специальные признаки сходимости (их можно найти в литературе по теории рядов.) Приведем еще несколько примеров сходящихся рядов с положительными членами:

Сравнение можно использовать и для установления расходимости ряда. Если ряд расходится, то и ряд также расходится, если 0 Ј b n Ј a n .

Примерами расходящихся рядов могут служить ряды

и, в частности, т.к. гармонический ряд

В расходимости этого ряда можно убедиться, сосчитав следующие частичные суммы:

и т.д. Таким образом, частичные суммы, которые оканчиваются членами 1/4, 1/8, 1/16, 1/32, ј , превосходят частичные суммы расходящегося ряда (6), и поэтому ряд (14) должен расходиться.

Абсолютная и условная сходимости.

К таким рядам, как

метод сравнения неприменим, поскольку члены этого ряда имеют разные знаки. Если бы все члены ряда (15) были положительными, то мы получили бы ряд (3), о котором известно, что он сходится. Можно показать, что отсюда следует также сходимость ряда (15). Когда изменением знаков отрицательных членов ряда на противоположные его можно превратить в сходящийся, говорят, что исходный ряд сходится абсолютно .

Знакопеременный гармонический ряд (1) не является абсолютно сходящимся, т.к. ряд (14), состоящий из тех же, но только положительных членов, не сходится. Однако с помощью специальных признаков сходимости для знакопеременных рядов можно показать, что ряд (1) в действительности сходится. Сходящийся ряд, который не сходится абсолютно, называется условно сходящимся .

Операции с рядами.

Исходя из определения сходящегося ряда, легко показать, что его сходимость не нарушится от вычеркивания или приписывания к нему конечного числа членов, а также от умножения или деления всех членов ряда на одно и то же число (разумеется, деление на 0 исключается). При любой перестановке членов абсолютно сходящегося ряда его сходимость не нарушается, а сумма не меняется. Например, так как сумма ряда (2) равна 1, сумма ряда

также равна 1, поскольку этот ряд получается из ряда (2) перестановкой соседних членов (1-го члена со 2-м и т.д.). Можно как угодно изменять порядок следования членов абсолютно сходящегося ряда, лишь бы в новом ряду присутствовали все члены исходного. С другой стороны, перестановка членов условно сходящегося ряда может изменить его сумму и даже сделать его расходящимся. Более того, члены условно сходящегося ряда всегда можно переставить так, что он будет сходиться к любой заранее заданной сумме.

Два сходящихся ряда Sa n и Sb n можно почленно складывать (или вычитать), так что сумма нового ряда (который также сходится) складывается из сумм исходных рядов, в наших обозначениях

При дополнительных условиях, например, если оба ряда абсолютно сходятся, их можно умножать друг на друга, как это делается для конечных сумм, причем получающийся двойной ряд (см. ниже ) будет сходиться к произведению сумм исходных рядов.

Суммируемость.

Несмотря на то, что принятое нами определение сходимости бесконечного ряда кажется естественным, оно не является единственно возможным. Сумму бесконечного ряда можно определить и другими способами. Рассмотрим, например, ряд (7), который может быть записан компактно в виде

Как мы уже говорили, его частичные суммы попеременно принимают значения 1 и 0, и поэтому ряд не сходится. Но если мы образуем поочередно попарные средние его частичных сумм (текущее среднее), т.е. вычислим сначала среднее значение первой и второй частичных сумм, затем среднее второй и третьей, третьей и четвертой и т.д., то каждое такое среднее будет равно 1/2, и поэтому предел попарных средних также окажется равным 1/2. В этом случае говорят, что ряд суммируем указанным методом и его сумма равна 1/2. Было предложено много методов суммирования, позволяющих приписывать суммы довольно обширным классам расходящихся рядов и тем самым использовать некоторые расходящиеся ряды в вычислениях. Для большинства целей способ суммирования полезен, однако, только в том случае, если применительно к сходящемуся ряду он дает его конечную сумму.

Ряды с комплексными членами.

До сих пор мы молчаливо предполагали, что имеем дело лишь с действительными числами, но все определения и теоремы применимы и к рядам с комплексными числами (за исключением того, что суммы, которые могут быть получены при перестановке членов условно сходящихся рядов, не могут принимать произвольные значения).

Функциональные ряды.

