Оптические материалы. Инфракрасная оптика. Лазерная оптика. Оптоволокно: понятие, виды, назначение

21.09.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

), поликристаллические (Прозрачные керамические материалы), полимерные (Органическое стекло) и другие материалы, прозрачные в том или ином диапазоне электромагнитных волн . Их применяют для изготовления оптических элементов, работающих в ультрафиолетовой , видимой , инфракрасной областях спектра .

В разговорной речи и в промышленности нередко все твёрдые оптические материалы называют стёклами.

Роль оптических материалов иногда выполняют и оптические среды, некоторые полимеры, плёнки, воздух, газы, жидкости и другие вещества, пропускающие оптическое излучение .

Силикатные стёкла

Самым древним и известным оптическим материалом является обычное стекло , состоящее из смеси диоксида кремния и других веществ. Развитие технологии и ужесточение требований по мере роста совершенства оптических приборов привели к созданию особого класса технических стёкол - оптического стекла .

От прочих стёкол оно отличается особенно высокой прозрачностью, чистотой, бесцветностью, однородностью, а также строго нормированными преломляющей способностью и дисперсией .

Кварцевое стекло

Переплавляя чистый диоксид кремния (например, горный хрусталь), получают так называемое кварцевое стекло . От прочих силикатных стёкол оно отличается существенной химической стойкостью, чрезвычайно малым коэффициентом линейного расширения и относительно высокой температурой плавления (1713–1728 °C). Благодаря этому возможно построение оптических систем, работающих в более широком диапазоне температур и агрессивных сред.

Кроме того, кварцевое стекло прозрачно для ультрафиолетового диапазона электромагнитных волн, что делает этот материал незаменимым для оптических систем, работающих в этой области спектра.

Органические стёкла

Основным поводом к созданию искусственного заменителя - органического стекла , стало отсутствие в пору его разработки (1930-е годы) материалов, пригодных для использования в авиации - прозрачных но нехрупких и достаточно прочных и гибких - этими качествами и был наделён данный синтетический полимер. В настоящее время органическое стекло уже не способно удовлетворять всем требованиям, предъявляемым ни авиацией, ни, тем более - космонавтикой, однако на смену ему пришли другие виды пластиков и новые модификации «обычного» стекла (наделённые повышенной отражательной способностью, термостойкие и прочные). Оргстекло по строгим физико-химическим характеристикам к своему прототипу отношения не имеет.

Кремний

Инфракрасная область

Линза, изготовленная из однородного кремния , прозрачна для инфракрасного излучения и непрозрачна для видимого света. В этой области спектра кремний имеет:

Рентгеновские линзы

Свойства кремния позволили создать новый тип фокусирующих систем для волн рентгеновского диапазона. Для изготовления таких систем используется контролируемое формирование периодического массива пор в процессе глубокого фотоанодного травления кремния. в ИПТМ РАН были разработаны способы управления формой пор.

Кристаллич. или аморфные материалы, предназначенные для передачи или преобразования света в разл. участках спектрального диапазона. Различаются по строению, св-вам, функцией, назначению, а также по технологии изготовления.

Структура и свойства. По строению О. м. подразделяют на моно- и поликристаллические, стекла, аморфные, стекло-кристаллические и жидкокристаллические. Прир. моно кристаллы, напр., флюорита CaF 2 , кварца SiO 2 , кальцита СаСО 3 , слюды, каменной соли и др., давно используют в качестве О. м. Кроме того, используют большое кол-во синтетич. монокристаллов, обладающих прозрачностью в разл. участках оптич. диапазона (рис. 1) и имеющих высокую однородность и определенные габариты.

Поликристаллические О. м. характеризуются прозрачностью, по величине сходной с прозрачностью монокристаллов, и лучшими по сравнению с ними конструкц. св-вами. Наиб. применение находит оптич. керамика (иртра-ны) на основе Аl 2 О 3 (напр., поликор, или лукалокс), Y 2 O 3 (иттралокс), MgAl 2 O 4 , SiO 2 (кварцевая оптич. керамика), цирконато-титанатов Pb, La (электрооптич. керамика), а также бескислородные поликристаллические О. м. для ИК области спектра- LiF, MgF 2 , ZnS, ZnSe и др.

