Симметрия в химии. Симметрия в физике и химии. Симметрия у человека

15.02.2022
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот
краткое содержание других презентаций

«Введение в стереометрию» - Плоскость. Фигуры. Журнал "Квант". Школьная геометрия. Многогранник. Планиметрия. Стереометрия -. Мобильные жилища индейцев называются Типи. Геометрические знания помогали. Подведение итогов урока. Переведем на язык площадей. Геометрические знания применялись. Тела. Возьмём 6 спичек. Арифметика. Кроссворд.

«Геометрия «Пирамида» 10 класс» - Человек, побывавший в пирамиде, приобретёт иммунитет. В пирамиде существуют некие лучи. Вязкость нефти в пластах. Результаты экспериментов и наблюдений. Воздействие раствора из Пирамиды. Бертран Рассел. Изучение эффекта формы. Голод А.Е. Вокруг ряда учреждений УИНа (тюрем) были проложены кольца камней. Пирамиды. Влияние пребывания живых организмов в Пирамиде. Тайны и загадки пирамиды Египта.

«Применение правильных многогранников» - Группа «Историки». Теорема Эйлера. Евклид. Теория многогранников. Платон. Кеплер. Многогранники в природе. Использование в жизни. Мир правильных многогранников. История возникновения правильных многогранников. Многогранники в архитектуре. Многогранники в математике. Многогранники в искусстве. Заключение. Архимед. Взаимосвязь «золотого сечения» и происхождения многогранников. Золотая пропорция в додекаэдре и икосаэдре.

«Элементы пирамиды» - Интерес. Исторические сведения о пирамидах. Величайшие пирамиды. Пирамиды. Основные элементы пирамид. Задача. Пирамида Менкаура. Площадь боковой поверхности. Пирамида Хеопса. Пирамида Хафра. Многогранник.

««Симметрия в пространстве» геометрия» - Роль симметрии в мире. Форма снежинки. Симметрия в пространстве. Молекула аммиака. Симметрия в химии. Точка О – центр симметрии. Осевая симметрия. Симметрия в биологии. Зеркальная симметрия. Асимметрия. Что такое симметрия. Центральная симметрия. Центр симметрии. Симметрия в искусстве.

««Параллельность плоскостей» 10 класс» - Найдите взаимное положение прямых. Пересекающиеся в точке М прямые a и b. Докажите, что плоскости МЕР и АВС параллельны. Пересекающиеся прямые m и n плоскости параллельны плоскости. Прямая A пересекает плоскости. Плоскости А1В1С1 и А2В2С2 параллельны. Свойство параллельных плоскостей. Признак параллельности двух плоскостей. Отрезки параллельных прямых. Параллельность. Концы отрезков АВ и СD лежат на параллельных плоскостях.

Введение 2

СИММЕТРИЯ В МАТЕМАТИКЕ. 3

Центральная симметрия. 3

Осевая симметрия. 4

Зеркально-поворотная симметрия. 4

Переносная симметрия. 4

СИММЕТРИЯ В РУССКОМ ЯЗЫКЕ 5

СИММЕТРИЯ В ФИЗИКЕ 6

СИММЕТРИЯ В ХИМИИ 7

СИММЕТРИЯ В БИОЛОГИИ. 9

Симметрия у растений. 9

Симметрия у животных. 10

Симметрия у человека 11

СИММЕТРИЯ В ИССКУСТВЕ 12

Симметрия в архитектуре. 12

Симметрия в поэзии и музыке 14

Симметрия в живописи 15

Заключение 16

Литература 17


Симметрия является той идеей, посредством которой человек на протяжении веков


пытался постичь и создать порядок, красоту и совершенство”.

Г. Вейль

Введение

Понятие симметрии проходит через всю многовековую историю человеческого творчества. Многие народы с древних времён владели представлением о симметрии в широком смысле - как эквиваленте уравновешенности и гармонии.

Формы восприятия и выражения во многих областях науки и искусства, в конечном счёте, опираются на симметрию, используемую и проявляющуюся в специфических понятиях и средствах, присущих отдельным областям науки и видам искусства.

Симметрия (от греческого symmetria - "соразмерность") - понятие, означающее сохраняемость, повторяемость, "инвариантность" каких-либо особенностей структуры изучаемого объекта при проведении с ним определенных преобразований .

Действительно симметричные объекты окружают нас буквально со всех сторон, мы имеем дело с симметрией везде, где наблюдается какая-либо упорядоченность. Симметрия противостоит хаосу, беспорядку. Получается, что симметрия – это уравновешенность, упорядоченность, красота, совершенство.

Весь мир можно рассмотреть как проявление единства симметрии и асимметрии. Асимметричное в целом сооружение может являть собой гармоничную композицию из симметричных элементов.

Симметрия многообразна, вездесуща. Она создает красоту и гармонию.

СИММЕТРИЯ В МАТЕМАТИКЕ.

Идея симметрии часто является отправным пунктом в гипотезах и теориях учёных прошлых веков, веривших в математическую гармонию мироздания и видевших в этой гармонии проявление божественного начала. Древние греки считали, что Вселенная симметрична просто потому, что симметрия прекрасна. В своих размышлениях над картиной мироздания человек с давних времен активно использовал идею симметрии.

Древние греки полагали, что Вселенная симметрична просто потому, что симметрия прекрасна. Исходя из соображений симметрии, они высказали ряд догадок.

