Краткое описание стадий и схемы деления клеток посредством мейоза. Мейоз, его фазы, биологическое значение Фазы деления митоза и мейоза

29.06.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Все клеточные структуры живых организмов в норме проходят несколько основных этапов развития. В ходе своего существовании каждая клетка в норме проходит этап размножения или деления. Оно может быть прямым, непрямым или редукционным. Деление – это нормальный этап жизнедеятельности структурных единиц различных организмов, который обеспечивает нормальное существование, рост и размножение всех живых существ на планете. Именно благодаря клеточному размножению в теле человека возможно обновление тканей, восстановление целостности поврежденного эпителия или дермы, наследование генетических данных, зачатие, эмбриогенез и множество других важнейших процессов.

Существует две основные разновидности размножения структурных единиц в организме многоклеточных существ: митоз и мейоз. Каждый из этих способов размножения имеет характерные особенности.

Внимание! Выделяют также деление клеток простым разделением надвое – амитоз. В организме человека этот процесс встречается в аномально измененных структурах, например, опухолях.

Митоз – вегетативное деление имеющих ядро клеток, наиболее часто встречающийся процесс воспроизведения. Этот способ также называют непрямым размножением или клонированием, так как сформированная в ходе него пара дочерних структур оказывается полностью идентичной материнской. С помощью клонирования размножаются соматические структурные единицы человеческого организма.

Внимание! Вегетативное деление направлено на формирование абсолютно одинаковых клеток из поколения в поколение. Подобным образом размножаются все клетки человеческого организма, кроме репродуктивных.

Клонирование составляет базу онтогенеза, то есть развития организма от зачатия до момента гибели. Митотическое деление необходимо для нормального функционирования различных органов и систем и формирование и сохранение определенных характеристик человека от рождения до смерти на морфологическом и биохимическом уровне. Продолжительность данного способа клеточного размножения составляет в среднем около 1-2 часов.

Течение митоза делится на четыре основные фазы:


В результате клонирования из материнской клетки формируются две дочерние, имеющие абсолютно аналогичный набор хромосом и сохраняющие все качественные и количественные характеристики исходной клетки. В организме человека за счет митоза происходит постоянное обновление тканей.

Внимание! Нормально течение митотических процессов обеспечивает нейрогуморальная регуляция, то есть совместное действие нервной и эндокринной систем.

Особенности течения редукционного деления

Мейотическое деление - процесс, итогом которого становится образование репродуктивных структурных единиц — гамет. При данном способе размножения образуется четыре дочерние клетки, причем каждая из них имеет 23 хромосомы. Так как образованные в результате этого способа гаметы обладают неполным хромосомным набором, он называется редукционным. У человека при гаметогенезе возможно образование двух типов структурных единиц:

  • сперматозоидов из сперматогониев;
  • яйцеклеток в фолликулах.

Характерные особенности

Так как каждая полученная гамета имеет одинарный набор хромосом, то при слиянии с другой репродуктивной клеткой происходит обмен генетическим материалом и формирование зародыша, который получает полный хромосомный набор. Именно за счет мейоза обеспечивается комбинаторная изменчивость – это процесс, в результате которого образуется огромный перечень различных генотипов, а плод унаследует различные черты матери и отца.

В процессе образования гаплоидных структур также следует выделять четыре вышеперечисленные фазы, свойственные митозу. Основное отличие редукционного деления заключается в том, что эти этапы повторяются дважды.

Внимание! Первая телофаза заканчивается формирование двух клеток, обладающих полным генетическим набором из 46 хромосом. Затем начинается второе деление, благодаря которому формируются четыре репродуктивные клетки, каждая из которых обладает 23 хромосомами.

При мейотическом делении первый этап занимает большее количество времени. Во время той стадии происходит слияние хромосом и процесс обмена генетическими данными. Метафаза протекает так же, как и при митозе, но при одинарном наборе наследственных данных. При анафазе не происходит деление центромер, а к полюсам расходятся гаплоидные хромосомы.

Период между двумя делениями, то есть интерфаза, очень короткий, дезоксирибонуклеиновая кислота в это время не продуцируется. Поэтому получившиеся после второй телофазы клетки содержат гаплоидный, то есть одинарный, комплект хромосом. Диплоидный набор восстанавливается при слиянии двух репродуктивных клеток в ходе сингамии. Это процесс соединения мужской и женской гаметы, образованных в результате мейоза. По итогам редукционного деления образуется зигота, обладающая 46 хромосомами и полным набором наследственной информации, полученной от обоих родителей.

