Все о селекции биология. Селекция. Основные методы селекции

21.09.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Селекция - наука о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. В основе селекции лежат такие методы, как гибридизация и отбор. Теоретической основой селекции является генетика.

Для успешного решения задач, стоящих перед селекцией, академик Н.И.Вавилов особо выделял значение:

    Изучения сортового, видового и родового разнообразия интересующей нас культуры;

    Влияния среды на развитие интересующих селекционера признаков;

    Изучения наследственной изменчивости;

    Знаний закономерностей наследования признаков при гибридизации;

    Особенностей селекционного процесса для само- или перекрестноопылителей;

    Стратегии искусственного отбора.

Породы, сорта, штаммы - искусственно созданные человеком популяции организмов с наследственно закрепленными особенностями: продуктивностью, морфологическими, физиологическими признаками.

Наиболее богатыми по количеству культур являются древние центры цивилизации, именно там наиболее ранняя культура земледелия, более длительное время проводится искусственный отбор и селекция растений .

Основные методы селекции растений

Генная инженерия

Методы основаны на выделении нужного гена из генома одного организма и введении его в геном другого организма. «Вырезании» генов проводят с помощью специальных «генетических ножниц», ферментов - рестриктаз, затем ген вшивают в вектор - плазмиду, с помощью которого ген вводится в бактерию (рис. 342). Вшивание осуществляется с помощью другой группы ферментов - лигаз. Причем вектор должен содержать все необходимое для управления работой этого гена - промотор, терминатор, ген-оператор и ген-регулятор. Кроме того, вектор должен содержать маркерные гены, которые придают клетке-реципиенту новые свойства, позволяющие отличить эту клетку от исходных клеток. Затем вектор вводится в бактерию, и на последнем этапе отбираются те бактерии, в которых введенные гены успешно работают.

Излюбленный объект генных инженеров - кишечная палочка , бактерия, живущая в кишечнике человека. Именно с ее помощью получают гормон роста - соматотропин, гормон инсулин, который раньше получали из поджелудочных желез коров и свиней, белок интерферон, помогающий справиться с вирусной инфекцией.

Второй путь - синтез гена искусственным путем. Для этого используются иРНК, с помощью фермента обратная транскриптаза на иРНК синтезируется ДНК.

Методы хромосомной инженерии.

Одна группа методов основана на введении в генотип растительного организма пары чужих гомологичных хромосом, контролирующих развитие нужных признаков, или замещении одной пары гомологичных хромосом на другую. На этом основаны методы получения замещенных и дополненных линий , с помощью которых в растениях собираются признаки, приближающие к созданию «идеального сорта».

Очень перспективен метод гаплоидов , основанный на выращивании гаплоидных растений с последующим удвоением хромосом. Например, выращивают из пыльцевых зерен кукурузы гаплоидные растения, содержащие 10 хромосом, затем хромосомы удваивают и получают диплоидные (10 пар хромосом), полностью гомозиготные растения всего за 2 - 3 года вместо 6 - 8 летнего инбридинга. Сюда же можно отнести и получение полиплоидных растений в результате кратного увеличения хромосом.

Методы клеточной инженерии.

Выращивание клеточных культур . Метод связан с культивированием отдельных клеток в питательных средах, где они образуют клеточные культуры. Оказалось, что клетки растений и животных, помещенных в питательную среду, содержащую все необходимые для жизнедеятельности вещества, способны делиться. Клетки растений обладают еще и свойством тотипотентности, то есть при определенных условиях они способны сформировать полноценное растение. Это дает возможность с помощью клеточных культур получать ценные вещества. Например, культура клеток женьшеня нарабатывает биологически активные вещества. С другой стороны, можно размножить эти растения в пробирках, помещая клетки в определенные питательные среды. Так можно размножать редкие и ценные растения. Это позволяет создавать безвирусные сорта картофеля и других растений.

Гибридизация клеток. Например, разработана методика гибридизации протопластов соматических клеток. Удаляются клеточные оболочки и сливаются протопласты клеток организмов, относящихся к разным видам - картофеля и томата, яблони и вишни. Перспективно создание гибридом, при котором осуществляется гибридизация различных клеток. Например, лимфоциты, образующие антитела, гибридизируются с раковыми клетками. В результате гибридомы нарабатывают антитела, как лимфоциты, и «бессмертны», как раковые клетки. Следовательно, они обладают возможностью неограниченного размножения в культуре.

Клонирование . Интересен метод пересадки ядер соматических клеток в яйцеклетки. Таким способом возможно клонирование животных, получение генетических копий от одного организма. В настоящее время получены клонированные лягушки, получены первые результаты клонирования млекопитающих.

Создание химерных животных . Возможно слияние эмбрионов на ранних стадиях, таким способом были получены химерные мыши при слиянии эмбрионов белых и черных мышей, химерное животное овца-коза.