Так, Пифагор (5 век до н.э.), считая сферу наиболее симметричной и совершенной формой, делал вывод о сферичности Земли и о ее движении по сфере. При этом он полагал, что Земля движется по сфере некоего «центрального огня». Вокруг того же «огня», согласно Пифагору, должны были обращаться известные в те времена шесть планет, а также Луна, Солнце, звезды.

Широко используя идею симметрии, ученые любили обращаться не только к сферической форме, но также к правильным выпуклым многогранникам. Еще во времена древних греков был установлен поразительный факт – существует всего пять правильных выпуклых многогранников разной формы. Симметрии геометрических тел большое значение придавали греческие мыслители эпохи Пифагора. Они считали, что для того, чтобы тело было "совершенно симметричным", оно должно иметь равное число граней, встречающихся в углах, и эти грани должны быть правильными многоугольниками, то есть фигурами с равными сторонами и углами. Впервые исследованные пифагорейцами, эти пять правильных многогранников были впоследствии подробно описаны Платоном. Древнегреческий философ Платон придавал особое значение правильным многогранникам, считая их олицетворением четырёх природных стихий: огонь-тетраэдр (вершина всегда обращена вверх), земля-куб (наиболее устойчивое тело), воздух-октаэдр, вода-икосаэдр (наиболее "катучее" тело). Додекаэдр представлялся как образ всей Вселенной. Именно поэтому правильные многогранники называются также телами Платона.

Простейшими видами пространственной симметрии являются центральная, осевая, зеркально- поворотная и симметрия переноса.

Центральная симметрия.

Две точки А и А 1 называются симметричными относительно точки О, если О – середина отрезка АА 1 . Точка О считается симметричной самой себе.

Осевая симметрия.

Преобразование фигуры F в фигуру F 1 , при котором каждая ее точка переходит в точку, симметричную относительно данной прямой, называется преобразованием симметрии относительно прямой а. Прямая а называется осью симметрии.

Зеркально-поворотная симметрия.

Если во внутрь квадрата вписать с поворотом другой квадрат, то это и будет пример зеркально-поворотной симметрии.

Переносная симметрия.

Если при переносе плоской фигуры F вдоль заданной прямой АВ на расстояние а (или кратное этой величине) фигура совмещается сама с собой, то говорят о переносной симметрии. Прямая АВ называется осью переноса, расстояние а элементарным переносом или периодом.

а

СИММЕТРИЯ В РУССКОМ ЯЗЫКЕ

Буквы А, М, Т, Ш, П имеют вертикальную ось симметрии

А М Т Ш П


В, З, К, С, Э, В, Е – горизонтальную.

В З К С Э Е


А буквы Ж, Н, О, Ф, Х имеют по две оси симметрии.

Ж Н О Ф Х


Симметрию можно увидеть и в словах: казак, шалаш.

КАЗАК ШАЛАШ


Есть и целые фразы с таким свойством (если не учитывать пробелы между словами): “Искать такси”, “Аргентина манит негра”, “Ценит негра аргентинец”, “Леша на палке клапана шел”. А роза упала на лапу Азора. Такие слова называются палиндромами.

И
ИСКАТЬ ТАКСИ
АРГЕНТИНА МАНИТ НЕГРА
ЛЕША НА ПАЛКЕ КЛАПАНА НАШЕЛ
А РОЗА УПАЛА НА ЛАПУ АЗОРА
ми увлекались многие поэты.

СИММЕТРИЯ В ФИЗИКЕ

Принципы симметрии являются в физике инструментом для отыскания новых законов природы. К числу симметрийных принципов относится принцип относительности Галилея и Эйнштейна

Альберт Эйнштейн внес огромный вклад в рассмотрение симметричности физических законов

1. Закон сохранения импульса.

2. Закон сохранения момента импульса.

3. Закон сохранения энергии.

Связь законов сохранения с пространственно-временной сим­метрией физических законов означает, что сам по себе ход времени или перемещение и поворот в пространстве не могут вызвать изменения физического состояния системы. Для этого необходимо взаимодействие данной системы с другими си­стемами.

Если законы, устанавливающие соотношения между величинами, характеризующими физическую систему, или определяющие изменение этих величин со временем, не меняются при определённых операциях (преобразованиях), которым может быть подвергнута система, то говорят, что эти законы обладают симметрией (или инвариантны) относительно данных преобразований.

В 1894 г. на свет появилась последняя работа Пьера Кюри, посвящённая симметрии физических явлений. Статья называлась "О симметрии физических явлений: симметрия электрического и магнитного поля. Именно в этой работе и были сформулированы наиболее глубокие идеи учёного, касающиеся универсальной роли симметрии в природе



Во взаимноперпендикулярных плоскостях симметрично и распространение электромагнитных волн

Ещё одним учёным, который пытался объяснить симметрию с точки зрения физики, был Е.С.Фёдоров. Исходя из принципов симметрии, он доказал, что существует конечное число типов кристаллов

СИММЕТРИЯ В ХИМИИ

Симметрия обнаруживается также и на атомном уровне изучения вещества. Она проявляется в недоступных непосредственному наблюдению геометрически упорядоченных атомных структурах молекул.


В 1810 году Джон Дальтон, желая показать своим слушателям как атомы, комбинируясь, образуют химические соединения, построил деревянные модели шаров и стержней. Эти модели оказались превосходным наглядным пособием.
Молекула воды имеет плоскость симметрии (прямая вертикальная линия). Ничто не изменится, если поменять местами парные атомы в молекуле; такой обмен эквивалентен операции зеркального отражения

Исключительно важную роль в мире живой природы играют молекулы ДНК (дезоксирибонуклеиновая кислота). Это двуцепочечный высокомолекулярный полимер, мономером которого являются нуклеотиды. Молекулы ДНК имеют структуру двойной спирали, построенной по принципу комплементарности.

