Док во теоремы о сумме углов треугольника. Сумма углов треугольника. Полные уроки — Гипермаркет знаний

24.09.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Предварительные сведения

Вначале рассмотрим непосредственно понятие треугольника.

Определение 1

Треугольником будем называть геометрическую фигуру, которая составлена из трех точек, соединенных между собой отрезками (рис. 1).

Определение 2

Точки в рамках определения 1 будем называть вершинами треугольника.

Определение 3

Отрезки в рамках определения 1 будем называть сторонами треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.

Теорема о сумме углов в треугольнике

Введем и докажем одну из основных теорем, связанную с треугольников, а именно теорему о сумме углов в треугольнике.

Теорема 1

Сумма углов в любом произвольном треугольнике равняется $180^\circ$.

Доказательство.

Рассмотрим треугольник $EGF$. Докажем, что сумма углов в этом треугольнике равняется $180^\circ$. Сделаем дополнительное построение: проведем прямую $XY||EG$ (рис. 2)

Так как прямые $XY$ и $EG$ параллельны, то $∠E=∠XFE$ как накрест лежащие при секущей $FE$, а $∠G=∠YFG$ как накрест лежащие при секущей $FG$

Угол $XFY$ будет развернутым, следовательно, равняется $180^\circ$.

$∠XFY=∠XFE+∠F+∠YFG=180^\circ$

Следовательно

$∠E+∠F+∠G=180^\circ$

Теорема доказана.

Теорема о внешнем угле треугольника

Еще одной теоремой о сумме углов для треугольника можно считать теорему о внешнем угле. Для начала введем это понятие.

Определение 4

Внешним углом треугольника будем называть такой угол, который будет смежным с каким-либо углом треугольника (рис. 3).

Рассмотрим теперь непосредственно теорему.

Теорема 2

Внешний угол треугольника равняется сумме двух углов треугольника, которые не являются смежным для него.

Доказательство.

Рассмотрим произвольный треугольник $EFG$. Пусть он имеет внешний угол треугольника $FGQ$ (рис. 3).

По теореме 1 ,будем иметь, что $∠E+∠F+∠G=180^\circ$, следовательно,

$∠G=180^\circ-(∠E+∠F)$

Так как угол $FGQ$ внешний, то он смежен с углом $∠G$, тогда

$∠FGQ=180^\circ-∠G=180^\circ-180^\circ+(∠E+∠F)=∠E+∠F$

Теорема доказана.

Пример задач

Пример 1

Найти все углы треугольника, если он является равносторонним.

Так как у равностороннего треугольника все стороны равны, то будем иметь, что и все углы в нем также равны между собой. Обозначим их градусные меры через $α$.

Тогда, по теореме 1 будем получать

$α+α+α=180^\circ$

Ответ: все углы равняются по $60^\circ$.

Пример 2

Найти все углы равнобедренного треугольника, если один его угол равняется $100^\circ$.

Введем следующие обозначения углов в равнобедренном треугольнике:

Так как нам не дано в условии, какой именно угол равняется $100^\circ$, то возможны два случая:

    Угол, равный $100^\circ$ - угол при основании треугольника.

    По теореме об углах при основании равнобедренного треугольника получим

    $∠2=∠3=100^\circ$

    Но тогда только их сумма будет больше, чем $180^\circ$, что противоречит условию теоремы 1. Значит, этот случай не имеет места.

    Угол, равный $100^\circ$ - угол между равными сторонами, то есть

    Цели и задачи:

    Образовательные:

    • повторить и обобщить знания о треугольнике;
    • доказать теорему о сумме углов треугольника;
    • практически убедиться в правильности формулировки теоремы;
    • научиться применять полученные знания при решении задач.

    Развивающие:

    • развивать геометрическое мышление, интерес к предмету, познавательную и творческую деятельность учащихся, математическую речь, умение самостоятельно добывать знания.

    Воспитательные:

    • развивать личностные качества учащихся, таких как целеустремленность, настойчивость, аккуратность, умение работать в коллективе.

    Оборудование: мультимедийный проектор, треугольники из цветной бумаги, УМК «Живая математика», компьютер, экран.

    Подготовительный этап: учитель дает задание ученику подготовить историческую справку о теореме «Сумма углов треугольника».

    Тип урока : изучение нового материала.

    Ход урока

    I. Организационный момент

    Приветствие. Психологический настрой учащихся на работу.

    II. Разминка

    С геометрической фигурой “треугольник” мы познакомились на предыдущих уроках. Давайте повторим, что нам известно о треугольнике?