Это наука о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. В основе селекции лежат такие методы, как гибридизация и отбор. Теоретической основой селекции является генетика.

Для успешного решения задач, стоящих перед селекцией, академик Н.И. Вавилов особо выделял значение изучения сортового, видового и родового разнообразия культур; изучения наследственной изменчивости; влияния среды на развитие интересующих селекционера признаков; знаний закономерностей наследования признаков при гибридизации; особенностей селекционного процесса для само- или перекрестноопылителей; стратегии искусственного отбора.

Породы, сорта, штаммы — искусственно созданные человеком популяции организмов с наследственно закрепленными особенностями: продуктивностью, морфологическими, физиологическими признаками.

Каждая порода животных, сорт растений, штамм микроорганизмов приспособлены к определенным условиям, поэтому в каждой зоне нашей страны имеются специализированные сортоиспытательные станции и племенные хозяйства для сравнения и проверки новых сортов и пород.

Для успешной работы селекционеру необходимо сортовое разнообразие исходного материала. Во Всесоюзном институте растениеводства Н.И. Вавиловым была собрана коллекция сортов культурных растений и их диких предков со всего земного шара, которая в настоящее время пополняется и является основой для работ по селекции любой культуры.

Центры происхождения культурных растений, выявленные Н.И. Вавиловым

Центры происхождения Местоположение Культивируемые растения
1. Южноазиатский тропический Тропическая Индия, Индокитай, о-ва Юго-Восточной Азии Рис, сахарный тростник, цитрусовые, баклажаны и др. (50% культурных растений)
2. Восточноазиатский Центральный и Восточный Китай, Япония, Корея, Тайвань Соя, просо, гречиха, плодовые и овощные культуры — слива, вишня и др. (20% культурных растений)
3. Юго-Западноазиатский Малая Азия, Средняя Азия, Иран, Афганистан, Юго-Западная Индия Пшеница, рожь, бобовые культуры, лен, конопля, репа, чеснок, виноград и др. (14% культурных растений)
4. Средиземноморский Страны по берегам Средиземного моря Капуста, сахарная свекла, маслины, клевер (11% культурных растений)
5. Абиссинский Абиссинское нагорье Африки Твердая пшеница, ячмень, бананы, кофейное дерево, сорго
6. Центральноамериканский Южная Мексика Кукуруза, какао, тыква, табак, хлопчатник
7. Южноамериканский Западное побережье Южной Америки Картофель, ананас, хинное дерево

Наиболее богатыми по количеству культур являются древние центры цивилизации. Именно там наиболее ранняя культура земледелия, более длительное время проводятся искусственный отбор и селекция растений.

Классическими методами селекции растений были и остаются гибридизация и отбор. Различают две основные формы искусственного отбора: массовый и индивидуальный.

Массовый отбор

Массовый отбор применяют при селекции перекрестноопыляемых растений (рожь, кукуруза, подсолнечник). В этом случае сорт представляет собой популяцию, состоящую из гетерозиготных особей, и каждое семя обладает уникальным генотипом. С помощью массового отбора сохраняются и улучшаются сортовые качества, но результаты отбора неустойчивы в силу случайного перекрестного опыления.

Индивидуальный отбор

Индивидуальный отбор применяют при селекции самоопыляемых растений (пшеница, ячмень, горох). В этом случае потомство сохраняет признаки родительской формы, является гомозиготным и называется чистой линией. Чистая линия — потомство одной гомозиготной самоопыленной особи. Так как постоянно происходят мутационные процессы, то абсолютно гомозиготных особей в природе практически не бывает. Мутации чаще всего рецессивны. Под контроль естественного и искусственного отбора они попадают только тогда, когда переходят в гомозиготное состояние.

Естественный отбор

Этот вид отбора играет в селекции определяющую роль. На любое растение в течение его жизни действует комплекс факторов окружающей среды, и оно должно быть устойчивым к вредителям и болезням, приспособлено к определенному температурному и водному режиму.

Инбридинг (инцухт)

В центре гете-розис-ная куку-руза, слева и справа роди-тель-ские особи.

Так называется близкородственное скрещивание. Инбридинг имеет место при самоопылении перекрестноопыляемых растений. Для инбридинга подбирают такие растения, гибриды которых дают максимальный эффект гетерозиса. Такие подобранные растения в течение ряда лет подвергаются принудительному самоопылению. В результате инбридинга многие рецессивные неблагоприятные гены переходят в гомозиготное состояние, что приводит к снижению жизнеспособности растений, к их «депрессии». Затем полученные линии скрещивают между собой, образуются гибридные семена, дающие гетерозисное поколение.