Как мы уже отмечали, членами бесконечного ряда могут быть не только числа, но и функции, например,

Суммой такого ряда также является функция, значение которой в каждой точке получается как предел вычисленных в этой точке частичных сумм. На рис. 1 показаны графики нескольких частичных сумм и суммы ряда (при x , изменяющемся от 0 до 1); s n (x ) означает сумму первых n членов. Сумма ряда представляет собой функцию, равную 1 при 0 Ј x x = 1. Функциональный ряд может сходиться при одних значениях x и расходиться при других; в рассмотренном нами примере ряд сходится при –1Ј x x.

Сумму функционального ряда можно понимать по-разному. В некоторых случаях важнее знать, что частичные суммы близки (в том или ином смысле) к некоторой функции на всем интервале (a , b ), чем доказывать сходимость или расходимость ряда в отдельных точках. Например, обозначив частичную сумму n -го порядка через s n (x ), мы говорим, что ряд сходится в среднем квадратичном к сумме s (x ), если

Ряд может сходиться в среднем квадратичном, даже если он не сходится ни в одной отдельной точке. Существуют также и другие определения сходимости функционального ряда.

Некоторые функциональные ряды получили название по тем функциям, которые в них входят. В качестве примера можно привести степенные ряды и их суммы:

Первый из этих рядов сходится при всех x . Второй ряд сходится при |x | r x r x| Ј 1, если r > 0 (за исключением тех случаев, когда r – неотрицательное целое число; в последнем случае ряд обрывается после конечного числа членов). Формула (17) называется биномиальным разложением для произвольной степени.

Ряды Дирихле.

Рядами Дирихле называются функциональные ряды вида S (1/a n x ), где числа a n неограниченно возрастают; примером ряда Дирихле может служить дзета-функция Римана

Ряды Дирихле часто используются в теории чисел.

Тригонометрические ряды.

Так называются функциональные ряды, содержащие тригонометрические функции; тригонометрические ряды специального вида, используемые в гармоническом анализе, называются рядами Фурье. Примером ряда Фурье может служить ряд

F (x ), обладающая следующим свойством: если мы возьмем конкретную частичную сумму ряда (18), например сумму первых трех его членов, то разность между f (x ) и этой частичной суммой, вычисленной при некотором значении x , будет мала при всех значениях x вблизи 0. Иначе говоря, хотя мы не может добиться хорошей аппроксимации функции f (x ) в какой-либо конкретной точке x , далекой от нуля, взяв даже очень много членов ряда, но при x , близком к 0, всего лишь несколько его членов дают весьма хорошее ее приближение. Такие ряды называются асимптотическими . В численных расчетах асимптотические ряды обычно полезнее, чем сходящиеся, поскольку они с помощью небольшого числа членов обеспечивают достаточно хорошее приближение. Асимптотические ряды широко используются в теории вероятностей и математической физике.

Двойные ряды.

Иногда приходится суммировать двумерные массивы чисел

Мы можем просуммировать по строкам, а затем сложить построчные суммы. Вообще говоря, у нас нет особых оснований отдавать предпочтение строкам перед столбцами, но если суммирование сначала проводить по столбцам, то результат может оказаться другим. Например, рассмотрим двойной ряд

Здесь каждая строка сходится к сумме, равной 0, и сумма построчных сумм поэтому также равна нулю. С другой стороны, сумма членов первого столбца равна 1, а всех остальных столбцов равна 0, поэтому сумма сумм по столбцам равна 1. Единственными «удобными» сходящимися двойными рядами являются абсолютно сходящиеся двойные ряды: их можно суммировать по строкам или столбцам, равно как и любым другим способом, и сумма всегда получается одной и той же. Какого-либо естественного определения условной сходимости двойных рядов не существует.

Вычислить сумму ряда можно только в случае, когда ряд сходится. Если ряд расходится то сумма ряда бесконечна и нет смысла что-то вычислять. Ниже приведены примеры из практики нахождения суммы ряда, которые задавали в Львовском национальном университете имени Ивана Франка. Задания на ряды подобраны так, что условие сходимости выполняется всегда, однако проверку на сходимость мы выполнять будем. Эта и следующие за ней статьи составляют решение контрольной работы по анализе рядов.