В ходе слияния гамет возможно формирование различных вариантов каких-либо признаков. Именно за счет мейоза дети унаследуют, например, цвет глаз одного из родителей. За счет рецессивного носительства каких-либо генов возможна передача признаков через одно или несколько поколений.

Внимание! Доминантные признаки – преобладающие, проявляющиеся обычно у первого поколения потомков. Рецессивные – скрытые или постепенно пропадающие у особей последующих поколений.

Роль митотического деления:

  1. Поддержание постоянства количества хромосом. Если бы полученные клетки имели полный набор хромосом, то у плода после зачатия их количество увеличивалось бы в два раза.
  2. Благодаря мейотическому делению формируются репродуктивные клетки с различными наборами наследственной информации.
  3. Рекомбинация наследственной информации.
  4. Обеспечение изменчивости организмов.

Сравнительная характеристика

Способ размножения Клонирование Гаметогенез
Виды клеток Соматические Репродуктивные
Количество делений Одно Два
Сколько дочерних структурных единиц формируется в итоге 2 4
Содержание наследственной информации в дочерних клетках Не изменяется Изменяется
Конъюгация Не свойственно
Не свойственно Отмечается во время первого деления

Отличия клонирования и редукционного деления

Клонирование и редукционное размножение клеток – достаточно сходные процессы. Мейотическое деление включает те же этапы, что и митотическое, однако их продолжительность и протекающие на различных его этапах процессы имеют значительные отличия.

Видео — Митоз и мейоз

Различия в течении полового и бесполого деления

Клетки, получающиеся в результате митотического деления и гаметогенеза, несут различную функциональную нагрузку. Именно поэтому в ходе мейоза отмечаются некоторые особенности течения:

  1. На первом этапе редукционного деления отмечается конъюгация и кроссинговер. Эти процессы необходимы для взаимного обмена генетической информацией.
  2. Во время анафазы отмечается сегрегация сходных хромосом.
  3. В периоде между двумя циклами делениями не происходит редупликации молекул дезоксирибонуклеиновой кислоты.

Внимание! Конъюгация – состояние постепенного схождения друг с другом гомологичных, то есть сходных, хромосом и следующее за этим формирование пар. Кроссинговер – переход определенных участков от одной хромосомы к другой.

Второй этап гаметогенеза протекает абсолютно так же, как и митоз.

Характерные отличия по результатам процесса деления:

  1. Результатом клонирования становится образование двух структурных единиц, а итогом редукционного деления – четыре.
  2. С помощью клонирования делятся соматические структурные единицы, входящие в состав различных тканей организма. В результате мейоза образуются только репродуктивные клетки: яйцеклетки и сперматозоиды.
  3. Клонирование приводит к образованию абсолютно одинаковых структурных единиц, а при мейотическом делении происходит перераспределение генетических данных.
  4. В результате редукционного деления количество наследственной информации в репродуктивных клетках сокращается на 50%. Это обеспечивает возможность последующего слияния генетических данных клеток матери и отца при оплодотворении.




Клонирование и редукционное деление – важнейшие процессы, обеспечивающие нормальное функционирование организма. Сформировавшиеся в результате клонирования дочерние клетки оказываются во всем, в том числе на уровне дезоксирибонуклеиновой кислоты, идентичны исходной. Это позволяет передавать хромосомный набор в неизменном виде из одного поколения клеток в другое. Митоз лежит в основе нормального роста тканей. Биологическое значение редукционного деления заключается в сохранении определенного количества хромосом у организмов, размножение которых происходит половым путем. При этом мейотическое деление позволяет проявляться важнейшему качеству различных многоклеточных организмов – комбинативной изменчивости. Благодаря ей возможна передача потомству различных признаков как отца, так и матери.