    Учащиеся работают по группам. Им предоставлена возможность общаться друг с другом, каждому самостоятельно строить процесс познания.

    Что получилось? Каждая группа высказывает свои предложения, учитель записывает их на доске. Проводится обсуждение результатов:

    Рисунок 1

    III. Формулируем задачу урока

    Итак, о треугольнике мы знаем уже достаточно много. Но не все. У каждого из вас на парте есть треугольники и транспортиры. Как вы думаете, какую задачу мы можем сформулировать?

    Ученики формулируют задачу урока - найти сумму углов треугольника.

    IV. Объяснение нового материала

    Практическая часть (способствует актуализации знаний и навыков самопознания).Проведите измерения углов с помощью транспортира и найдите их сумму. Результаты запишите в тетрадь (заслушать полученные ответы). Выясняем, что сумма углов у всех получилась разная (так может получиться, потому что неточно приложили транспортир, небрежно выполнили подсчет и т.д.).

    Выполните перегибания по пунктирным линиям и узнайте, чему еще равна сумма углов треугольника:

    а)
    Рисунок 2

    б)
    Рисунок 3

    в)
    Рисунок 4

    г)
    Рисунок 5

    д)
    Рисунок 6

    После выполнения практической работы ученики формулируют ответ: Сумма углов треугольника равна градусной мере развернутого угла, т. е. 180°.

    Учитель: В математике практическая работа дает возможность лишь сделать какое-то утверждение, но его нужно доказать. Утверждение, справедливость которого устанавливается путем доказательства, называется теоремой. Какую теорему мы можем сформулировать и доказать?

    Ученики: Сумма углов треугольника равна 180 градусов.

    Историческая справка: Свойство суммы углов треугольника было установлено еще в Древнем Египте. Доказательство, изложенное в современных учебниках, содержится в комментариях Прокла к «Началам» Евклида. Прокл утверждает, что это доказательство (рис. 8) было открыто еще пифагорейцами (5 в. до н. э.). В первой книге «Начал» Евклид излагает другое доказательство теоремы о сумме углов треугольника, которое легко понять при помощи чертежа (рис. 7):


    Рисунок 7


    Рисунок 8

    Чертежи высвечиваются на экране через проектор.

    Учитель предлагает с помощью чертежей доказать теорему.

    Затем доказательство проводится с применением УМК «Живая математика» . Учитель на компьютере проецирует доказательство теоремы.

    Теорема о сумме углов треугольника: «Сумма углов треугольника равна 180°»


    Рисунок 9

    Доказательство:

    а)

    Рисунок 10

    б)

    Рисунок 11

    в)

    Рисунок 12

    Учащиеся в тетради делает краткую запись доказательства теоремы:

    Теорема: Сумма углов треугольника равна 180°.


    Рисунок 13

    Дано: Δ АВС

    Доказать: А + В + С = 180°.

    Доказательство:

    Что требовалось доказать.

    V. Физ. минутка.

    VI. Объяснение нового материала (продолжение)

    Следствие из теоремы о сумме углов треугольника выводится учащимися самостоятельно, это способствует развитию умения формулировать собственную точку зрения, высказывать и аргументировать ее:

    В любом треугольнике либо все углы острые, либо два острых угла, а третий тупой или прямой .

    Если в треугольнике все углы острые, то он называется остроугольным .

    Если один из углов треугольника тупой, то он называется тупоугольным .

    Если один из углов треугольника прямой, то он называется прямоугольным .

    Теорема о сумме углов треугольника позволяет классифицировать треугольники не только по сторонам, но и по углам. (По ходу введения видов треугольников учащимися заполняется таблица)

    Таблица 1

    Вид треугольника Равнобедренный Равносторонний Разносторонний
    Прямоугольный
    Тупоугольный
    Остроугольный

    VII. Закрепление изученного материала.

    1. Решить задачи устно:

    (Чертежи высвечиваются на экране через проектор)

    Задача 1. Найдите угол С.


    Рисунок 14

    Задача 2. Найдите угол F.


    Рисунок 15

    Задача 3. Найдите углы К и N.

    Рисунок 16

    Задача 4. Найдите углы P и T.


    Рисунок 17

    1. Решить задачу самостоятельно № 223 (б, г).
    2. Решить задачу на доске и в тетрадях уч-ся №224.
    3. Вопросы: Может ли треугольник иметь: а) два прямых угла; б) два тупых угла; в) один прямой и один тупой угол.
    4. (выполняется устно) На карточках, имеющихся на каждом столе, изображены различные треугольники. Определите на глаз вид каждого треугольника.