Пример 1.4 Вычислить сумму рядов:
а)
Вычисления: Поскольку граница общего члена ряда при номере следующему до бесконечности равна 0

то данный ряд сходится. Вычислим сумму ряда. Для этого преобразуем общий член, разложив его на простейшие дроби I и II типа. Методика разложения на простые дроби здесь приводиться не будет (хорошо расписана при интегрировании дробей), а лишь запишем конечный вид разложения

В соответствии с этим можем сумму расписать через сумму ряда образованного из простейших дробей, а дальше из разницы сумм рядов

Далее расписываем каждый ряд в явную сумму и выделяем слагаемые (подчеркивание), которые превратятся 0 после сложения. Таким образом сумма ряда упростится к сумме 3 слагаемых (обозначены черным), что в результате даст 33/40.

На этом базируется вся практическая часть нахождения суммы для простых рядов.
Примеры на сложные ряды сводятся к сумме бесконечно убывающих прогрессий и рядов, которые находят через соответствующие формулы, но здесь такие примеры рассматривать не будем.
б)
Вычисления: Находим границу n-го члена суммы

Она равна нулю, следовательно заданный ряд сходится и имеет смысл искать его сумму. Если граница отличная от нуля, то сумма ряда равна бесконечности со знаком "плюс" или "минус".
Найдем сумму ряда. Для этого общий член ряда который является дробью превратим методом неопределенных коэффициентов к сумме простых дробей I типа

Далее по инструкции которая приводилась ранее записываем сумму ряда через соответствующие суммы простейших дробей

Расписываем суммы и выделяем слагаемые, которые станут равными 0 при суммировании.

В результате получим сумму нескольких слагаемых (выделенные черным) которая равна 17/6 .

Пример 1.9 Найти сумму ряда:
а)
Вычисления: Вычислениям границы

убеждаемся что данный ряд сходится и можно находить сумму. Далее знаменатель функции от номера n раскладываем на простые множители, а весь дробь превращаем к сумме простых дробей I типа

Далее сумму ряда в соответствии с расписанием записываем через два простые

Ряды записываем в явном виде и выделяем слагаемые, которые после добавления дадут в сумме ноль. Остальные слагаемые (выделенные черным) и представляет собой конечную сумму ряда

Таким образом, чтобы найти сумму ряда надо на практике свести под общий знаменатель 3 простых дроби.
б)
Вычисления: Граница члена ряда при больших значениях номера стремится к нулю

Из этого следует что ряд сходится, а его сумма конечна. Найдем сумму ряда, для этого сначала методом неопределенных коэффициентов разложим общий член ряда на три простейшего типа

Соответственно и сумму ряда можно превратить в сумму трех простых рядов

Далее ищем слагаемые во всех трех суммах, которые после суммирования превратятся в ноль. В рядах, содержащих три простых дроби один из них при суммировании становится равным нулю (выделен красным). Это служит своеобразной подсказкой в вычислениях

Сумма ряда равна сумме 3 слагаемых и равна единице.

Пример 1.15 Вычислить сумму ряда:
а)

Вычисления: При общем член ряда стремящемся к нулю

данный ряд сходится. Преобразуем общий член таким образом, чтобы иметь сумму простейших дробей

Далее заданный ряд, согласно формулам расписания, записываем через сумму двух рядов

После записи в явном виде большинство членов ряда в результате суммирования станут равны нулю. Останется вычислить сумму трех слагаемых.

Сумма числового ряда равна -1/30 .
б)
Вычисления: Поскольку граница общего члена ряда равна нулю,

то ряд сходится. Для нахождения суммы ряда разложим общий член на дроби простейшего типа.

При разложении использовали метод неопределенных коэффициентов. Записываем сумму ряда из найденного расписание

Следующим шагом выделяем слагаемые, не вносящие никакого вклада в конечную сумму и остальные оставшиеся

Сумма ряда равна 4,5 .

Пример 1.25 Вычислить сумму рядов:
а)


Поскольку она равна нулю то ряд сходится. Можем найти сумму ряда. Для этого по схеме предыдущих примеров раскладываем общий член ряда через простейшие дроби

Это позволяет записать ряд через сумму простых рядов и, выделив в нем слагаемые, упростив при этом суммирование.