В молекуле метана СН 4 атом углерода связан с четырьмя одинаковыми атомами водорода. Физическое равноправие всех четырёх связей между атомами углерода и водорода естественным образом согласуется с пространственной структурой молекулы метана в виде тетраэдра, в вершине которого находятся атомы водорода, а в центре - атом углерода


СИММЕТРИЯ В БИОЛОГИИ.

На явления симметрии в живой природе обратили внимание ещё в Древней Греции пифагорейцы в связи с развитием учения о гармонии (V век до н.э.). В XIX веке появились единичные работы, посвящённые симметрии в растительном и животном мире.

В XX веке усилиями российских учёных - В Беклемишева, В Вернадского, В Алпатова, Г.Гаузе - было создано новое направление в учении о симметрии - биосимметрика, которое, исследуя симметрии биоструктур на молекулярном и надмолекулярном уровнях, позволяет заранее определить возможные варианты симметрии в биообъектах, строго описывать внешнюю форму и внутреннее строение любых организмов.

Симметрия у растений.

Характерная для растений симметрия конуса хорошо видна на примере любого дерева.

Дерево поглощает из почвы влагу и питательные вещества за счёт корневой системы, то есть внизу, а остальные жизненно важные функции выполняются кроной, то есть наверху. Поэтому направления "вверх" и "вниз" для дерева, существенно различны. А направления в плоскости, перпендикулярной к вертикали, для дерева фактически неразличимы: по всем этим направлениям к дереву в равной мере поступают воздух, свет, и влага. В результате появляется вертикальная поворотная ось и вертикальная плоскость симметрии

У цветковых растений в большинстве проявляется радиальная и билатеральная симметрия. Цветок считается симметричным, когда каждый околоцветник состоит из равного числа частей. Цветки, имея парные части, считаются цветками с двойной симметрией и т.д. Тройная симметрия обычна для однодольных растений, пятерная - для двудольных

Симметрия у животных.

Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии.

Сферическая симметрия имеет место у радиолярий и солнечников, тела которых сферической формы, а части распределены вокруг центра сферы и отходят от неё. У таких организмов нет ни передней, ни задней, ни боковых частей тела, любая плоскость, проведённая через центр, делит животное на одинаковые половинки.

При радиальной или лучистой симметрии тело имеет форму короткого или длинного цилиндра либо сосуда с центральной осью, от которого отходят в радиальном порядке части тела. Это кишечнополостные, иглокожие, морские звёзды.

При зеркальной симметрии осей симметрии три, но симметричных сторон только одна пара. Потому что две другие стороны - брюшная и спинная - друг на друга не похожи. Этот вид симметрии характерен для большинства животных, в том числе насекомых, рыб, земноводных, рептилий, птиц, млекопитающих.

Для насекомых, рыб, птиц, животных характерно несовместимое с поворотной симметрией различие между направлениями «вперед» и «назад». Придуманный в известной сказке о докторе Айболите фантастический Тянитолкай, представляется совершенно невероятным существом, поскольку у него симметричны передняя и задняя половины. Направление движения является принципиально выделенным направлением, относительно которого нет симметрии у любого насекомого, любой рыбы или птицы, любого животного. В этом направлении животное устремляется за пищей, в этом же направлении оно спасается от преследователей. Кроме направления движения, симметрию живых существ определяет еще одно направление – направление силы тяжести. Оба направления существенны; они задают плоскость симметрии живого существа.

Билатеральная (зеркальная) симметрия – характерная симметрия всех представителей животного мира.

Эта симметрия хорошо видна у бабочки; симметрия левого и правого проявляется здесь с почти математической строгостью. Можно сказать, что каждое животное (а также насекомое, рыба, птица) состоит из двух энантиоморфов – правой и левой половин. Энантиоморфами являются также парные детали, одна из которых попадает в правую, а другая в левую половину тела животного. Так, энантиоморфами являются правое и левое ухо, правый и левый глаз, правый и левый рог и т.д.

Симметрия у человека


Человеческое тело обладает билатеральной симметрией (внешний облик и строение скелета). Эта симметрия всегда являлась и является основным источником нашего эстетического восхищения хорошо сложенным человеческим телом. Тело человека построено по принципу двусторонней симметрии.

Большинство из нас рассматривает мозг как единую структуру, в действительности он разделён на две половины. Эти две части - два полушария - плотно прилегают друг к другу. В полном соответствии с общей симметрией тела человека каждое полушарие представляет собой почти точное зеркальное отображение другого

Управление основными движениями тела человека и его сенсорными функциями равномерно распределено между двумя полушариями мозга. Левое полушарие контролирует правую сторону мозга, а правое - левую сторону.

Физическая симметрия тела и мозга не означает, что правая сторона и левая равноценны во всех отношениях. Достаточно обратить внимание на действия наших рук, чтобы увидеть начальные признаки функциональной симметрии. Лишь немногие люди одинаково владеют обеими руками; большинство же имеет ведущую руку.

СИММЕТРИЯ В ИССКУСТВЕ

В геометрических орнаментах всех веков запечатлены неиссякаемые фантазия и изобразительность художников и мастеров, чьё творчество было ограничено жёсткими рамками, установленными неукоснительным следованием принципам симметрии. Трактуемые несравненно шире идеи симметрии нередко можно встретить в живописи, скульптуре, музыке и поэзии. Во многих случаях именно язык симметрии оказывается особенно пригодным для обсуждения произведений искусства, даже если последние отличаются отклонениями от симметрии или их создатели стремились умышленно её избежать.