Гетерозис («гибридная сила») — явление, при котором гибриды по ряду признаков и свойств превосходят родительские формы. Гетерозис характерен для гибридов первого поколения, первое гибридное поколение дает прибавку урожая до 30%. В последующих поколениях его эффект ослабляется и исчезает. Эффект гетерозиса объясняется двумя основными гипотезами. Гипотеза доминирования предполагает, что эффект гетерозиса зависит от количества доминантных генов в гомозиготном или гетерозиготном состоянии. Чем больше в генотипе генов в доминантном состоянии, тем больше эффект гетерозиса.

Р ♀AAbbCCdd × ♂aaBBccDD
F 1 AaBbCcDd

Гипотеза сверхдоминирования объясняет явление гетерозиса эффектом сверхдоминирования. Сверхдоминирование — вид взаимодействия аллельных генов, при котором гетерозиготы превосходят по своим характеристикам (по массе и продуктивности) соответствующие гомозиготы. Начиная со второго поколения гетерозис затухает, так как часть генов переходит в гомозиготное состояние.

Растения диплоид-ной (2n = 16) и тетра-плоидной (2n = 32) гре-чихи.

Аа × Аа
АА 2Аа аа

Перекрестное опыление самоопылителей дает возможность сочетать свойства различных сортов. Например, при селекции пшеницы поступают следующим образом. У цветков растения одного сорта удаляются пыльники, рядом в сосуде с водой ставится растение другого сорта, и растения двух сортов накрываются общим изолятором. В результате получают гибридные семена, сочетающие нужные селекционеру признаки разных сортов.

Метод получения полиплоидов. Полиплоидные растения обладают большей массой вегетативных органов, имеют более крупные плоды и семена. Многие культуры представляют собой естественные полиплоиды: пшеница, картофель, выведены сорта полиплоидной гречихи, сахарной свеклы.

Виды, у которых кратно умножен один и тот же геном, называются автополиплоидами . Классическим способом получения полиплоидов является обработка проростков колхицином. Это вещество блокирует образование микротрубочек веретена деления при митозе, в клетках удваивается набор хромосом, клетки становятся тетраплоидными.

Отдаленная гибридизация

Восстановление плодови-тости капустно--редечного гибрида: 1 — капуста; 2 — редька; 3, 4 — капустно--редечный гибрид.

Отдаленная гибридизация — это скрещивание растений, относящихся к разным видам. Отдаленные гибриды обычно стерильны, так как у них нарушается мейоз (два гаплоидных набора хромосом разных видов не могут конъюгировать) и, следовательно не образуются гаметы.

Методика преодоления бесплодия у отдаленных гибридов была разработана в 1924 году советским ученым Г.Д. Карпеченко. Он поступил следующим образом. Вначале скрестил редьку (2n = 18) и капусту (2n = 18). Диплоидный набор гибрида был равен 18 хромосомам, из которых 9 хромосом были «редечными» и 9 — «капустными». Полученный капустно-редечный гибрид был стерильным, поскольку во время мейоза «редечные» и «капустные» хромосомы не конъюгировали.

Далее с помощью колхицина Г.Д. Карпеченко удвоил хромосомный набор гибрида, полиплоид стал иметь 36 хромосом, при мейозе «редечные» (9 + 9) хромосомы конъюгировали с «редечными», «капустные» (9 + 9) с «капустными». Плодовитость была восстановлена. Таким способом были получены пшенично-ржаные гибриды (тритикале), пшенично-пырейные гибриды и др. Виды, у которых произошло объединение разных геномов в одном организме, а затем их кратное увеличение, называются аллополиплоидами .

Использование соматических мутаций

Соматические мутации применяются для селекции вегетативно размножающихся растений. Это использовал в своей работе еще И.В. Мичурин. С помощью вегетативного размножения можно сохранить полезную соматическую мутацию. Кроме того, только с помощью вегетативного размножения сохраняются свойства многих сортов плодово-ягодных культур.

Экспериментальный мутагенез

Основан на открытии воздействия различных излучений для получения мутаций и на использовании химических мутагенов. Мутагены позволяют получить большой спектр разнообразных мутаций. Сейчас в мире созданы более тысячи сортов, ведущих родословную от отдельных мутантных растений, полученных после воздействия мутагенами.

Методы селекции растений, предложенные И.В. Мичуриным

С помощью метода ментора И.В. Мичурин добивался изменения свойств гибрида в нужную сторону. Например, если у гибрида нужно было улучшить вкусовые качества, в его крону прививались черенки с родительского организма, имеющего хорошие вкусовые качества, или гибридное растение прививали на подвой, в сторону которого нужно было изменить качества гибрида. И.В. Мичурин указывал на возможность управления доминированием определенных признаков при развитии гибрида. Для этого на ранних стадиях развития необходимо воздействие определенными внешними факторами. Например, если гибриды выращивать в открытом грунте, на бедных почвах повышается их морозостойкость.

Селекция — создание новых сортов растений, пород животных и штаммов микроорганизмов с нужными человеку свойствами. Породы животных, сорта растений, штаммы микроорганизмов — это совокупности особей, созданные человеком и обладающие какими-либо ценными для него качествами. Теоретической основой селекции служит генетика.