Оптические стекла характеризуются высокой прозрачностью в разл. спектральных диапазонах, высокой однородностью структуры, позволяющей сохранять неизменность фронта световой волны при ее распространении в толще стекла, коррозионностойкостью, хорошими конструкц. св-вами, относительно простой технологией изготовления крупногабаритных изделий и изделий со сложной конфигурацией. Применяются с 18 в. В качестве О. м. используют бесцв. или цветные оксидные и бескислородные стекла (см. также Стекло неорганическое). Большинство оксидных оптич. стекол-силикатные (более 30-40% SiO 2 по массе), свинцово- или боросиликатные, а также многокомпонентные оксидные системы из 10-12 разл. оксидов, напр. алюмоси-ликафосфатные стекла, содержащие Аl 2 О 3 , SiO 2 , P 2 O 5 . Несиликатные оксидные стекла содержат Р 2 О 5 , В 2 О 3 , GeO 2 или ТеО 2 . При изменении состава стекол изменяются и их оптич. константы, гл. обр. показатель преломления n D и коэф. дисперсии света v D . В зависимости от величин этих характеристик на диаграмме n D - v D (т. наз. диаграмма Аббе) О. м. делят на типы-кроны и флинты (рис. 2). Флинты характеризуются малым коэф. дисперсии (v D < 50), кроны -большим (v D > 50). Стекла обоих типов наз. легкими или тяжелыми в зависимости от величины показателя преломления. Обе разновидности стекол имеют общие компоненты - SiO 2 , Na 2 O, К 2 О. Кроме того, для увеличения v D в состав кронов добавляют В 2 О 3 , А1 2 О 3 , ВаО, СаО, в состав флинтов-PbO, TiO 2 , ZnO, MgO, Sb 2 O 3 . Осветлители стекол-As 2 O 3 и Sb 2 O 3 . Наиб. высокими значениями v D обладают фосфатные флинты на основе Р 2 О 5 (особенно при введении фторидов металлов).

Рис. 2. Классификация оптич. стекол (диаграмма Аббе) в зависимости от их показателя преломления (n D) и коэф. дисперсии света (v D): ЛК-легкие кроны; ФК-фосфатные кроны; ТФК-тяжелые фосфатные кроны; К-кроны; БК-баритовые кроны; ТК - тяжелые кроны; КФ - кронфлинты: БФ-баритовые флинты; ТБФ-тяжелые баритовые флинты; ЛФ-легкие флинты; Ф-флинты; ТФ-тяжелые флинты; СТФ-сверхтяжелые флинты; СТК-сверхтяжелые кроны.

Особое место среди стекол занимают фотохромные (см. Фотохромизм )стекла. Выделяют также кварцевые стекла, уникальные по термо- и хим. стойкости, огнеупорности и др. св-вам. Стеклообразный SiО 2 -осн. компонент кварцевых оптич. волокон для протяженных волоконно-оптич. линий связи; такие волоконно-оптич. материалы характеризуются миним. оптич. потерями на поглощение (~ 10 -6 см -1). Для линий протяженностью 10-100 м используют также оптич. волокна на основе прликомпонентных стекол и полимеров (оптич. потери ~ 10 -3 - 10 -5 см -1).

Оптич. потери (теоретические) у бескислородных оптич. стекол на 1-3 порядка ниже, чем у оксидных. В качестве таких материалов для ИК диапазона используют обычно разл. халькогенидные стекла, содержащие As, S (Se, Те), Sb, P, Tl, Ge и др. Наим. оптич. потерями в ИК диапазоне обладают оптич, волокна на основе галогенидов Ag, Tl и их твердых р-ров и волоконные световоды на основе фтороцирконатных (содержат Zr, F с добавлением Ва, Na, РЗЭ и др.) и халькогенидных стекол [содержат As-S(Se)-Ge].

К аморфным О. м. относятся мн. нсорг. и орг. в-ва. Среди первых наиб. распространены аморфный Si, SiO 2 , оксиды II-VI групп, соед. типа A II B VI , среди вторых-разл. полимеры: полиметилметакрилат (орг. стекло), полистирол, мн. фторопласты.

Неорг. аморфные О. м. используют гл. обр. в виде разл. пленок, иногда в виде массивных образцов (напр., аморфный Si); орг. аморфные О. м.-в виде пленок, оптич. волокон, массивных образцов (напр., полистирол).

О стеклокристаллических О.м. см. Ситаллы, о жидкокристаллических-Жидкие кристаллы.