Симметрия в архитектуре.

Архитектура - удивительная область человеческой деятельности. В ней тесно переплетены и строго уравновешены наука, техника искусство. Только соразмерное, гармоничное единство этих начал делает возводимое человеком сооружение памятником архитектуры, неподвластным времени, подобно памятникам литературы, ваяния, музыки.

Архитектура бесконечно разнообразна. И все же самый древний храм и современный дом, подобно человеческим лицам, имеют множество общих черт. В своем творчестве архитекторы располагают только строительным материалом и пространством. Все остальное в архитектурном облике здания архитектор создает собственной фантазией. В качестве художественных средств он использует композицию, пропорциональное соотношение здания и его частей, живопись и скульптуру, окружающую природу и застройку.

Композиция здания . Наиболее ясны и уравновешены здания с симметричной композицией.

Н
апример, собор Василия Блаженного на Красной площади в Москве. Это композиция из десяти различных храмов, каждый храм геометрически симметричен. Однако собор как целое не обладает ни зеркальной, ни поворотной симметрией. Архитектурные формы собора как бы накладываются друг на друга, пересекаются, поднимаются, и завершаются центральным шатром. И все это настолько гармонично, что вызывает ощущение праздника.

Впечатление от здания во многом зависит от ритма , т.е. от четкого распределения и повторения в определенном порядке объемов зданий или отдельных архитектурных форм на здании (колонн, окон, рельефов и т.д.). Преобладание элементов вертикального ритма - колонн, арок, проемов, пилястр - создает впечатление облегченности, устремленности вверх. Наоборот, горизонтальный ритм - карнизы, фризы, пояса и тяги - придает зданию впечатление приземистости, устойчивости.

В
архитектуре, как и в других видах искусства, существует понятие стиля , т.е. исторически сложившейся совокупности художественных средств и приемов.


Греческие зодчие впервые в истории строительства создали архитектурный ордер, т.е. установили четкие правила художественной обработки внешней формы конструкций, определили порядок размещения деталей и их размеры.

В средние века возник ГОТИЧЕСКИЙ стиль. Готические здания отличаются обилием ажурных, как кружева, украшений, скульптур, орнаментов, поэтому и снаружи, и внутри они производят впечатление легкости и воздушности. Окна, порталы, своды имеют характерную стрельчатую форму. Фасады сооружений обладали зеркальной (осевой) симметрией.

Архитекторы Возрождения создали стиль - РЕНЕССАНС, в котором использовали наследие античного искусства, греческие архитектурные ордеры. Правда, они применили их по-новому, более свободно, с отступлением от античных канонов, в других пропорциях и размерах, в сочетании с другими архитектурными элементами. Здания в стиле ренессанс были строгими по форме, с четкими прямыми линиями. Сохраняется симметрия фасадов.

Б
АРОККО, пришедший на смену ренессансу, отличается обилием криволинейных форм. Грандиозные архитектурные ансамбли (группа зданий, объединенных общим замыслом) дворцов и вилл, построенных в стиле барокко, поражают воображение обилием украшений на фасадах и внутри зданий. Прямые линии почти отсутствуют. Архитектурные формы изгибаются, громоздятся одна на другую и переплетаются со скульптурой. От этого создается впечатление постоянной подвижности форм.

Все здания, построенные в стиле КЛАССИЦИЗМ, имеют четкие прямолинейные формы и симметричные композиции. На фоне гладких стен выступают портики и колоннады, которые придают сооружениям торжественную монументальность и парадность. Декоративное убранство из барельефов и статуй оживляют облик зданий.

В
начале XX века появился стиль МОДЕРН. Этот стиль - попытка освободиться от долгого подражания античности, желание создать новые формы из новых строительных материалов - металла, стекла, бетона, керамики. Поиск новых форм и освоение новых материалов привели к новым видам композиций. Стиль не имеет строгих симметричных конструкций

Кроме архитектурных стилей, возникших в истории европейской культуры, существует множество других стилей.

Симметрия в поэзии и музыке

В поэзии мы имеем дело с единством симметрии и асимметрии. «Душа музыки – ритм – состоит в правильном периодическом повторении частей музыкального произведения, - писал в 1908 году известный русский физик Г.В. Вульф. – Правильное же повторение одинаковых частей в целом и составляет сущность симметрии. Мы с тем большим правом можем приложить к музыкальному произведению понятие симметрии, что это произведение записывается при помощи нот, т.е. получает пространственный геометрический образ, части которого мы можем обозревать». Он же писал: «Подобно музыкальным произведениям, могут быть симметричны и произведения словесные, в особенности стихотворения».

В стихотворениях подразумевается симметрия чередования рифм, ударных слогов, то есть опять таки ритмичность. Композитор в своей симфонии может по нескольку раз возвращаться к одной и той же теме, постепенно разрабатывая ее.

Сохранение темы и ее изменение (разработка, развитие) – это и есть единство симметрии и асимметрии. И чем удачнее решает композитор или поэт проблему соотношения между симметрией и асимметрией, тем выше художественная ценность создаваемого произведения искусства.

Самое непосредственное отношение к симметрии имеет композиция. Великий немецкий поэт Иоганн Вольфганг Гете утверждал, что «всякая композиция основана на скрытой симметрии». Владеть законами композиции – это значит владеть законами симметрии. Три основных закона композиции предполагают трансляционно-тождественное повторение элементов структуры, контрастное повторение, варьированное повторение. Это выглядит как орнамент во времени.