Основные методы селекции — отбор, гибридизация, полиплоидия, мутагенез, а также клеточная и генная инженерия.

Отбор

В селекции действует естественный и искусственный отбор. Искусственный отбор бывает бессознательный и методический. Бессознательный отбор проявляется в сохранении человеком лучших особей для разведения и употреблении в пищу худших без сознательного намерения вывести более совершенный сорт или породу. Методический отбор осознанно направлен на выведение нового сорта или породы с желаемыми качествами.

В процессе селекции наряду с искусственным отбором не прекращает своего действия и естественный отбор , который повышает приспособляемость организмов к условиям окружающей среды.

Сравнительная характеристика естественного и искусственного отбора
Признак Естественный отбор Искусственный отбор
Исходный материал для отбора Индивидуальные признаки организмов
Отбирающий фактор Условия среды (живая и неживая природа) Человек
Путь благоприятных изменений Остаются, накапливаются, передаются по наследству Отбираются, становятся производительными
Путь неблагоприятных изменений Уничтожаются в борьбе за существование Отбираются, бракуются, уничтожаются
Направленность действия Отбор признаков, полезных особи, популяции, виду Отбор признаков, полезных человеку
Результат отбора Новые виды Новые сорта растений, породы животных, штаммы микроорганизмов
Формы отбора Движущий, стабилизирующий, дизруптивный Массовый, индивидуальный, бессознательный (стихийный), методический (сознательный)

Отбор бывает массовый и индивидуальный. Массовый отбор — выделение из исходного материала целой группы особей с желательными признаками и получение от них потомства. Индивидуальный отбор — выделение отдельных особей с желательными признаками и получение от них потомства. Массовый отбор чаще применяют в селекции растений, а индивидуальный — в селекции животных, что связано с особенностями размножения растений и животных.

Гибридизация

Методом отбора нельзя получить новые генотипы. Для создания новых благоприятных комбинаций признаков (генотипов) применяют гибридизацию. Различают внутривидовую и межвидовую (отдаленную) гибридизацию.

Внутривидовая гибридизация — скрещивание особей одного вида. Применяют близкородственное скрещивание и скрещивание неродственных особей.

Близкородственное скрещивание (инбридинг) (например, самоопыление у растений) ведет к повышению гомозиготности, что, с одной стороны, способствует закреплению наследственных свойств, а с другой приводит к снижению жизнеспособности, продуктивности и вырождению.

Скрещивание неродственных особей (аутбридинг) позволяет получить гетерозисные гибриды. Если сначала вывести гомозиготные линии, закрепив желательные признаки, а затем провести перекрестное опыление между разными самоопыляющимися линиями, то в результате в ряде случаев появляются высокоурожайные гибриды. Явление повышенной урожайности и жизнеспособности у гибридов первого поколения, полученных при скрещивании родителей чистых линий, называется гетерозисом . Основная причина эффекта гетерозиса — отсутствие проявления вредных рецессивных аллелей в гетерозиготном состоянии. Однако уже со второго поколения эффект гетерозиса быстро снижается.

Межвидовая (отдаленная) гибридизация — скрещивание разных видов. Используется для получения гибридов, сочетающих ценные свойства родительских форм (тритикале — гибрид пшеницы и ржи, мул — гибрид кобылы и осла, лошак — гибрид коня и ослицы). Обычно отдаленные гибриды бесплодны, так как хромосомы родительских видов отличаются настолько, что невозможен процесс конъюгации, в результате чего нарушается мейоз. Преодолеть бесплодие у отдаленных гибридов растений удается с помощью полиплоидии. Восстановление плодовитости у гибридов животных более сложная задача, так как получение полиплоидов у животных невозможно.

Полиплоидия — увеличение числа хромосомных наборов. Полиплоидия позволяет избежать бесплодия межвидовых гибридов. Кроме того, многие полиплоидные сорта культурных растений (пшеница, картофель) имеют более высокую урожайность, чем родственные диплоидные виды. В основе явления полиплоидии лежат три причины:

  1. удвоение хромосом в неделящихся клетках,
  2. слияние соматических клеток или их ядер,
  3. нарушение процесса мейоза с образованием гамет с нередуцированным (двойным) набором хромосом.

Искусственно полиплоидию вызывают обработкой семян или проростков растений колхицином. Колхицин разрушает нити веретена деления и препятствует расхождению гомологичных хромосом в процессе мейоза.

Мутагенез

В естественных условиях частота возникновения мутаций сравнительно невелика. Поэтому в селекции используют индуцированный (искусственно вызванный) мутагенез — воздействие на организм в условиях эксперимента каким-либо мутагенным фактором для возникновения мутации. Делают это с целью изучения влияния фактора на живой организм или получения нового признака. Мутации носят ненаправленный характер, поэтому селекционер сам отбирает организмы с новыми полезными свойствами.