К особому классу относятся О.м. с непрерывно изменяющимся составом и оптич. св-вами. Основа таких материалов - градиентные оптич. волокна или самофокусирующие градиентные оптич. элементы (напр., селфок, или гра-дан) в виде цилиндрич. образцов (диаметр 1-10 мм), обеспечивающих фокусировку света. Изготовляют их из таллиево-силикатных или силикогерманатных стекол, кристаллич. материалов (напр., на основе твердых р-ров галогенидов Т1), полимеров (напр., полиметилметакрилата). Градиентные слои и пленки на монокристаллах ниобата Li и др. кристаллич. или стеклянных материалах - основа интегрально-оп-тич. устройств.

По спектральному диапазону различают О.м., пропускающие в УФ, видимой и ИК областях спектра. Нек-рые О.м. характеризуются широким плато спектрального пропускания, иногда разбиваемого на отдельные окна прозрачности селективными полосами поглощения примесей. Для работы в УФ (> 0,2 мкм), видимой и ближней ИК областях спектра применяют гл. обр. кварц, фториды Li и Na; для работы в средней и дальней областях ИК спектра-преим. бескислородные О.м. Такие О.м., как Si, Ge, GaAs, InSb, пропускают только ИК излучение; галогениды щелочных металлов, BaF 2 , ZnSe прозрачны в видимой, ближней и средней ИК областях спектра; КСl, GaAs, TlBr-TlI и др. пропускают интенсивное лазерное ИК излучение.

С увеличением массы атомов, составляющих структуру О. м., длинноволновая граница пропускания большего числа О.м. перемещается в сторону расширения спектрального диапазона; напр., для анионов имеет место след. ряд: оксиды фториды сульфиды < хлориды селени-ды < бромиды теллуриды < (либо =) иодиды. Для иоди-да Cs длинноволновая граница прозрачности составляет ~ 60 мкм.

По назначению различают: О.м. для элементов оптич. устройств; просветляющие, отражающие и поглощающие покрытия; электрооптич., магнитооптич., акустооптич. и пьезооптич. материалы. Иногда к О.м. относят лазерные материалы, материалы для преобразования света в тепло и электричество, а также О. м. в виде композитов, порошков, эмульсий: дисперсные фильтры, отражающие покрытия, люминесцирующие стекла, красители для лазеров. В качестве О.м. иногда применяют оптич. клеи (с определенным показателем преломления), прозрачные орг. иммерсионные жидкости и др.

Материалы оптич. устройств (линзы, светофильтры и т.п.) имеют определенный показатель преломления, высокую прозрачность в определенном спектральном диапазоне, хорошо поддаются оптико-мех. обработке (шлифованию, полировке) пов-сти. Наиб. важное св-во-оптич. однородность, т.к. ослабление (потери) света, наряду с поглощением, определяется рассеянием на разл. дефектах структуры-микровключениях посторонних фаз, пузырях и свилях (областях стекол с измененным показателем преломления), микропорах (для керамики) и т.п.

Просветляющие покрытия служат для уменьшения коэф. отражения оптич. устройств, отражающие-для изготовления зеркал, поглощающие-для чернения пов-сти. Разновидность просветляющих покрытий - интерфе-ренц. покрытия толщиной 10-150 мкм; они м. б. многослойными и характеризоваться постепенным изменением показателя преломления от низкого (1,3-1,55; NaAlF 4 , MgF 2 или SiO 2) до среднего (2,0-2,6; ZrO 2 , GeO 2 , ZnS, TiO 2 или A1 2 S 3) и высокого (более 3,0; Si, Ge). Отражающие покрытия изготовляют гл. обр. из Ag, Au, Al, поглощающие - из углерода, оксидов, нитридов и силицидов.

Электрооптические, магнитооптические, акустооптические и пьезооптические О.м. характеризуются способностью менять свои оптич. св-ва под действием разл. полей (электрич., магн., звуковых). Наиб. распространенные электрооптич. материалы-КН 2 РО 4 , KH 2 AsO 4 и их дейтериевые аналоги, соли др. щелочных металлов и аммония, кристаллы типа сфалерита и эвлитина, разл. сегнето- и антисегнетоэлектрики, в т.ч. LiNbO 3 , LiTaO 3 , BaTiO 3 , бариевостронциевые бронзы и др. К маг-нитооптич. материалам относят железоиттриевые и железо-гадолиниевые гранаты, ферриты, содержащие РЗЭ, и др. (см. Магнитные материалы). Осн. акустооптич. и пьезооптич. материалы - кварц, мн. титанаты, ниобаты, танталаты и др. (см. Акустические материалы).