Нас всегда будут восхищать «орнаменты», созданные великим русским поэтом А.С. Пушкиным. Вот относительно простой, изящный пушкинский «орнамент»:

…В гранит оделася Нева ;

Мосты повисли над водами ;

Темнозелеными садами

Ее покрылись острова

Пушкин А.С. «Медный всадник»

В тот год осенняя погода

Стояла долго на дворе

Зимы ждала, ждала природа

Снег выпал только в январе

На третье в ночь. Проснувшись рано ,

В окно увидела Татьяна

Поутру побелевший двор ,

Куртины, кровли и забор ,


Все ярко, все бело кругом .

На стеклах легкие узоры ,

Сорок веселых на дворе

Деревья в зимнем серебре

И мягко устланные горы

Зимы блистательным ковром

Пушкин А.С. «Евгений Онегин»

Симметрия в живописи

Картина – это отнюдь не цветная фотография. Взаимное расположение фигур, сочетание поз и жестов, выражения лиц, чередование цвета, комбинация тонов – все это тщательно обдумывается художником, заботящемся об определенном эмоциональном воздействии картины на зрителя. Используя асимметричные элементы, художник должен создать нечто, обладающее в целом скрытой симметрией. О своей работе над картинами В.И. Суриков писал так: «А какое время надо, чтобы картина утряслась так, чтобы переменить ничего нельзя было. Действительные размеры каждого предмета найти нужно. Важно найти замок, чтобы все части соединить. Это - математика».

Для анализа симметрии изображения можно обратиться к хранящейся в Эрмитаже картине гениального итальянского художника и ученого Леонардо да Винчи «Мадонна Литта».

Можно обратить внимание: фигуры мадонны и ребенка вписываются в правильный треугольник, который вследствие своей симметричности особенно ясно воспринимается глазом зрителя. Благодаря этому мать и ребенок сразу же оказываются в центре внимания, как бы выдвигаются на передний план. Голова мадонны совершенно точно, но в то же время естественно помещается между двумя симметричными окнами на заднем плане картины. В окнах просматриваются спокойные горизонтальные линии пологих холмов и облаков. Все это создает ощущение покоя и умиротворенности, усиливаемое за счет гармоничного сочетания голубого цвета с желтоватыми и красноватыми тонами.

Внутренняя симметрия картины хорошо ощущается. А что можно сказать об асимметрии? Асимметрия хорошо проявляется, например, в тельце ребенка, которое неправильно разрезает упомянутый выше треугольник. И, кроме того, есть одна в высшей степени выразительная деталь. Благодаря взаимной замкнутости, завершенности линий фигуры мадонны создается впечатление полного безразличия мадонны к окружающему миру, и в частности к зрителю. Мадонна вся сосредоточена на младенце; она нежно держит его, нежно глядит на него. Все ее мысли сосредоточены только на нем. И вдруг вся эта замкнутость картины в себе исчезает, как только мы встречаемся со взглядом ребенка. Именно здесь внутренняя уравновешенность композиции нарушается: спокойный и внимательный взгляд обращен прямо на зрителя, через него картина раскрывается во внешний мир.

Получается, что всякий раз, когда мы, восхищаемся тем или иным произведением искусства, говорим о гармонии, красоте, эмоциональности воздействия, мы тем самым касаемся одной и той же неисчерпаемой проблемы – проблемы соотношения между симметрией и асимметрией.

Как правило, находясь в музее или в концертном зале, мы не задумываемся над этой проблемой. Ведь нельзя одновременно и ощущать, и анализировать ощущение.

Пример с картиной Леонардо да Винчи убеждает в том, что анализ симметрии – асимметрии все же очень полезен: картина начинает восприниматься острее.

Заключение

С симметрией мы встречаемся везде – в природе, технике, искусстве, науке. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого развития. Издавна человек использовал симметрию в архитектуре. Древним храмам, башням средневековых замков, современным зданиям она придает гармоничность, законченность. Симметрия буквально пронизывает весь окружающий нас мир

Знание геометрических законов природы имеют огромное практическое значение. Мы должны не только научиться понимать эти законы, но и заставлять служить нам на пользу.
О симметрия! Гимн тебе пою!

Тебя повсюду в мире узнаю

Ты в Эйфелевой башне, в малой мошке,

Ты в елочке, что у лесной дорожки.

С тобою в дружбе и тюльпан и роза

И снежный рай – творение мороза.

Литература


  1. И.Ф. Шарыгин, Л.Н. Ерганжиева. Наглядная геометрия. М., 1995 г.

  2. “Квант” №3 за 1992 г.

  3. Л. Тарасов. Этот удивительный симметричный мир. М., 1982 г.

  4. Вейл Г. Симметрия. M., Наука, 1968.

  5. Вульф Г.В. Симметрия и ее проявления в природе. М., Изд. Отд. Нар. ком. Просвещение, 1991.

  6. Главный редактор И.М. Виноградов. «Математическая энциклопедия. Изд. «Советская энциклопедия» М., 1984.

  7. Главный редактор Мария Аксенова. Энциклопедия для детей том 2. М., «Аванта+» 2001.

  8. Глейзер Г.Д. Геометрия. – 12-тое изд., М., «Просвещение» 1992г.

  9. Урманцев Ю.А. Симметрия в природе и природа симметрии. М., Мысль, 1974.

  10. Шубников А.В. Симметрия (законы симметрии и их применение в науке, технике, прикладном искусстве). М., 1978.