В этом случае останется одно слагаемое которое равен единице.
б)
Вычисления: Находим границу общего члена ряда

и убеждаемся что ряд сходится. Далее общий член числового ряда методом неопределенных коэффициентов раскладываем на дроби простейшего типа.

Через такие же дроби расписываем сумму ряда

Записываем ряды в явном виде и упрощаем к сумме 3 слагаемых

Сумма ряда равна 1/4.
На этом ознакомление со схемами суммирования рядов завершено. Здесь еще не рассмотрены ряды, которые сводятся к сумме бесконечно убывающей геометрической прогрессии, содержащие факториалы, степенные зависимости и подобные. Однако и приведенный материал будет полезен для студентов на контрольных и тестах.

Рассмотрим бесконечную последовательность чисел , т.е. множество чисел, в котором каждому натуральному числу n по определённому правилу соответствует некоторое число a n . Выражение вида называется числовым рядом , сами числа - членами ряда , - общим членом ряда . Коротко ряд записывают так: .

Суммы , в которых присутствуют только n первых членов ряда, называются частичными суммами ряда .

Числовой ряд называется сходящимся , если последовательность его частичных сумм имеет конечный предел . Число S называется суммой ряда .

Если предел не существует, то ряд называется расходящимся .

Пример 1. Дана бесконечная геометрическая прогрессия . Составим ряд

и исследуем его на сходимость, исходя из определения сходимости ряда. Для этого составим частичную сумму =. Из школьного курса математики известно, что . Напомним, как это получается. Для доказательства произведём деление

Вычислим теперь предел , учитывая, что здесь возможны три случая:

2) если q = 1, то =и ,

3) если q = -1, то =, и , а = , и . Значит, последовательность частичных сумм единого предела не имеет.

Поэтому делаем вывод: геометрическая прогрессия сходится, если и расходится при .

Пример 2. Доказать расходимостьряда

Решение. Оценим частичную сумму ряда:

> , т.е. > ,

а предел частичной суммы равен бесконечности (по известной теореме о пределах: если x n > y n , то ): = ¥. Значит, данный ряд расходится.

Свойства сходящихся рядов

Рассмотрим два ряда и . Второй ряд получен из первого путём отбрасывания первых m его членов. Этот ряд называется остатком ряда и обозначается r n .

Теорема 1 . Если члены сходящегося ряда умножить на некоторое число С , то сходимость ряда не нарушится, а сумма умножится на С .

Теорема 2 . Два сходящихся ряда можно почленно складывать (вычитать) и сумма полученного ряда будет равна , где - сумма первого ряда, а - сумма второго.

Теорема 3 . Если сходится ряд, то сходится любой из его остатков. Из сходимости остатка ряда следует сходимость самого ряда.

Можно сказать и по-другому: на сходимость ряда не влияет отбрасывание (или приписывание) конечного число членов ряда. И это свойство самое замечательное. Действительно, пусть сумма ряда равна бесконечности (ряд расходится). Мы складываем очень большое, но конечное число членов ряда. Эта сумма может быть очень большим, но, опять же, конечным числом. Так, значит, сумма остатка ряда, а там члены ряда уже ничтожно малые числа, всё равно равна бесконечности за счёт бесконечности числа слагаемых.

Теорема 4 . Необходимый признак сходимости.

Если ряд сходится, то его общий член a n стремится к нулю, т.е. .


Доказательство . Действительно,

И если ряд сходится, то и , а значит, при .

Отметим, что этот признак не является достаточным, т.е. ряд может расходиться, а его общий член стремится к нулю. В примере 2 ряд расходится, хотя его общий член .

Но если а n не стремится к нулю при , то ряд является расходящимся (достаточный признак расходимости ряда ).

Сходимость рядов с положительными членами

Ряд называется положительным , если все .

Частичные суммы такого ряда S n образуют возрастающую последовательность, так как каждая предыдущая меньше следующей, т.е. . Из теории пределов известно (теорема Больцано-Вейерштрасса), что если возрастающая последовательность ограничена сверху (т.е. для всех S n существует такое число М , что S n < М для всех n ), то она имеет предел. Отсюда следует следующая теорема.

Теорема . Ряд с положительными членами сходится, если частичные суммы его ограничены сверху, и расходится в противном случае.

На этом свойстве основаны все достаточные признаки сходимости рядов с положительными членами . Рассмотрим основные из них.