Многие О. м. способны поляризовать световой поток, напр. вращать плоскость поляризации света. При облучении нек-рых О. м. видимыми и УФ лучами наблюдается вторичное свечение-фотолюминесценция (см. Люминесценция).

Методы получения. В зависимости от состава и назначения О. м. для их получения применяют разл. методы. Общим является то, что все О. м. получают из сырья, максимально очищенного от примесей (напр., для О. м., работающих в видимой и ближней ИК областях, осн. красящие примеси-Fе, Mn, Cu, Cr, Ni, Co). Содержание примесей в сырье не должно превышать 10 -2 % по массе, что обеспечивает коэф. поглощения менее 10 -2 см -1 , а в случае волоконно-оптич. материалов -10 -5 -10 -7 % по массе.

Для выращивания синтетич. монокристаллов используют методы монокристаллов выращивания, для оксидной керамики-спекание (см. Керамика), для получения поликристаллических О. м. из порошков-горячее прессование. Бескислородные поликристаллические О. м. для ИК области спектра с размерами зерен ~ 50 мкм и коэф. поглощения ~ 10 -3 см -1 получают с использованием метода хим. осаждения из газовой фазы или конденсацией из паровой фазы. Оптич. стекла получают методом варки стекла. Для кварцевых оптич. волокон наиб. распространено хим. осаждение из газовой фазы по р-циям SiCl 4 + O 2 SiO 2 + 2 Сl 2 или SiCl 4 + О 2 + 2Н 2 SiO 2 + 4 НСl. Образующиеся при высокой т-ре частицы SiO 2 осаждают (в виде слоев) на внутр. пов-сть кварцевой трубки (т. наз. CVD-метод; англ, chemical vapor deposition), внеш. пов-сть цилиндрич. подложки (OVD-метод; англ. outer vapor deposition) или на торец затравочного кварцевого стержня (VAD-метод; англ, vapor axial deposition); затем при нагревании заготовка оплавляется и вытягивается в тонкое оптич. волокно. Для изменения состава и n D кварц легируют Ge, F и др. Для получения поликомпонентных и ИК оптич. волокон используют филь-ерный метод или перетяжку пары "согласованных" стекол по методу "штабик-трубка".

Среди разл. методов получения градиентных материалов наиб. значение имеет обработка стекол расплавами солей щелочных металлов, при к-рой протекает диффузия ионов из стекла в расплав и наоборот (метод ионного обмена).

Неорг. аморфные О.м. получают конденсацией из паро-газовой фазы, химическими транспортными реакциями, кристаллизацией и хим. осаждением из р-ров, облучением кристаллич. материалов и др. методами; органические - полимеризацией в блоке, р-ре и т.д. Для снижения оптич. потерь в волокнах из аморфных органических О.м. до 10 -2 -10 -4 см -1 используют мономеры, предварительно подвергнутые очистке. Покрытия из О.м. наносят термич. вакуумным напылением, испаряя исходный материал в электропечах или потоком электронов (катодное, магне-тронное распыление).

О. м. применяют в качестве элементов в оптич. системах приборов, оптоэлектронных устройствах, световодных системах связи, измерит. и интегральных схемах, в средствах управления и контроля технол. и физ. процессами, бытовых приборах, мед. аппаратуре и т.д.


===
Исп. литература для статьи «ОПТИЧЕСКИЕ МАТЕРИАЛЫ» :
Винчелл А. Н., Винчелл Г., Оптические свойства искусственных минералов, пер. с англ.. М., 1967: Сонин А. С., Василевская А. С., Элекгрооптические кристаллы, М., 1971; Физико-химические основы производства оптического стекла, под ред. Н. И. Демкиной, Л., 1976; Мидвин-тер Д. Э., Волоконные световоды для передачи информации, пер. с англ., М., 1983; Кочкин Ю. И., Румянцева Г. Н., "Зарубежная радиоэлектроника", 1985, №9, с. 89-96; Л еко В. К., Мазурин О. В., Свойства кварцевого стекла, Л., 1985; Deutsch Т. F., "J. Electronic Materials", 1975, v. 4, №4, р.663-719; Lucas I., "Infrared Physics", 1985, v.25, №1/2, p!277-81.

В. В. Сахаров.

Страница «ОПТИЧЕСКИЕ МАТЕРИАЛЫ» подготовлена по материалам химической энциклопедии.

В предыдущих главах, рассматривая тот или иной вопрос, связанный с работой оптической системы, мы не затрагивали явлений, обусловленных изменением показателей преломления оптических сред при переходе от одного участка спектра к другому.