Проработав эти темы, Вы должны уметь:

  1. Перечислить уровни организации живой материи и признаки, характеризующие живой организм.
  2. Кратко рассказать о том, как происходит репликация ДНК.
  3. Описать строение хромосомы эукариотической клетки.
  4. Перечислить основные события митоза и охарактеризовать функцию митоза при клеточном делении.
  5. Указать отличие митоза от мейоза.
  6. Рассказать о значении мейоза и оплодотворения в осуществлении преемственности между поколениями.
  7. Указать закономерности индивидуального развития.
  8. Обсудить преимущества, имеющиеся у организмов с чередованием полового и бесполого размножения на протяжении жизненного цикла.
  9. Рассказать о преимуществах и недостатках полового размножения по сравнению с бесполым.
  10. Привести доказательства в пользу гипотезы о том, что почти при всех системах скрещивания право выбора принадлежит самке.
  11. Рассмотреть возможные причины моногамии у человека.

Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

  • Тема 8. "Митоз. Мейоз." §19-22 стр. 53-62
  • Тема 9. "Индивидуальное развитие организма. Типы размножения организмов." §23-24 стр. 65-68

В многогранной науке биологии есть множество интересных и в то же время немного запутанных тем, и одной из них без сомнения являются способы деления клетки: митоз и мейоз. На первый взгляд налицо сходства митоза и мейоза – и там и там происходит деление клеток, но в тоже время между ними есть и значительные отличия. Но для начала разберем с вами, что такое митоз, что такое мейоз и каково их биологическое значение.

Что такое митоз

Митозом в биологии принято называть самый распространенный способ деления всех соматических клеток (клеток тела) любого живого существа. При нем из исходной материнской клетки образуются две дочерние, которые являются абсолютно одинаковыми по свойствам, как друг с другом, так и с материнской клеткой. Митоз наиболее распространен в природе, ведь именно он лежит в основе деления всех неполовых клеток (нервных, костных, мышечных и т. д.).

Фазы митоза

Деление клетки через митоз состоит из четырех фаз:

  • интерфаза – период жизни клетки между двумя митозами, именно в это время происходит ряд важных процессов, предшествующих делению клетки: синтезируются белки и молекулы АТФ, каждая удваивается, образуя по две сестринские хромосомы, которые скрепляются одной центромерой. По сути, интерфазу можно назвать подготовительным этапом к митозу, по времени она в десятки раз продолжительнее самого митоза.
  • профаза – в ней происходит утолщение хромосом, состоящих из двух сестринских хроматид, которые скреплены вместе центромерой. Под конец этой фазы ядрышки и ядерная исчезают, хромосомы разбегаются по всей клетки.
  • метафаза – при ней происходит дальнейшая спирилизация хромосом, которые в это время очень удобно наблюдать через .
  • анафаза – в этой фазе происходит деление центромер, сестринские хроматиды отделяются друг от друга и отходят к противоположным концам клетки.
  • телофаза – последняя фаза митоза, при которой происходит деление . Хромосомы раскручиваются и снова образуют ядрышки и ядерные мембраны. И таким вот образом из одной клетки получается две.

Суть митоза на картинке.

Что такой мейоз

А что же мейоз? И в чем различия митоза и мейоза? Итак, мейозом принято называть тип репродуктивного деления клетки, приводящий к образованию из одной клетки аж целых четырех. Но новообразованные клетки обладают лишь половинным гаплоидным набором хромосом. Что же это значит? А то, что, по мнению некоторых биологов, мейоз даже не является, строго говоря, размножением клетки, так как это способ образования гаплоидных клеток, то бишь спор (у растений) и гамет (у животных). Сами гаметы только после оплодотворения, которое и будет в нашем случае половым размножение, послужат образованию нового организма.

Суть мейоза на картинке.

Фазы мейоза

И, разумеется, фазы мейоза отличаются от аналогичных, у митоза. Профаза в мейозе в разы длиннее, так как в ней происходит коньюгация – соединение гомологичных хромосом и обмен генетической информацией. В анафазе центромеры не делятся. Интерфаза очень короткая и ДНК в ней не синтезируется. Клетки, образованные в результате двух мейотических делений содержат одинарный набор хромосом. И только при слиянии двух клеток: материнской и отцовской, восстанавливается диплоидность. Также помимо всего прочего мейоз протекает в два этапа, известные как мейоз І и мейоз ІІ.

Опять-таки наглядное сравнение митоза и мейоза и их фаз вы можете увидеть на картинке.