Признак сравнения

Рассмотрим два ряда с неотрицательными членами: - (3) и - (4), причём , начиная с некоторого n . Тогда из сходимости ряда (4) следует сходимость ряда (3). А из расходимости ряда (3) следует расходимость ряда (4).

Иначе: если сходится ряд с б?льшими членами, то сходится и ряд с меньшими членами; если расходится ряд с меньшими членами, то расходится и ряд с б?льшими членами.

Пример. Исследовать на сходимость ряд .

Решение. Общий член ряда , а ряд есть бесконечная сумма членов геометрической прогрессии со знаменателем < 1, т.е. это сходящийся ряд. По признаку сравнения (т.к. сходится ряд с б?льшими членами, то сходится и ряд с меньшими) данный ряд сходится.

Признак сравнения в предельной форме

Рассмотрим два ряда и , и пусть , - конечное число. Тогда оба ряда сходятся или расходятся одновременно.

Пример.

Решение . Выберем ряд для сравнения, выяснив для этого, как ведёт себя общий член ряда при больших n :

Т.е. ~ , и в качестве ряда сравнения берём ряд , который расходится, что было показано ранее.

Вычислим предел

и значит, оба ряда ведут себя одинаково, т.е. данный ряд тоже расходится.

Признак Даламбера

Пусть дан ряд и существует предел . Тогда, если l < 1, то ряд сходится, если l > 1, то ряд расходится, если l = 1, то этот признак ответа не даёт (т.е. необходимо дополнительное исследование).

Пример. Исследовать на сходимость ряд (напомним, что , т.е. n -факториал есть произведение всех целых чисел от 1 до n ).

Решение. Для этого ряда , (для нахождения нужно в вместо n подставить n + 1). Вычислим предел

и так как предел меньше 1, данный ряд сходится.

Радикальный признак Коши

Пусть дан ряд и существует предел . Если l < 1, то ряд сходится, если l > 1, то ряд расходится, если l = 1, то этот признак ответа не даёт (необходимо дополнительное исследование).

Пример. Исследовать на сходимость ряд

Решение. Общий член ряда . Вычислим предел . Значит, ряд сходится.

Интегральный признак Коши

Рассмотрим ряд , и предположим, что на промежутке х Î существует непрерывная, положительная и монотонно убывающая функция такая, что , n = 1, 2, 3… . Тогда ряд и несобственный интеграл сходятся или расходятся одновременно.

Отметим, что если дан ряд то и функция рассматривается на промежутке .

Напомним, что указанный несобственный интеграл называется сходящимся , если существует конечный предел , и тогда =. Если при не имеет конечного предела, то говорят, что несобственный интеграл расходится .

Пример. Рассмотрим ряд - обобщённый гармонический ряд или ряд Дирихле с показателем степени s . Если s = 1, то ряд называют гармоническим рядом .

Исследуем данный ряд, используя интегральный признак Коши: =, и функция =обладает всеми свойствами, указанными в признаке. Вычислим несобственный интеграл .

Возможны три случая:

1) s < 1, и тогда

интеграл расходится.

2) при s = 1

интеграл расходится.

3) если s > 1, то

интеграл сходится.

Вывод . Обобщенный гармонический ряд сходится, если s > 1, и расходится, если s ≤ 1.

Этот ряд часто используют для сравнения с другими рядами, содержащими степени n .

Пример. Исследовать ряд на сходимость.

Решение. Для этого ряда ~ =, значит, данный ряд сравниваем с рядом , который сходится, как ряд Дирихле с показателем степени s = 2 > 1.

По признаку сравнения в предельной форме находим предел отношения общих членов данного ряда и ряда Дирихле:

Следовательно, данный ряд тоже сходится.

Рекомендации по использованию признаков сходимости

Прежде всего, следует воспользоваться необходимым признаком сходимости ряда и вычислить предел общего члена ряда при . Если , то ряд заведомо расходится, а если , то следует воспользоваться одним из достаточных признаков.

Признаки сравнения полезно использовать в тех случаях, когда путём преобразований выражения для общего члена ряда удаётся перейти от исходного ряда к ряду, сходимость (или расходимость) которого известна. В частности, если содержит только степени n и не содержит никакие другие функции, это всегда можно сделать.