  11. Шубников А.В., Копцик В.А. Симметрия в науке и искусстве. М., 1976.

Симметрия (в химии) Симметрия в химии проявляется в геометрической конфигурации молекул, что сказывается на специфике физических и химических свойств молекул в изолированном состоянии, во внешнем поле и при взаимодействии с другими атомами и молекулами.

Большинство простых молекул обладает элементами пространственной симметрии равновесной конфигурации: осями симметрии, плоскостями симметрии и т. д. (см. Симметрия в математике). Так, молекула аммиака NH3 обладает симметрией правильной треугольной пирамиды, молекула метана CH4 ‒ симметрией тетраэдра. У сложных молекул симметрия равновесной конфигурации в целом, как правило, отсутствует, однако приближённо сохраняется симметрия отдельных её фрагментов (локальная симметрия). Наиболее полное описание симметрии как равновесных, так и неравновесных конфигураций молекул достигается на основе представлений о т. н. динамических группах симметрии ‒ группах, включающих не только операции пространственной симметрии ядерной конфигурации, но и операции перестановки тождественных ядер в различных конфигурациях. Например, динамическая группа симметрии для молекулы NH3 включает также и операцию инверсии этой молекулы: переход атома N с одной стороны плоскости, образованной атомами Н, на другую её сторону.

Симметрия равновесной конфигурации ядер в молекуле влечёт за собой определённую симметрию волновых функций различных состояний этой молекулы, что позволяет проводить классификацию состояний по типам симметрии. Переход между двумя состояниями, связанный с поглощением или испусканием света, в зависимости от типов симметрии состояний может либо проявляться в молекулярном спектре , либо быть запрещенным, так что соответствующая этому переходу линия или полоса будет отсутствовать в спектре. Типы симметрии состояний, между которыми возможны переходы, влияют на интенсивность линий и полос, а также и на их поляризацию. Например, у гомоядерных двухатомных молекул запрещены и не проявляются в спектрах переходы между электронными состояниями одинаковой чётности, электронные волновые функции которых ведут себя одинаковым образом при операции инверсии; у молекул бензола и аналогичных соединений запрещены переходы между невырожденными электронными состояниями одного и того же типа симметрии и т. п. Правила отбора по симметрии дополняются для переходов между различными состояниями правилами отбора, связанными со спином этих состояний.

У молекул с парамагнитными центрами симметрия окружения этих центров приводит к определённому типу анизотропии g -фактора (Ланде множитель ), что сказывается на структуре спектров электронного парамагнитного резонанса , тогда как у молекул, ядра атомов которых обладают ненулевым спином, симметрия отдельных локальных фрагментов ведёт к определённому типу расщепления по энергии состояний с различными проекциями ядерного спина, что сказывается на структуре спектров ядерного магнитного резонанса .

В приближённых подходах квантовой химии, использующих представление о молекулярных орбиталях, классификация по симметрии возможна не только для волновой функции молекулы в целом, но и для отдельных орбиталей. Если у равновесной конфигурации молекулы имеется плоскость симметрии, в которой лежат ядра, то все орбитали этой молекулы разбиваются на два класса: симметричные (s) и антисимметричные (p) относительно операции отражения в этой плоскости. Молекулы, у которых верхними (по энергии) занятыми орбиталями являются p-орбитали, образуют специфические классы ненасыщенных и сопряжённых соединений с характерными для них свойствами. Знание локальной симметрии отдельных фрагментов молекул и локализованных на этих фрагментах молекулярных орбиталей позволяет судить о том, какие фрагменты легче подвергаются возбуждению и сильнее меняются в ходе химических превращений, например при фотохимических реакциях.

Представления о симметрии имеют важное значение при теоретическом анализе строения комплексных соединений, их свойств и поведения в различных реакциях. Теория кристаллического поля и теория поля лигандов устанавливают взаимное расположение занятых и вакантных орбиталей комплексного соединения на основе данных о его симметрии, характер и степень расщепления энергетических уровней при изменении симметрии поля лигандов. Знание одной лишь симметрии комплекса очень часто позволяет качественно судить о его свойствах.

В 1965 P. Вудворд и Р. Хоффман выдвинули принцип сохранения орбитальной симметрии при химических реакциях, подтвержденный впоследствии обширным экспериментальным материалом и оказавший большое влияние на развитие препаративной органической химии. Этот принцип (правило Вудворда ‒ Хоффмана) утверждает, что отдельные элементарные акты химических реакций проходят с сохранением симметрии молекулярных орбиталей, или орбитальной симметрии. Чем больше нарушается симметрия орбиталей при элементарном акте, тем труднее проходит реакция.

Учёт симметрии молекул важен при поиске и отборе веществ, используемых при создании химических лазеров и молекулярных выпрямителей, при построении моделей органических сверхпроводников, при анализе канцерогенных и фармакологически активных веществ и т. д.

Лит.: Хохштрассер Р., Молекулярные аспекты симметрии, пер. с англ., М., 1968; Болотин А. Б., Степанов Н. ф.. Теория групп и ее применения в квантовой механике молекул, М., 1973; Вудворд Р., Хоффман Р., Сохранение орбитальной симметрии, пер. с англ., М., 1971.