Биологическое значение митоза и мейоза

Теперь же попробуем объяснить максимально просто не только в чем отличие митоза от мейоза но и каково их биологическое значение. Посредством митоза размножаются все неполовые клетки организма, а мейоз – всего лишь способ образования именно половых клеток, но только у животных организмов, у растений же благодаря мейотическому делению размножаются споры, а затем из этих спор уже путем митоза образуются половые клетки растений – гаметы.

Мейоз - это способ непрямого деления пер­вичных половых клеток (2п2с), в результате кото­рого образуются гаплоидные клетки (lnlc), чаще всего половые.

В отличие от митоза, мейоз состоит из двух последовательных делений клетки, каждому из которых предшествует интерфаза (рис. 2.53). Первое деление мейоза (мейоз I) называется редук­ционным, так как при этом количество хромосом уменьшается вдвое, а второе деление (мейозII) - эквационным, так как в его процессе количество хромосом сохраняется (см. табл. 2.5).

Интерфаза I протекает подобно интерфазе митоза. Мейоз I делится на четыре фазы: профа­зу I, метафазу I, анафазу I и телофазу I. В профа­зе I происходят два важнейших процесса - конъ­югация и кроссинговер. Конъюгация - это процесс слияния гомологичных (парных) хромосом по всей длине. Образовавшиеся в процессе конъюгации пары хромосом сохраняются до конца метафазы I.

Кроссинговер - взаимный обмен гомологичными участками го­мологичных хромосом (рис. 2.54). В результате кроссинговера хро­мосомы, полученные организмом от обоих родителей, приобретают новые комбинации генов, что обусловливает появление генетически разнообразного потомства. В конце профазы I, как и в профазе ми­тоза, исчезает ядрышко, центриоли расходятся к полюсам клетки, а ядерная оболочка распадается.

В метафазе I пары хромосом выстраиваются по экватору клетки, к их центромерам прикрепляются микротрубочки веретена деления.

В анафазе I к полюсам расходятся целые гомологичные хромосомы, состоящие из двух хро­матид.

В телофазе I вокруг скоплений хромосом у полюсов клетки образуются ядерные оболочки, формируются ядрышки.

Цитокинез I обеспечивает разделение цитоплазм дочерних клеток.

Образовавшиеся в результате мейоза I дочерние клетки (1n2с) генетически разнородны, по­скольку их хромосомы, случайным образом разошедшиеся к полюсам клетки, содержат неодина­ковые гены.

Интерфаза II очень короткая, так как в ней не происходит удвоения ДНК, то есть отсутствует S-период.

Мейоз II также делится на четыре фазы: профазу II, метафазу II, анафазу II и телофазу II. В профазе II протекают те же процессы, что и в профазе I, за исключением конъюгации и кроссинговера.

В метафазе II хромосомы располагаются вдоль экватора клетки.

В анафазе II хромосомы расщепляются в центромерах и к полюсам растягиваются уже хроматиды.

В телофазе II вокруг скоплений дочерних хромосом формируются ядерные оболочки и ядрышки.

После цитокинеза II генетическая формула всех четырех дочерних клеток - 1n1c, однако все они имеют различный набор генов, что является результатом кроссинговера и случайного со­четания хромосом материнского и отцовского организмов в дочерних клетках.

Все организмы состоят из клеток, они способны к развитию, размножению и росту. Митоз и мейоз — способы деления клеток. Именно с их помощью происходит размножение клеток. Эти 2 способы во многом похожи. Митоз и мейоз состоят из одинаковых фаз. При помощи мейоза размножаются половые клетки , а при помощи митоза — соматические.

Мейоз — процесс деления клеток, может привести к образованию гамет.

Митоз — процесс непрямого деления клеток-эукариотов. Благодаря ему делятся клетки грибов, растений, животных.

Сходства и различия митоза и мейоза:

  • Митоз может передавать информацию от клетки к клетке. А мейоз в свою очередь передает от поколения к поколению.
  • Митоз является универсальным способом размножения всех клеток тела. А мейоз — способ образования яйцеклеток и сперматозоидов.
  • В результате мейоза образуются 4 клетки. Митоз приводит к образованию 2 клеток.
  • При мейозе клетка получает гаплоидный набор — уменьшение числа хромосом. При митозе клетки остаются диплоидными — количество хромосом не изменяется.
  • Мейоз состоит из двух делений, а митоз — из одного.

Последние материалы сайта