Оптические системы могут обслуживать довольно широкий диапазон длин волн, простирающийся от 300 нм (ультрафиолетовая часть спектра) до 1000-2000 нм (ближняя и дальняя инфракрасные части) и до и бэлее (дальняя инфракрасная часть).

Из этого широкого участка спектра на долю видимого участка, воспринимаемого глазом человека, приходится более узкий

участок от 434,1 нм (ртутная линия спектра G) до 766,5 нм (красная линия спектра , принадлежащая водороду).

В качестве опорных точек на этом участке обычно принимают следующие линии спектра:

(см. скан)

Изменение длины волны света приводит к изменению показателей преломления оптических сред. В большинстве случаев наблюдается рост показателей преломления при уменьшении длины световой волны; принято говорить, что подобные среды имеют нормальный ход изменения показателей преломления, т. е. нормальную дисперсию.

В отличие от сред с нормальной дисперсией встречаются среды, у которых рост показателей преломления связан с увеличением длины волны; такие среды называют средами с аномальной дисперсией.

Оптические стекла и большинство оптических кристаллов, используемых при создании оптических систем, обладают нормальным ходом дисперсии.

Для сопоставления свойств различных оптических сред можно воспользоваться значениями показателей преломления для каких-либо двух длин волн; в видимой части спектра обычно используют длины волн спектра водорода; такую разность показателей называют средней или основной дисперсией.

Однако знание основной дисперсии еще не позволяет достаточно полно охарактеризовать хроматические свойства той или иной среды; поэтому на практике пользуются понятием относительной дисперсии - отношением средней дисперсии к разности между основным показателем преломления среды и единицей:

Величину обратную относительной дисперсии, называют коэффициентом дисперсии или числом Аббе.

Основная дисперсия и числа Аббе дают представления о свойствах оптической среды лишь для двух выбранных линий спектра; поэтому в случае необходимости определения свойств преломляющей среды для большего числа волн прибегают кроме основных дисперсий к частным относительным дисперсиям и числам Аббе.

Сведения о преломляющих свойствах различных сред и различных марок оптического стекла регламентируются ГОСТ 3514-67 и 13659-68, а также соответствующими справочниками.

Для оптических стекол различных марок значения показателей преломления варьируют в пределах от 1,43 до 2,17, числа Аббе - от 75 до 16.

Ассортимент марок оптического стекла представлен на рис. 11.1, где вдоль оси абсцисс отложены значения чисел Аббе (в убывающем порядке) и вдоль оси ординат - величины показателей преломления. Отдельными точками обозначены стекла различных марок. Нетрудно заметить, что область существования стекол снизу ограничена довольно характерной границей, идущей первоначально почти горизонтально и постепенно поднимающейся вверх по мере уменьшения чисел Аббе.

В начале этой границы располагается группа стекол с показателями преломления от 1,50 до 1,52 и числами Аббе от 65 до 59; эта группа стекол носит название кронов и обозначается буквой К.

За группой флинтов следует группа тяжелых флинтов, обозначаемых буквами ТФ. Тяжелые флинты охватывают область показателей преломления от 1,64 до 1,80 и чисел Аббе от 34 до 26.

Между группой кронов и простых флинтов располагается группа кронфлинтов и группа легких флинтов; эти две группы обозначают буквами КФ и ЛФ. Группа кронфлинтов охватывает область значений показателей преломления от 1,50 до 1,54 и чисел Аббе от 58 до 51; группа легких флинтов занимает область показателей преломления от 1,54 до 1,58 и чисел Аббе от 47 до 38.

Все перечисленные выше марки стекол нередко называют областью старых стекол, которая раньше состояла лишь из двух первых групп - простых кронов и простых флинтов. Характерной особенностью групп старых стекол является рост показателей преломления при постепенном уменьшении чисел Аббе.

Для решения многих задач создания оптических систем с повышенными характеристиками потребовались стекла, у которых при больших показателях преломления, равных показателям преломления обычных флинтов, числа Аббе соответствовали бы кронам; такая группа стекол с показателями преломления от 1,56 до 1,65 при числах Аббе от 61 до 51 называется тяжелыми кронами и обозначается буквами ТК.

В последние десятилетия была разработана группа лантановых стекол с еще более высокими показателями преломления - от 1,66 до 1,75 - при числах Аббе от 57 до 48; это группа сверхтяжелых кронов, обозначаемая буквами СТК.