Признаки сравнения применяют тогда, когда исходный ряд можно сопоставить с обобщённым гармоническим рядом или рядом, составленным из членов бесконечной геометрической прогрессии.< применяют, если при замене n . Самой медленно растущей функцией является логарифм, а быстрее всего растёт степенно-показательная функция . Между ними другие известные функции располагаются в следующем порядке:

Поэтому, если в числителе стоит какая-то из этих функций, а в знаменателе - функция левее её, то, скорее всего, ряд расходится, и наоборот.

Произведите предварительную проверку. Есть простая теорема, которая гласит, что если бесконечная сумма функции f сходится, то предел функции f равен 0. Таким образом, если мы имеем функцию x^2, то у нее нет предела, и ее сумма до бесконечности расходится; с другой стороны, предел функции 1/x равен 0, так что ее сумма может сходиться. Если предел не равен нулю, мы знаем, что ряд расходится. ВНИМАНИЕ: обратное не верно, то есть то, что предел равен нулю, совсем не означает, что ряд обязательно сходится. В этом случае необходима дальнейшая проверка.

Геометрические ряды. Для этих рядов существует очень простое правило, так что прежде всего определите, не является ли ваш ряд геометрическим. Геометрический ряд -- это последовательность чисел, каждый член которой можно представить в виде r^k, где k -- переменная, а r -- число, лежащее в интервале между -1 и 1. Геометрические ряды всегда сходятся. Более того, вы легко можете определить сумму такого ряда, которая равна 1/(1-r).

Обобщенные гармонические ряды, или ряды Дирихле. Таким рядом называется сумма функций вида 1/(x^p), где x -- любое число. Теорема для этих рядов гласит, что если p больше единицы, ряд сходится, если же p меньше или равно единице, ряд расходится. Это означает, что упомянутый выше ряд 1/x расходится, так как его можно представить в виде 1/(x^1), где p=1. Этот ряд называется гармоническим. Ряд 1/(X^2) сходится, поскольку 2 больше 1.

  • Другие ряды. Если ряд не принадлежит одному из типов, указанных выше, примените к нему методы, приведенные ниже. Если не помог один метод, примените следующий, поскольку не всегда ясно, какой из них следует выбрать. Хотя и не существует однозначных правил, со временем вы сможете лучше ориентироваться в выборе нужного метода.

    • Метод сравнения. Допустим, у вас есть два ряда, состоящие из положительных членов, a(n) и b(n). Тогда: 1) если бесконечная сумма b(n) сходится, и a(n) меньше чем b(n) (для любого достаточно большого n), тогда сумма a(n) также сходится; 2) если b(n) расходится, и a(n)>b(n), тогда a(n) тоже расходится. Например, у вас есть ряд 2/x; мы можем сравнить его с рядом 1/x. Поскольку мы уже знаем, что ряд 1/x расходится, и 2/x > 1/x, отсюда следует, что ряд 2/x также расходится. Таким образом, идея метода состоит в том, чтобы определить, сходится или нет исследуемый ряд, используя уже известный ряд.
    • Метод сравнения пределов. Если a(n) и b(n) являются рядами положительных чисел, и если существует предел a(n)/b(n), который больше 0, тогда оба ряда либо сходятся, либо расходятся. В этом случае исследуемый ряд также сравнивается с известным; метод состоит в том, чтобы подобрать известный ряд, максимальная степень которого соответствует степени исследуемого ряда. Например, если вы рассматриваете ряд 1/(x^3+2x+1), имеет смысл сравнить его с рядом 1/(x^3).
    • Проверка интегралом. Если функция больше нуля, непрерывна и уменьшается при значениях x больше или равных 1, тогда бесконечный ряд f(n) сходится, если определенный интеграл от 1 до бесконечности от функции f(x) существует и имеет конечное значение; в противном случае ряд расходится. Таким образом, достаточно проинтегрировать функцию и найти предел при x, стремящемся к бесконечности: если предел конечен, ряд сходится, если же предел равен бесконечности, ряд расходится.
    • Знакопеременные ряды. Если a(k)>a(k+1)>0 при достаточно больших k, и предел a(n) равен 0, тогда знакопеременный ряд (-1)^n a(n) сходится. Проще говоря, допустим, что ваш ряд является знакопеременным (то есть его члены попеременно положительны и отрицательны); в этом случае отбросьте знакопеременную часть функции и найдите предел того, что осталось -- если предел конечен, ряд сходится.
    • Метод отношения. Если дан бесконечный ряд a(n), найдите следующий член ряда a(n+1). Затем вычислите отношение последующего члена к предыдущему a(n+1)/a(n), в случае необходимости взяв его абсолютное значение. Найдите предел этого отношения при n стремящемся к бесконечности; если этот предел существует и конечен, это означает следующее: 1) если предел меньше единицы, ряд сходится; 2) если предел больше единицы, ряд расходится; 3) если предел равен единице, данный способ недостаточен (ряд может как сходиться, так и расходиться).
    • Это основные методы определения сходимости рядов, и они чрезвычайно полезны. Если ни один из них не помог, вполне вероятно, что задача не имеет решения, или же вы где-то допустили ошибку. Эти способы могут быть использованы и для других рядов, таких как степенные ряды, ряды Тейлора и т.д. Владение данными методами сложно переоценить, поскольку других простых способов определить сходимость ряда не существует.
  • Определение числового ряда и его сходимости.