СЕЛЕКЦИЯ
План
1. Что такое селекция.
2. Селекция в растениеводстве.
3. Селекция в животноводстве,
4. Селекция микроорганизмов.
1. ЧТО ТАКОЕ СЕЛЕКЦИЯ
Что называют селекцией? Селекция - это наука, кото-
рая разрабатывает методы создания сортов и гибридов сель-
скохозяйственных растений и пород животных с нужными
человеку признаками; она является также отраслью сельско-
хозяйственного производства, занимающейся выведением сор-
тов И гибридов сельскохозяйственных культур, пород живот-
ных.
С помощью селекции разрабатываются способы воздей-
ствия на растения и животных. Это происходит с целью изме-
нения их наследственных качеств в нужном для человека на-
правлении. Селекция стала одной из форм эволюции расти-
тельного и животного мира. Она подчинена тем же законам,
что и эволюция видов в природе, однако естественный отбор
здесь частично заменен искусственным.
Теоретической основой селекции является генетика, ко-
торая разрабатывает закономерности наследственности и из-
менчивости организмов. Используя эволюционную теорию
Чарлза Дарвина, законы Грегора Менделя, учения о чистых
линиях и мутациях, ученые смогли разработать методы ynpaR-
ления наследственностью растительных и животных организ-
мов. В селекционной практике особое место принадлежит гиб-
ридологическому анализу.
Биологами выделяется три отрасли селекции: селекция
в растениеводстве, селекция в животноводстве и селекция мик-
роорганизмов.
2. СЕЛЕКЦИЯ В РАСТЕНИЕВОДСТВЕ
Считается, что одновременно с земледелием появилась и
примитивная селекция. Человек, начав выраишнать растения,
отбирал, сохранял и пытался прорастить лучшие из них. Изве-
стно, что многие культурные растения начали евпю жизнь ещг
10 тысяч лет до нашей эры. Селекционеры древности сумгли
Общая биология 333
создать прекрасные сорта плодовых растений, винограда, мно-
гие сорта пшеницы, бахчевых культур. Большое влияние на
развитие селекции растений оказали работы западноевропейс-
ких селекционеров-практиков XVIII века. К ним относятся ан-
глийские ученые Галлст, Ширеф, немецкий ученый Римпау, Ими
были созданы несколько новых сортов пшеницы, разработаны
способы выведения новых сортов. Уже и 1774 г. под Парижем
создается селекционная фирма «Вильморен». Ее селекционеры
первыми в мире оценивали отбираемые растения по потомству
Также они обратили внимание на свеклу. Им удалось вывести
такие сорта сахарной свеклы, которые содержали практически
в 3 раза больше сахара, чем уже известные. Этой работой было
доказано огромное влияние селекции на изменение природы
растений в нужную человеку сторону. В Европе и Северной
Америке в конце XVIII - начале XIX веков появляются новые
промышленные семенные фирмы и крупные селекционно-се-
меноводческие предприятия. Капитализм повлиял и на зарож-
дение промышленной селекции растений. Также на ее развитие
оказали влияние достижения ботаники, микроскопической тех-
ники и многое другое.
Россия пытается не отставать от нововведений селек-
ции. И. В. Мичурин начинает селекцию плодовых культур.
Он применяет новые оригинальные методики, с помощью
которых выводит множество новых сортов плодовых и ягод-
ных культур. У Мичурина много работ по гибридизации гео-
графически отдаленных форм. Его работы имели большое
значение для теории и практики селекции растений. В США
одновременно с Мичуриным Л. Бербанк создает целый ряд
новых сортов различных сельскохозяйственных культур пу-
тем тщательного проведения скрещиваний и совершенного
отбора. Среди них были и такие формы, которые ранее не
встречались в природе. К ним относятся бескосточковая сли-
ва, неколючие сорта ежевики.
Для селекции растений большое значение имеет разви-
тие научных основ отбора и гибридизации, а именно изуче-
ние генетических и физиолого-биохимических основ имму-
нитета, наследование важнейших количественных и каче-
ственных признаков (белка и его аминокислотного состава,
жиров, крахмала, Сахаров). Важны также методы создания
исходного материала. К ним относятся полиплоидия, экспе-
риментальный мутагенез, гаплоидия, клеточная селекция,
хромосомная и генная инженерия, гибридизация протоплас-
тов, культура зародышевых и соматических клеток и тканей
растений, Современная селекция несколько отличается от
того, что было ранее. Сейчас в качестве исходного материа-
ла в ней используются естественные и гибридные популяции,
самоопыленные линии, искусственные мутанты и полипло-
идные формы. Большая часть сортов сельскохозяйственных
растений была создана с помощью отбора и внутривидовой
гибридизации. В результате были получены мутантные и по-
липлоидные сорта зерновых, технических н кормовых куль-
тур Для того чтобы гибридизация была успешной, нужно
определиться с правильным подбором для скрещивания ис-