    Рисунок 18

    1. Найдите сумму углов 1, 2 и 3.


    Рисунок 19

    VIII. Итог урока.

    Учитель: Что мы узнали? Для любого ли треугольника применима теорема?

    IX. Рефлексия.

    Передайте мне свое настроение, ребята! С обратной стороны треугольника изобразите свою мимику.


    Рисунок 20

    Домашнее задание: п.30 (1 часть), вопрос 1 гл. IV стр. 89 учебника; № 223 (а, в), № 225.

    Эта теорема сформулирована и в учебнике Атанасяна Л.С. , и в учебнике Погорелова А.В. . Доказательства этой теоремы в этих учебниках существенно не отличаются, а поэтому приведем ее доказательство, например, из учебника Погорелова А.В.

    Теорема: Сумма углов треугольника равна 180°

    Доказательство. Пусть АВС - данный треугольник. Проведем через вершину В прямую, параллельную прямой АС. Отметим на ней точку D так, чтобы точки А и D лежали по разные стороны от прямой ВС (рис.6).

    Углы DВС и АСВ равны как внутренние накрест лежащие, образованные секущей ВС с параллельными прямыми АС и ВD. Поэтому сумма углов треугольника при вершинах В и С равна углу АВD. А сумма всех трех углов треугольника равна сумме углов АВD и ВАС. Так как эти углы внутренние односторонние для параллельных АС и ВD и секущей АВ, то их сумма равна 180°. Теорема доказана.

    Идея этого доказательства состоит в проведение параллельной линии и обозначении равенства нужных углов. Реконструируем идею такого дополнительного построения, доказав эту теорему с использованием понятия о мысленном эксперименте. Доказательство теоремы с использованием мысленного эксперимента. Итак, предмет мысли нашего мысленного эксперимента - углы треугольника. Поместим его мысленно в такие условия, в которых его сущность может раскрыться с особой определенностью(1этап).

    Такими условиями будут являться такое расположение углов треугольника, при котором все их три вершины будут совмещены в одной точке. Такое совмещение возможно, если допустить возможность «перемещения» углов, посредством движения сторон треугольника не меняя при этом угол наклона (рис.1). Такие перемещения по сути есть последующие мысленные трансформации (2 этап).

    Производя обозначение углов и сторон треугольника (рис.2), углов получаемых при «перемещении», мы тем самым мысленно формируем ту среду, ту систему связей, в которую помещаем наш предмет мысли (3 этап).

    Линия АВ «перемещаясь» по линии ВС и не меняя к ней угла наклона, переводит угол 1 в угол 5, а «перемещаясь» по линии АС, переводит угол 2 в угол 4. Поскольку при таком «перемещении» линия АВ не меняет угла наклона к линиям АС и ВС, то очевиден вывод: лучи а и а1 параллельны АВ и переходят друг в друга, а лучи в и в1 являются продолжением соответственно сторон ВС и АС. Так как угол 3 и угол между лучами в и в1 - вертикальные, то они равны. Сумма этих углов равна развернутому углу аа1 - а значит 180°.

    ЗАКЛЮЧЕНИЕ

    В дипломной работе проведены «сконструированные» доказательства некоторых школьных геометрических теорем, с использованием структуры мысленного эксперимента, что явилось подтверждением сформулированной гипотезы.

    Излагаемые доказательства, опирались на такие наглядно-чувственные идеализации: «сжатие», «растягивание», «скольжение», которые позволили особым образом трансформировать исходный геометрический объект и выделить его существенные характеристики, что характерно для мысленного эксперимента. При этом мысленный эксперимент выступает в роли определенного «креативного инструмента», способствующего появлению геометрического знания (например, о средней линии трапеции или об углах треугольника). Такие идеализации позволяют схватить в целом идею доказательства, идею проведения «дополнительного построения», что позволяет говорить о возможности более осознанного понимания школьниками процесса формально-дедуктивного доказательства геометрических теорем.

    Мысленный эксперимент является одним из базовых методов получения и открытия геометрических теорем. Необходимо разработать методику передачи метода ученику. Остается открытым вопрос о приемлемом для «принятия» метода возрасте ученика, о «побочных эффектах» излагаемых таким образом доказательств.