Н. Ф. Степанов.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Симметрия (в химии)" в других словарях:

    Симметрия (от греч. symmetria ‒ соразмерность) в математике, 1) симметрия (в узком смысле), или отражение (зеркальное) относительно плоскости a в пространстве (относительно прямой а на плоскости), ‒ преобразование пространства (плоскости), при… …

    У этого термина существуют и другие значения, см. Симметрия (значения). «Витрувианский человек» … Википедия

    I Симметрия (от греч. symmetria соразмерность) в математике, 1) симметрия (в узком смысле), или отражение (зеркальное) относительно плоскости α в пространстве (относительно прямой а на плоскости), преобразование пространства… … Большая советская энциклопедия

    - (от греч. соразмерность), понятие, характеризующее переход объектов в самих себя или друг в друга при осуществлении над ними оп редел. преобразований (преобразований С.); в широком смысле свойство неизменности (инвариантности) некоторых… … Философская энциклопедия

    Оптическое отражение в луже гаражей и соседнего жилого дома Отражение, зеркальное отражение или зеркальная симметрия движение евклидова пространства, множество неподвижных точек которого является гиперплоскостью (в случае трехмерного пространства … Википедия

    Превращения одних веществ в другие, отличные от исходных по химическому составу или строению. Общее число атомов каждого данного элемента, а также сами химические элементы, составляющие вещества, остаются в Р. х. неизмененными; этим Р. х … Большая советская энциклопедия

    У этого термина существуют и другие значения, см. Хиральность (значения). Хиральность (молекулярная хиральность) в химии свойство молекулы быть несовместимой со своим зеркальным отражением любой комбинацией вращений и перемещений в трёхмерном… … Википедия

    Хиральность (молекулярная хиральность) в химии свойство молекулы быть несовместимой со своим зеркальным отражением любой комбинацией вращений и перемещений в трёхмерном пространстве. Наряду с конфигурацией и конформацией хиральность основное… … Википедия

    - (волновая механика), теория, устанавливающая способ описания и законы движения микрочастиц (элем. ч ц, атомов, молекул, ат. ядер) и их систем (напр., кристаллов), а также связь величин, характеризующих ч цы и системы, с физ. величинами,… … Физическая энциклопедия

    - (новолат. molecule, уменьшит. от лат. moles масса), наименьшая ч ца в ва, обладающая его осн. хим. св вами и состоящая из атомов, соединённых между собой химическими связями. Число атомов в М. составляет от двух (Н2, О2, HF, KCl) до сотен и тысяч … Физическая энциклопедия

Книги

  • Молекулярная симметрия в неорганической и координационной химии , Иванова Нина Владимировна, Сизова Ольга Вдладимировна, Ванин Александр Александрович. Рекомендовано Ученым советом Института химии Санкт-Петербургского государственного университета в качестве учебного пособия для студентов вузов, обучающихся поосновным образовательным…

Слайд 2

Симметрия молекул Симметрия ДНК Биосимметрика Зеркальные двойники О нас Симметрия во всем: «А знаете ли вы?» Содержание выводы

Слайд 3

Термин “симметрия” по-гречески означает “соразмерность, пропорциональность, одинаковость в расположении частей”. А какова симметрия в мире химии? Симметрия в химии проявляется в геометрической конфигурации молекул. Большинство простых молекул обладает элементами пространственной симметрии равновесной конфигурации: осями симметрии, плоскостями симметрии и т. д. Обычный способ изображения молекул в органической химии - это структурные формулы. Симметрия молекул

Слайд 4

В 1810 году Д.Дальтон, желая показать своим слушателям как атомы комбинируясь образуют химические соединения, построил деревянные модели шаров и стержней. Эти модели оказались превосходным наглядным пособием. Молекула воды и водорода имеет плоскость симметрии (прямая вертикальная линия). Ничто не изменится, если поменять местами парные атомы в молекуле; такой обмен эквивалентен операции зеркального отражения Симметрия молекул

Слайд 5

Большинство простых молекул обладает элементами пространственной симметрии равновесной конфигурации: осями симметрии, плоскостями симметрии и т. д. Так, молекула аммиака NH3 обладает симметрией правильной треугольной пирамиды, молекула метана СН4 - симметрией тетраэдра. У сложных молекул симметрия равновесной конфигурации в целом, как правило, отсутствует, однако приближённо сохраняется симметрия отдельных её фрагментов (локальная симметрия).

Слайд 6

В молекуле метана СН4 атом углерода связан с четырьмя одинаковыми атомами водорода. Физическое равноправие всех четырёх связей между атомами углерода и водорода естественным образом согласуется с пространственной структурой молекулы метана в виде тетраэдра, в вершине которого находятся атомы водорода, а в центре - атом углерода.

Слайд 7

Исключительно важную роль в мире живой природы играют молекулы ДНК (дезоксирибонуклеиновая кислота) Симметрия ДНК Это двуцепочечный высокомолекулярный полимер, мономером которого являются нуклеотиды. Молекулы ДНК имеют структуру двойной спирали, построенной по принципу комплементарности

Слайд 8

Химики давно знают, что поворот спирали вещества радикально меняет его свойства (глюкоза - фруктоза, пенициллин - левомицетин и др.) От того в какую сторону разворачивается спираль ДНК, зависит, как сложится (или не сложится) жизнь человека. Время течёт слева на право. Полушария головного мозга, как сферические антенны, направлены в противоположные стороны: одно - в прошлое, другое - в будущее. Симметрия ДНК

Слайд 9

Оказывается, современной химии известны вещества, структуры которых являются как бы зеркальными антиподами друг друга. Их химический состав и строение во всем копируют друг друга, кроме одного: пространственное строение молекул делает их зеркальными двойниками. При этом физические и химические свойства таких зеркальных двойников могут очень сильно отличаться, а само явление зеркальной симметрии органических веществ, возможно, стало одной из причин возникновения жизни на Земле. Хиральные молекулы, например аминокислоты, зеркально симметричны, как левая и правая рука. Сам термин "хиральность" происходит от греческого слова "хирос" - рука.