ходных родительских пар, особенно по эколого-географи-
чеекому принципу. Ступенчатая гибридизация используется
для того, чтобы объединить в гибридном потомстве призна-
ки нескольких родительских форм. Во всем мире прибегают
к этому методу. А чтобы усилить желаемые свойства одного
из родителей в гибридном потомстве, применяются возврат-
ные скрещивания. Отдаленная гибридизация применяется,
чтобы сочетать в одном сорте признаки и свойства разных
видов или рпдов растений.
3. СЕЛЕКЦИЯ В ЖИВОТНОВОДСТВЕ
Как и в селекции растений, на ранних этапах развития
животноводства породы создавались в результате бессозна-
тельного отбора или под влиянием природно-экономических
условий. Но процесс накопления зоотехнической информа-
ции шел, и вскоре сложились определенные методы создания
пород по заранее намеченной программе отбора и подбора.
Начал использоваться инбридинг, чтобы закрепить определен-
ные качества. Инбридинг - близко-родственное скрещивание
животных. Таким образом были выведены многие из пород
мирового значения (шортгорнская, голландская породы круп-
ного рогатого скота и др.).
В селекции животных широко применяются современ-
ные генетические методы. Среди них большое значение имеют
генетика популяций, а также иммуногенетика. Постоянно раз-
рабатываются методы изучения изменчивости, наследуемости
и генетической корреляции признаков, оценки генотипа жи-
вотных и отбора плюс-вариантов, что и обеспечило более вы-
сокий научно-методический уровень селекционных работ.
У домашних животных, подобно растениям, часто мож-
но наблюдать явление гетерозиса. Он применяется в животно-
водстве и птицеводстве.
С помощью селекции стало возможным повышение бел-
ковости молока у молочного скота, увеличение выхода мяса и
уменьшение содержания жира в туше у мясных пород крупно-
го рогатого скота и свиней, получение шерсти необходимой
длины и тонины у овец и т. д.
4. СЕЛЕКЦИЯ МИКРООРГАНИЗМОВ
Важную роль в жизни человека играют и микроорганиз-
мы. С их помощью можно создавать вещества, которые ис-
пользуются в различных областях медицины и промышлен-
ности (производство некоторых органических кислот, спирта,
хлебопечение, виноделие основаны на деятельности микроор-
ганизмов).
Исключительное значение для здоровья человека име-
ют антибиотики. Их относят к особым веществам. Антиби-
отики являются продуктами жизнедеятельности некоторых
микробов и грибов, убивающими болезнетворные микробы
и вирусы.
Методы селекции широко применяются, чтобы получить
наиболее продуктивные формы микроорганизмов. С помо-
щью методов отбора ученые выделяли штаммы микроорга-
низмов, которые являлись активными синтезаторами того или
иного продукта, используемого человеком. Это могут быть
антибиотики, витамины и другие вещества. Микроорганизмы
могут мутировать, что закреплено наследственно. Ученые
широко используют метод экспериментального получения
мутаций под действием рентгеновских, ультрафиолетовых
лучей и кое-каких химических соединений. С помощью таких
методов наследственная изменчивость микроорганизмои по-
вышается в десятки и даже сотни рал. . _ .
Процесс селекции – непрерывный процесс. К тому же
происходит его постоянное совершенствование. Это вызвано
все возрастающими запросами производства и требованиями
к сортам растений, породам животных И эффективности мик
роорганизмов. _ .. ."„!_.
384 Биология
ЧЕЛОВЕК. ДЕЯТЕЛЬНОСТЬ МОЗГА
План
1. Исследования работы мозга.
2. Организация памяти.
3. Человеческая память.
1. ИССЛЕДОВАНИЯ РАБОТЫ МОЗГА
Данные о процессах в клетках морского моллюска, а так-
же о том, каким образом происходит синтез белков в челове-
ческом мозгу, помогают распознать природу обучения и памя-
ти у человека. В процессе исследований выяснилось, что ос-
новные биохимические механизмы передачи нервных импуль-
сов одинаковы у всех животных. Ученые пришли к выводу,
что если эволюция решила их сохранить, то кажется логич-
ным, что и клеточные механизмы обучения и памяти, исполь-
зующиеся у низших животных, тоже сохранились. В после-
днее время проводилось несколько экспериментов, среди Ко-
торых был следующий. Исследователи ввели в нейроны го-
ловного мозга многих млекопитающих фосфорилируюшиЙ
фермент, который является ответственным за процесс обуче-
ния у моллюсков. Этот фермент увеличивал возбудимость у
животных, т. е. производил действие, которое сходно с дей-
ствием в мембранах нейронов у моллюсков. До сих пор уче-
ные окончательно не решили, насколько верным был прово-
димый эксперимент и будет ли одна и та же реакция идентич-
ной у собаки и моллюска. Однако знание биохимических ме-
ханизмов научения у низших животных поможет исследова-
телям изучать более сложные нервные системы.
Очень трудно спрогнозировать результаты эксперимен-