    Эти вопросы требуют дополнительного изучения. Но в любом случаи, несомненно, одно: мысленный эксперимент развивает у школьников теоретическое мышление, является его базой и, поэтому, способности к мысленному экспериментированию нужно развивать.

    >>Геометрия: Сумма углов треугольника. Полные уроки

    ТЕМА УРОКА: Сумма углов треугольника.

    Цели урока:

    • Закрепление и проверка знаний учащихся по теме: «Сумма углов треугольника»;
    • Доказательство свойства углов треугольника;
    • Применение этого свойства при решении простейших задач;
    • Использование исторического материала для развития познавательной активности учащихся;
    • Привитие навыка аккуратности при построении чертежей.

    Задачи урока:

    • Проверить умение учащихся решать задачи.

    План урока:

    1. Треугольник;
    2. Теорема о сумме углов треугольника;
    3. Пример задач.

    Треугольник.

    Файл:O.gif Треугольник - простейший многоугольник, имеющий 3 вершины (угла) и 3 стороны; часть плоскости, ограниченная тремя точками, и тремя отрезками, попарно соединяющими эти точки.
    Трём точкам пространства, не лежащим на одной прямой, соответствует одна и только одна плоскость.
    Любой многоугольник можно разбить на треугольники - этот процесс называется триангуляция .
    Существует раздел математики, целиком посвящённый изучению закономерностей треугольников - Тригонометрия .

    Теорема о сумме углов треугольника.

    Файл:T.gif Теорема о сумме углов треугольника - классическая теорема евклидовой геометрии, утверждает что cумма углов треугольника равна 180°.

    Доказательство":

    Пусть дан Δ ABC. Проведем через вершину B прямую, параллельную (AC) и отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC. Тогда угол (DBC) и угол (ACB) равны как внутренние накрест лежащие при параллельных прямых BD и AC и секущей (BC). Тогда сумма углов треугольника при вершинах B и C равна углу (ABD). Но угол (ABD) и угол (BAC) при вершине A треугольника ABC являются внутренними односторонними при параллельных прямых BD и AC и секущей (AB), и их сумма равна 180°. Следовательно, сумма углов треугольника равна 180°. Теорема доказана.


    Следствия.

    Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.

    Доказательство:

    Пусть дан Δ ABC. Точка D лежит на прямой AC так, что A лежит между C и D. Тогда BAD – внешний к углу треугольника при вершине A и A + BAD = 180°. Но A + B + C = 180°, и, следовательно, B + C = 180° – A. Отсюда BAD = B + C. Следствие доказано.


    Следствия.

    Внешний угол треугольника больше любого угла треугольника, не смежного с ним.

    Задача.

    Внешним углом треугольника называется угол, смежный с каким-нибудь углом этого треугольника. Докажите, что внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.
    (Рис.1)

    Решение:

    Пусть в Δ АВС ∠DАС – внешний (Рис.1). Тогда ∠DАС=180°-∠ВАС (по свойству смежных углов), по теореме о сумме углов треугольника ∠В+∠С =180°-∠ВАС. Из этих равенств получим ∠DАС=∠В+∠С

    Интересный факт:

    Сумма углов треугольника":

    В геометрии Лобачевского сумма углов треугольника всегда меньше 180. В геометрии Эвклида она всегда равна 180 . В геометрии Римана сумма углов треугольника всегда больше 180.

    Из истории математики:

    Евклид (III в до н.э) в труде «Начала» приводит такое определение: «Параллельные суть прямые, которые находятся в одной плоскости и, будучи продолжены в обе стороны неограниченно, ни с той, ни с другой стороны между собой не встречаются».
    Посидоний (I в до н.э) «Две прямые, лежащие в одной плоскости, равноотстоящие друг от друга»
    Древнегреческий учёный Папп (III в до н.э) ввёл символ параллельных прямых- знак =. Впоследствии английский экономист Рикардо (1720-1823) этот символ использовал как знак равенства.
    Только в XVIII веке стали использовать символ параллельности прямых - знак ||.
    Ни на миг не прерывается живая связь между поколениями, ежедневно мы усваиваем опыт, накопленный нашими предками. Древние греки на основе наблюдений и из практического опыта делали выводы, высказывали гипотезы, а затем, на встречах учёных – симпозиумах (буквально « пиршество») – эти гипотезы пытались обосновать и доказать. В то время и сложилось утверждение: « В споре рождается истина».

    Вопросы:

    1. Что такое треугольник?
    2. Что гласит теорема о сумме углов треугольника?
    3. Чему равен внешний угол треугольника?

Последние материалы сайта