(кликните для просмотра скана)

Область стекол с показателями преломления от 1,75 до 1,8 и выше при числах Аббе от 41 до 30 образует группу тяжелых баритовых флинтов, обозначаемую буквами ТБФ.

Рост показателей преломления наблюдается и при больших значениях чисел Аббе; эта группа стекол представлена фосфатными кронами, обозначаемыми ФК, с показателями преломления от 1,52 до 1,58 и числами Аббе от 70 до 65.

При таких же значениях чисел Аббе (70-65) группа легких кронов, обозначаемая буквами ЛК, имеет показатели преломления менее 1,5.

Стекла марок БК и БФ имеют средние значения показателей преломления и чисел Аббе.

В последние годы были разработаны фтористо-фосфатные стекла типа ФФС, еще не вошедшие в ГОСТ; эти стекла имеют показатели преломления от 1,43 до 1,60 и числа Аббе от 97 до 70.

Кроме ассортимента оптических стекол используется также и ряд других материалов, прозрачных как в видимой, так и в ультрафиолетовой и инфракрасной частях спектра. Показатели преломления и числа Аббе некоторых материалов приведены ниже:

В инфракрасной области этот список может быть дополнен рядом материалов, прозрачных как в ближней, так и в дальней области спектра. Ниже приведены средние значения показателей преломления таких материалов в соответствующем интервале длин волн.

Необходимо отметить, что изменение показателей преломления в известной степени связано также и с изменением температуры; аберрации в оптических системах, вызванные этими изменениями, называют термооптическими аберрациями.

Силикатные стёкла

Самым древним и известным оптическим материалом является обычное стекло , состоящее из смеси диоксида кремния и других веществ. Развитие технологии и ужесточение требований по мере роста совершенства оптических приборов привели к созданию особого класса технических стёкол - оптического стекла .

От прочих стёкол оно отличается особенно высокой прозрачностью, чистотой, бесцветностью, однородностью, а также строго нормированными преломляющей способностью и дисперсией .

Кварцевое стекло

См. также

Примечания

Литература

  • Винчелл А. Н., Винчелл Г., Оптические свойства искусственных минералов, пер. с англ., М., 1967;
  • Сонин А. С., Василевская А. С., Электрооптические кристаллы, М., 1971;
  • Физико-химические основы производства оптического стекла, под ред. Н. И. Демкиной, Л., 1976;
  • Мидвин-тер Д. Э., Волоконные световоды для передачи информации, пер. с англ., М., 1983;
  • Кочкин Ю. И., Румянцева Г. Н., «Зарубежная радиоэлектроника», 1985, № 9, с. 89-96;
  • Леко В. К., Мазурин О. В., Свойства кварцевого стекла, Л., 1985;
  • Deutsch Т. F., «J. Electronic Materials», 1975, v. 4, № 4, р.663-719;
  • Lucas I., «Infrared Physics», 1985, v.25, № 1/2, p.277-81.

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Оптические материалы" в других словарях:

    Кристаллич. или аморфные материалы, предназначенные для передачи или преобразования света в разл. участках спектрального диапазона. Различаются по строению, св вам, функцией, назначению, а также по технологии изготовления. Структура и свойства.… … Химическая энциклопедия

    Полимеры, использующиеся в создании оптических систем. Виды оптических полимерных материалов * Материалы с эпоксидной композицией «черного» цвета для герметизации фотодиодов, предназначенных для дистанционного управления приборами. *… … Википедия

    Оптические свойства горной породы - – свойства, характеризующие поглощение, пропускание и отражение электромагнитных волн оптического диапазона в горной породе. [ГОСТ Р 50544 93] Рубрика термина: Свойства горной породы Рубрики энциклопедии: Абразивное оборудование, Абразивы,… … Энциклопедия терминов, определений и пояснений строительных материалов

    Интенсивноразрабатываемое в 1980 90 е гг. новое поколение вычислит. техники (компьютеров)на основе использования оптич. излучения в качестве носителя информации … Физическая энциклопедия

    Материаловедение междисциплинарный раздел науки, изучающий изменения свойств материалов, как в твердом, так и в жидком состоянии в зависимости от некоторых факторов. К изучаемым свойствам относятся структура веществ, электронные, термические,… … Википедия

    Основная статья: Оптические материалы Волновод на базе прозрачной керамики Прозрачные керамические материалы материалы, прозрачные для электромагнитных … Википедия