    Необходимый признак сходимости

    Пусть – бесконечная последовательность чисел.

    Определение. Выражение

    , (1)

    или, что то же самое, , называется числовым рядом , а числа https://pandia.ru/text/79/302/images/image005_146.gif" width="53" height="31">членами ряда. Член с произвольным номером называется n -м, или общим членом ряда .

    Само по себе выражение (1) никакого определенного числового смысла не имеет, потому что, вычисляя сумму, мы каждый раз имеем дело лишь с конечным числом слагаемых. Определить смысл этого выражения наиболее естественно следующим образом.

    Пусть дан ряд (1).

    Определение. Сумма n первых членов ряда

    называется n -й частичной суммой ряда. Образуем последовательность частичных сумм:

    font-size:14.0pt">С неограниченным увеличением числа n в сумме учитывается все большее число членов ряда. Поэтому разумно дать такое определение.

    Определение. Если при существует конечный предел последовательности частичных сумм https://pandia.ru/text/79/302/images/image011_76.gif" width="103" height="41"> называется его суммой .

    Если последовательность https://pandia.ru/text/79/302/images/image013_77.gif" width="80" height="31">, 2) если колеблющаяся. В обоих случаях говорят, что ряд суммы не имеет.

    Пример 1. Рассмотрим ряд, составленный из членов геометрической прогрессии:

    , (2)

    где – называется первым членом прогрессии, а font-size:14.0pt"> Частичная сумма этого ряда при font-size:14.0pt">font-size:14.0pt">Отсюда:

    1) если , то

    font-size:14.0pt">т. е. ряд геометрической прогрессии сходится и его сумма .

    В частности, если , ряд сходится и его сумма .

    При https://pandia.ru/text/79/302/images/image026_42.gif" width="307" height="59 src="> также сходится и его сумма .

    2) если , то , т. е. ряд (2) расходится.

    3) если , то ряд (2) принимает вид font-size:14.0pt"> и , т. е. ряд расходится (при font-size:18.0pt">) .

    4) если https://pandia.ru/text/79/302/images/image036_32.gif" width="265" height="37"> . Для этого ряда

    https://pandia.ru/text/79/302/images/image038_28.gif" width="253" height="31 src=">,

    т. е..gif" width="67" height="41"> не существует, следовательно, ряд также расходится (при ) .

    Вычисление суммы ряда непосредственно по определению очень неудобно из-за трудности явного вычисления частичных сумм font-size:14.0pt"> и нахождения предела их последовательности. Но, если установлено, что ряд сходится, его сумму можно вычислить приближенно, т. к. из определения предела последовательности следует, что при достаточно больших . Поэтому при исследовании рядов достаточно

    1) знать приемы, позволяющие констатировать сходимость ряда без нахождения его суммы;

    2) уметь определить font-size:14.0pt">.gif" width="16 height=24" height="24"> с определенной точностью.

    Сходимость числовых рядов устанавливается с помощью теорем, которые называются признаками сходимости.

    Необходимый признак сходимости

    Если ряд сходится, то его общий член стремится к нулю, т. е. font-size:14.0pt">.gif" width="61 height=63" height="63"> расходится.