тов, которые проводятся на клеточном уровне. И до сегод-
няшнего дня очень трудно объяснить, каким образом наш мозг
может запомнить партитуру симфонии Бетховена или же про-
стые сведения, которые нужны для разгадывания кроссворда.
Для этого необходимо перенестись на уровень мозговых сис-
тем, где у человека собраны десятки миллиардов нейтронов,
соединенных между собой определенным, хотя и запутанным
образом. Теперь и на высших животных ученые проводят эк-
сперименты с обучением и различными воздействиями на мозг.
Исследование психологии здоровых людей помогает узнать
больше о процессах переработки и хранения информации. Что-
бы понять организацию функций памяти, ученые пытаются
исследовать больных с различными видами амнезии, которые
развиваются после повреждения мозга.
2. ОРГАНИЗАЦИЯ ПАМЯТИ
Около сорока лет тому назад Карл Лэшли, являющийся
пионером в области экспериментального исследования мозга
и поведения, попытался решить вопрос о пространственной
организации памяти в мозгу. Ученый натаскивал животных
решать определенные задачи, а затем удалял один за другим
различные участки коры головного мозга в поисках мест хра-
нения следов памяти. Однако Лэшли, несмотря на вес попыт-
ки, так и не удалось Найти то место, где, по его мнению, долж-
ны были находиться следы памяти-энграммы. В дальнейшем
ученые нашли причину неудачи Лэшли. Они пришли к выво-
ду, что для научения и памяти важными ял.iлютея не только
кора мозга, но и многие области и структуры мозга помимо
нее. Также выяснилось, что следы памяти в коре широко раз-
бросаны и неоднократно дублируются. Один кз учеников Лэш-
ли, Дональд Хебб, продолжил дело своего учителя и предло-
жил теорию происходящих в памяти процессов, которая опре-
делила ход дальнейших исследований более чем на три деся-
тилетия вперед. Именно Хсбб ввел понятия долговременной и
кратковременной памяти. Он пришел к вывп.гу, что кратков-
ременная память - это активный процесс ограниченной дли-
тельности, не сохраняющий никаких следов, а долговре-
менная память определена структурными изменениями в нерв-
ной системе. Хебб считал, что эти структурны- изменения мог-
ли быть порождены повторной активацией замкнутых нейт-
ронных цепей, например путей от коры к таламусу или гиппо-
кампу и обратно к коре. Повторное возбуждение образующих
такую цепь нейтронов ведет к тому, что связь Бающие их си-
напсы становятся функционально эффективными.
После определения таких связей эти нейтроны создают
клеточный ансамбль, и любое возбуждение относящихся к нему
нейтронов будет активировать весь ансамбль Таким образом
может осуществляться хранение информации И ее повторное
извлечение под влиянием каких-либо ощущеыгл,-мыслей или
эмоций, возбуждающих некоторые из нейтронов клеточного
ансамбля. Структурные изменения, по мнению Хебба, по-ви-
димому, проистекают в синапсах в результате каких-либо про-
цессов роста или метаболических изменений, которые увели-
чивают воздействие каждого нейтрона на следующий нейт-
рон.
Особое внимание в теории клеточных ансамблей уделя-
лось тому факту, что след памяти - это статическая «запись»,
а не просто продукт видоизменений в строении одной нервной
клетки или молекулы мозга. Психологи сделали вывод, что
память - это особенный процесс, который включает в себя
взаимодействие многих нейтронов.
3. ЧЕЛОВЕЧЕСКАЯ ПАМЯТЬ
Человек может успешно пользоваться своей памятью. Но
для этого необходимо знать существование трех процессов.
Он должен усвоить информацию, сохранить ev в своем мозгу,
а затем при необходимости воспроизвести. Таким образом,
если человеку не удается вспомнить что-либо, то причина одна:
нарушен один из трех процессов. Однако не стоит думать, что
память настолько проста. Человек может усваивать и запоми-
нать не просто отдельные элементы информаци г." Он модели-
рует собственную систему знаний, которая способна помочь
ему накапливать, хранить и использовать огромный запас не-
обходимых сведений. К тому же память является активным
Общая биология 385
процессом, в результате котордго полученные знания посто-
янно реконструируются, анализируются и переосмысливают-
ся нашим мозгом; по этой причине обнаружить свойства памя-
ти очень трудно. По всей вероятности, существует несколько
фаз памяти. Одна из них, названная непосредственной памя-
тью, длится совсем немного времени. Во время этой фазы
информация сохраняется всего несколько секунд. Когда че-
ловек проезжает на машине мимо привлекших его внимание
пейзажей, то в памяти он сохраняет полученное впечатление
всего лишь в течение одной-двух секунд. Но если ему очень
понравились некоторые объекты, которым было уделено боль-
ше внимания, то из непосредственной памяти информация пе-
реводится в кратковременную. Уже в кратковременной памя-