    Материалы, применяемые в летательных аппаратах. В отечественной практике А. м. по назначению подразделяются на конструкционные, определяющими характеристиками которых являются механические свойства, и материалы неконструкционного назначения,… … Энциклопедия техники

    Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление. Дополнительные сведения могут быть на странице обсуждения. И … Википедия

    авиационные материалы Энциклопедия «Авиация»

    авиационные материалы - авиационные материалы — материалы, применяемые в летательных аппаратах. В отечественной практике А. м. по назначению подразделяются на конструкционные, определяющими характеристиками которых являются механические свойства, и материалы… … Энциклопедия «Авиация»

Книги

  • Оптические материалы. Учебное пособие , Зверев Виктор Алексеевич, Кривопустова Екатерина Всеволодовна, Точилина Татьяна Вячеславовна. Понятие "оптические материалы" охватывает сегодня огромное множество оптических сред, различающихся не только показателем преломления и коэффициентом дисперсии, но и прозрачностью для…

Использование: в частности оптические системы, обладающие улучшенным качеством изображения при теоретически предельных характеристиках. Сущность изобретения: для изготовления линз используется ортогерманат висмута, что позволяет при разработке оптических систем при одинаковых фокусных расстояниях повысить качество изображения за счет исправления астигматизма вследствие уменьшения кривизны преломляющей поверхности, а также увеличить срок эксплуатации оптических систем за счет негигроскопичности материала, его монокристалличности, а также высокой радиационной стойкости. 1 ил., 1 табл.