    Пример 2. Доказать, что ряд 0 " style="border-collapse:collapse">

    ;

    ;

    ;

    .

    Решение.

    А) https://pandia.ru/text/79/302/images/image051_28.gif" width="176" height="81 src="> расходится.

    и поэтому ряд расходится. При решении использовался второй замечательный

    предел: (подробнее см. ).

    В) font-size:14.0pt">, т. е. последовательность

    – бесконечно

    малая. Так как при font-size:14.0pt">~ (см. ), то ~ .

    Учитывая это, получим:

    значит, ряд расходится.

    Г) font-size:14.0pt">,

    следовательно, ряд расходится.

    Условие является необходимым, но не достаточным условием сходимости ряда: существует множество рядов, для которых , но которые тем не менее расходятся.

    Пример 3. Исследовать сходимость ряда font-size:14.0pt"> Решение. Заметим, что https://pandia.ru/text/79/302/images/image066_20.gif" width="119" height="59 src=">, т. е. необходимое условие сходимости выполнено. Частичная сумма

    left">

    – раз

    поэтому font-size:14.0pt">, а это значит, что ряд расходится по определению.

    Достаточные признаки сходимости знакоположительных рядов

    Пусть . Тогда ряд font-size:14.0pt"> Признак сравнения

    Пусть и – знакоположительные ряды. Если для всех выполняется неравенство , то из сходимости ряда следует сходимость ряда , а из расходимости ряда https://pandia.ru/text/79/302/images/image074_19.gif" width="55" height="60">.

    Этот признак остается в силе, если неравенство https://pandia.ru/text/79/302/images/image072_18.gif" width="60" height="24">, а лишь начиная с некоторого номера . Его можно проинтерпретировать следующим образом: если больший ряд сходится, то меньший тем более сходится; если расходится меньший ряд, то больший также расходится.

    Пример 4. Исследовать сходимость ряда 0 " style="margin-left:50.4pt;border-collapse:collapse">

    ;

    Решение.

    А) Заметим, что font-size:14.0pt"> для всех . Ряд с общим членом

    сходится, т. к. является рядом геометрической прогрессии со знаменателем (см. пример 1), поэтому данный ряд сходится по признаку сравнения.

    Б) Сравним ряд с рядом ..gif" width="91" height="29 src=">.gif" width="87" height="59"> расходится, значит, данный ряд также расходится.

    Несмотря на простоту формулировки признака сравнения, на практике более удобна следующая теорема, являющаяся его следствием.

    Предельный признак сравнения

    Пусть https://pandia.ru/text/79/302/images/image071_17.gif" width="53" height="60 src="> – знакоположительные ряды. Если существует конечный и не равный нулю предел , то оба ряда и

    одновременно сходятся или одновременно расходятся.

    В качестве ряда, используемого для сравнения с данным, часто выбирают ряд вида . Такой ряд называется рядом Дирихле . В примерах 3 и 4 было показано, что ряд Дирихле с и расходится. Можно пока-

    зать, что ряд font-size:14.0pt"> .

    Если , то ряд называется гармоническим . Гармонический ряд расходится.

    Пример 5. Исследовать на сходимость ряд с помощью предельного признака сравнения, если

    ;

    ;

    ;

    Решение. а) Так как при достаточно больших https://pandia.ru/text/79/302/images/image101_9.gif" width="31" height="23 src=">, а

    ~ , то ~ font-size:14.0pt">сравнения с данным гармонический ряд font-size:14.0pt">, т. е. .

    font-size:14.0pt"> Поскольку предел конечен и отличен от нуля и гармонический ряд расходится, то расходится и данный ряд.

    Б) При достаточно больших https://pandia.ru/text/79/302/images/image109_10.gif" width="111" height="31 src=">.gif" width="129" height="31 src=">.gif" width="132" height="64 src="> – общий член ряда, с которым будем сравнивать данный:

    Font-size:14.0pt">Ряд сходится (ряд Дирихле с font-size:16.0pt">) , поэтому данный ряд также сходится.

    В) , поэтому бесконечно малую font-size:14.0pt"> можно

    заменить на эквивалентную ей при величину (https://pandia.ru/text/79/302/images/image058_20.gif" width="13" height="21 src="> при font-size: 20.0pt">) . ;

    ;

    ;

    г )

    ;

    .

    1

    Последние материалы сайта