ти информация сохраняется в течение нескольких минут. Сто-
ит представить, что может происходить в тот период, когда
необходимо запомнить только что названный помер телефо-
на. Чтобы запомнить номер, человек пытается повторить его
мысленно несколько раз, если у него нет с собой ручки или
карандаша. Но если в этот момент его отвлечь какой-либо
фразой или действием, то он обязательно либо забудет номер,
либо перепутает цифры. По всей видимости, человек может
удерживать в своей кратковременной памяти от 5 до 9 отдель-
ных единиц запоминаемого материала. Случается, что такие
единицы группируются, и тогда люди уверены, что способны
запомнить гораздо больше.
Часть информации может переводиться Из кратковремен-
ной памяти в долговременную, где сохраняется в течение про-
должительного времени или даже всей жизни. Известно, что
ситшокамп является одной Из систем мозга, которая отвечает
:ia осуществление такого переноса информации. Удалось выя-
нить такую особенность гиппокампа в результате операции на
мозге у одного больного. Б литературе, где есть описания пос-
леоперационного состояния этого больного, он назван иници-
алами Н. М. Выяснилось, что в каждой Из височных долей
мозга имеется по одному гиппокампу. Чтобы облегчить гнету-
щие эпилептические припадки, доктора решили удалить оба
гиппокампа. Впоследствии, после выяснения неблагоприят-
ных последствий такой операции, этот метод не применялся.
Когда операция завершилась, Н, М. мог существовать исклю-
чительно в настоящем времени. Он был в состоянии запоми-
нать все события, явления и предметы лишь на то время, пока
они могли удержаться в его мозгу. Если медсестрам приходи-
лось выйти на несколько минут из палаты, по возвращении
они встречались с абсолютно не помнящим их человеком.
Однако Н. М. прекрасно помнил те события, которые были до
операции. Его память не утратила ту информацию, которая
сохранилась в мозгу за три года до операции. Однако И здесь
пыли пробелы. Часто амнезия распространялась на события,
которые произошли с больным за 1 - 2 года до операции, но не
более. Все это лишний раз подтверждает тот факт, что следы
памяти претерпевают изменения спустя определенный проме-
жуток времени.
Гиппокамп расположен в височной доле мозга. Согласно
некоторым данным, гиппокамп и медиальная часть височной
доЛи играют определенную роль в процессе закрепления, или
консолидации следов памяти. Имеются в виду те изменения,
физические и психологические, которые должны проистечь в
мозгу для того, чтобы полученная им информация могла пе-
рейти в постоянную память. Даже после того, как информация
уже поступила в долговременную память, некоторые ее части
могут подвергаться преобразованию и даже забываться, и толь-
ко после этого реорганизованный материал отправляется на
постоянное хранение. Известно, что наш мозг сохраняет на-
много больше информации, чем мы в этом нуждаемся. Самая
же главная трудность состоит в том, чтобы извлечь нужную
информацию из памяти. В связи с этим люди, привычные к
чтению, никогда не читают по буквам и даже не прочитывают
отдельные слова; им удобнее читать группами слов. По всей
вероятности, гиппокамп и медиальная височная область уча-
ствуют в формировании и организации следов памяти. Поэто-
му они не могут являться местом постоянного хранения ин-
формации. Больной Н. М., который лишился этой области
мозга, прекрасно мог воспроизвести события, произошедшие
с ним более чем за 3 года до операции. Это подтвердило, что
височная область не является местом длительного храпения
следов. Но в то же время она помогает в их формировании,
что подтверждает потеря у Н. М. памяти на те события, кото-
рые происходили Е последние 3 года до операции.
Те же данные были получены, когда исследовали боль-
ных, подвергшихся электрошоковой терапии. Доказано, что
электрошок оказывает разрушительное действие, и особенно
иа гиппокамп. После этой процедуры больные, за небольшим
исключением, не могут вспомнить те события, которые пред-
шествовали их лечению. Зато память о гораздо более ранних
событиях полностью сохраняется. Лэрри Сквайр высказал
гипотезу, что в процессе усвоения каких-либо знаний височ-
ная область устанавливает связь с местами хранения следов
памяти в других частях мозга, прежде всего в коре. Надоб-
ность л таких взаимодействиях может сохраняться довольно
долго - в течение нескольких лет, пока идет процесс реорга-
низации материала памяти. Сквайр предполагал, что эта реор-
ганизация непосредственно зависит от физической перестрой-
ки нервных сетей. В тот момент, когда перестройка и реорга-
низация закончены, а информация стабильно сохраняется в
коре мозга, участие височной области в ее закреплении и из-
влечении становится ненужной.

Последние материалы сайта