Изобретение относится к оптике в частности к линзам, и может использоваться в оптических системах, обладающих улучшенным качеством изображения при теоретически предельных характеристиках. Известны оптические материалы стекла с высоким показателем преломления в частности, сверхтяжелые кроны СТК16 и СТК20 с показателями преломления n e =1,790 и 1,768 и дисперсиями 45,4 и 50 соответственно По химическому составу сверхтяжелые кроны представляют собой боратные стекла, содержащие 7-39 мол. SiO 2 ; 24-52 мол. B 2 O 3 ; 34-48 мол. (CaO, ZnO, Al 2 O 3 + La 2 O 3 , TiO 2 , ZrO 2) Известна также группа тяжелых баритовых флинтов, например, ТБФ9 с n e = 1,8129 и n 42,5, а также ТБФ11 с n e =1,837 и n 42,8. По химическому составу тяжелые баритовые флинты состоят из 20-40 мол. SiO 2 ; 20 мол. B 2 O 3 ; 3-43 мол. BaO, PbO с добавками ZnO, CaO, TiO 2 , WO 3 Эти стекла довольно перспективны для улучшения качества изображения при разработке оптических систем с характеристиками, близкими к предельным. Однако, показатель преломления этих стекол ограничен величинами, указанными выше, и не может быть более 2,0, при этом они имеют высокие значения дисперсии. Достаточно сложная технология изготовления таких стекол оптического качества ограничивает их выпуск и определяет высокую стоимость. Кроме того к недостаткам этих стекол относится их взаимодействие с влагой. По показателю пятнаемости стекла, содержащие >17 мол. B 2 O 3 относятся к III группе (пятнающиеся стекла) и IV группе (нестойкие стекла) Наиболее близким к предлагаемому материалу для изготовления линз является оптический материал: к которому относится группа сверхтяжелых флинтов типа СТФ2 с n e =1,955, и n 20,2 и СТФ3 с n e =2,186 и n 16,6. По химическому составу сверхтяжелые флинты состоят из 50 мол. SiO 2 ; 48-59 мол. PbO и 0,5-1,5 мол. K 2 O (Na 2 O). Недостатком таких стекол, является желтый оттенок, что снижает прозрачность в видимой области на 10-20% а также повышенная кристаллизационная способность, что приводит к изменению оптических характеристик вследствие старения Техническим результатом изобретения является изыскание оптического преломляющего материала с высоким показателем преломления при относительно невысокой дисперсии (n 20), обеспечивающего повышение качества изображения. Согласно изобретению технический результат обеспечивается за счет того, что ортогерманат висмута Bi 4 Ge 3 O 12 , показатель преломления которого n=2,1, а дисперсия n 20. Указанное соединение описано в литературе и ранее использовалось в качестве сцинтилляционного материала для регистрации гамма-излучения, электроном и др. элементарных частиц в ядерной физике, геологии, медицине. Использование ортогерманата висмута для изготовления линз в литературе не описано. Применение ортогерманата висмута Bi 4 Ge 3 O 12 в сравнении с обычными кроновыми и флинтовыми стеклами (аналоги и прототип) при одинаковых (нормированных) фокусных расстояниях приводит к меньшей кривизне преломляющих поверхностей и вследствие этого к снижению абберций всех порядков, а это в свою очередь, приводит к возможности увеличения относительного отверстия оптической системы без ее усложнения. При этом, помимо возможности создания новых систем, возникает возможность упрощения серийно выпускаемых оптических систем, в частности, фотообъективов за счет замены в них сложных коррекционно-силовых компонентов более простыми, содержащими ортогерманат висмута. Таким образом, применение Bi 4 Ge 3 O 12 в качестве оптического материала при изготовлении линз оптических систем приводит к возможности повышения качества изображения без их усложнения за счет уменьшения кривизны преломляющей поверхности и за счет исправления астигматизма. Получение монокристаллов ортогерманата висмута. Исходную смесь оксидов висмута (III) марки ОСФ 13-3 (для монокристаллов) и оксида германия (IV) (ТУ 48-21-72), взятую в соотношении Bi 2 O 3:GeO 2 2:3, в количестве 1,0 кг перемешивают в агатовой ступке и затем проводят твердофазный синтез шихты Bi 4 Ge 3 O 12 в платиновой чашке на воздухе при 750-950 o C. Полученную шихту загружают в платиновый тигель диаметром 200 мм, высотой 300 мм в количестве 40 кг, расплавляют и проводят процесс выращивания монокристаллов методом Чохральского на ориентированную затравку. Получают бесцветные монокристаллы диаметром до 150 мм и длиной до 250 мм. На чертеже представлен окуляр. В качестве примера конкретного использования можно привести разработку окуляра для телескопических систем. Окуляр имеет следующие конструктивные параметры (см.таблицу). Расчет хода действительных лучей свидетельствует, что по сравнению с известным трехлинзовым окулятором, в котором одна линза (N 1) с высоким показателем преломления (n=2,0667), выполненная из сверхтяжелого флинта заменяется на линзу из ортогерманата висмута, данный окуляр обладает улучшенным качеством изображения за счет уменьшения кривизны поверхности линзы, и исправления астигматизма (астигматическая разности в пределах поля 30 o не превышает 2 мм, что более чем в три раза лучше, чем в известном окуляре). Применение линз, выполненных из ортогерманата висмута Bi 4 Ge 3 O 12 при разработке оптических систем при одинаковых (нормированных) характеристиках позволяет повысить качество изображения без усложнения оптической системы, а также существенно расширить спектральный диапазон применения оптических приборов. Кроме того, использование Bi 4 Ge 3 O 12 выгодно экономически, т.к. позволяет снизить стоимость изделий за счет несложной технологии изготовления предлагаемого оптического материала. Использование линз, выполненных из ортогерманата висмута позволяет также увеличить срок эксплуатации оптических систем за счет негигроскопичности применяемого материала (отсутствие пятнаемости), высокой радиационной стойкости. Поскольку в качестве оптического материала используется монокристалл (а не стекло как в прототипе), то устраняется один из основных недостатков высокопреломляющих стекол, а именно повышенная кристаллизационная способность, что также позволяет увеличить срок эксплуатации этого материала. Источники информации: 1. Бесцветное оптическое стекло СССР. Каталог. М. Госстандарт, 1990, с. 52. 2. Физико-химические основы производства оптического стекла /под ред. Л. И.Демкиной. Л. Химия, 1976, с. 62-77. 3. Бесцветное оптическое стекло СССР. Каталог. М. Госстандарт, 1990, с. 62. 4. Физико-химические основы производства оптического стекла /под ред. Л. И.Демкиной. Л. Химия, 1976, с. 185-186, с. 209-220. 5. Бесцветное оптическое стекло СССР. Каталог. М. Госстандарт, 1990, с. 74. 6. Каргин Ю.Ф. Каргин В.Ф. Скориков В.М. Шадеев Н.И. Пехова Т.И. Синтез и излучение сцинтилляционных свойств монокристаллов Bi 4 Ge 3 O 12 . Изв. АН СССР, Неорганические материалы, 1984, т. 20, N 5, с. 815-817. 7. Русинов М.М. Композиция оптических систем. Л. Машиностроение, 1989, с. 202-203.

Формула изобретения

Применение монокристаллов ортогерманата висмута Bi 4 Ge 3 O 1 2 в оптических системах в качестве оптического материала с показателем преломления n 2,1 и дисперсией = 20.н

Последние материалы сайта