Слайд 10

В 20 веке усилиями российских учёных – В. Беклемишева, В. Вернадского, В. Алпатова, Г.Гаузе - было создано новое направление в учении о симметрии - биосимметрика. Исследовав симметрии биоструктур на молекулярном и надмолекулярном уровнях позволяет заранее определить возможные варианты симметрии в биообъектах, строго описывать внешнюю форму и внутреннее строение любых организмов. Симметрия вирусов

Слайд 11

Симметрия во всем:«А знаете ли Вы?»

Почему мы находим одни вещи красивыми, а другие нет? Сколько видов симметрии существует? Почему симметрия помогает обнаруживать месторождения?

Слайд 12

Кристи Тарлинктон, супермодель, признанная одной из самых красивых женщин в мире, считает, что по большей части обязана своим успехом в качестве модели идеальной симметрии своих губ. Пропорция и симметрия объекта всегда необходима нашему зрительному восприятию для того, чтобы мы могли считать этот объект красивым. Баланс и пропорция частей относительно целого обязательны для симметрии. Смотреть на симметричные изображения приятней, нежели на асимметричные. Симметрия Во всем

Слайд 13

Симметрия лица зависит от правильного соотношения мужских и женских половых гормонов в организме человека. Ученые пришли к выводу, что женщины с симметричным лицом - женственнее, а мужчины - мужественнее тех, кто не может похвастать таким преимуществом. Симметрия лиц

Слайд 14

Выводы

Симметрия в химии проявляется в геометрической конфигурации молекул, что сказывается на специфике физических и химических свойств молекул. Учёт симметрии молекул важен при поиске и отборе веществ, используемых при создании химических лазеров и молекулярных выпрямителей, при построении моделей органических сверхпроводников, при анализе канцерогенных и фармакологически активных веществ и т. д.

Слайд 15

Создатель:

Седова Ольга 8 «Б», школа № 1428 Учитель математики Сухачева Е.В. Оля

Посмотреть все слайды

Симметрия (в химии)

Симметрия в широком смысле -соответствие, неизменность

Симметрия в химии проявляется в геометрической конфигурации молекул, что сказывается на специфике физических и химических свойств молекул в изолированном состоянии, во внешнем поле и при взаимодействии с другими атомами и молекулами.

Большинство простых молекул обладает элементами пространственной симметрии равновесной конфигурации: осями симметрии, плоскостями симметрии и т. д. (см. Симметрия в математике). Так, молекула аммиака NH 3 обладает симметрией правильной треугольной пирамиды, молекула метана CH 4 - симметрией тетраэдра. У сложных молекул симметрия равновесной конфигурации в целом, как правило, отсутствует, однако приближённо сохраняется симметрия отдельных её фрагментов (локальная симметрия). Наиболее полное описание симметрии как равновесных, так и неравновесных конфигураций молекул достигается на основе представлений о т. н. динамических группах симметрии - группах, включающих не только операции пространственной симметрии ядерной конфигурации, но и операции перестановки тождественных ядер в различных конфигурациях. Например, динамическая группа симметрии для молекулы NH 3 включает также и операцию инверсии этой молекулы: переход атома N с одной стороны плоскости, образованной атомами Н, на другую её сторону.

Симметрия равновесной конфигурации ядер в молекуле влечёт за собой определённую симметрию волновых функций (величина, полностью описывающая состояние мокро объекта, например: электрона, протона, атома) различных состояний этой молекулы, что позволяет проводить классификацию состояний по типам симметрии. Переход между двумя состояниями, связанный с поглощением или испусканием света, в зависимости от типов симметрии состояний может либо проявляться в молекулярном спектре, либо быть запрещенным, так что соответствующая этому переходу линия или полоса будет отсутствовать в спектре. Типы симметрии состояний, между которыми возможны переходы, влияют на интенсивность линий и полос, а также и на их поляризацию. Например, у гомоядерных двухатомных молекул запрещены и не проявляются в спектрах переходы между электронными состояниями одинаковой чётности, электронные волновые функции которых ведут себя одинаковым образом при операции инверсии; у молекул бензола и аналогичных соединений запрещены переходы между невырожденными электронными состояниями одного и того же типа симметрии и т. п. Правила отбора по симметрии дополняются для переходов между различными состояниями правилами отбора, связанными со спином (собственный момент движения элементарных частиц, имеющий квантовую природу и не связанный с перемещением частиц как целого) этих состояний.

У молекул с парамагнитными центрами симметрия окружения этих центров приводит к определённому типу анизотропии g-фактора (фактор магнитного расщепления), что сказывается на структуре спектров электронного парамагнитного резонанса(резонансное поглощение электромагнитной энергии). Тогда как у молекул, ядра атомов которых обладают ненулевым спином, симметрия отдельных локальных фрагментов ведёт к определённому типу расщепления по энергии состояний с различными проекциями ядерного спина, что сказывается на структуре спектров ядерного магнитного резонанса.

В приближённых подходах квантовой химии, использующих представление о молекулярных орбиталях, классификация по симметрии возможна не только для волновой функции молекулы в целом, но и для отдельных орбиталей. Если у равновесной конфигурации молекулы имеется плоскость симметрии, в которой лежат ядра, то все орбитали этой молекулы разбиваются на два класса: симметричные (s) и антисимметричные (p) относительно операции отражения в этой плоскости. Молекулы, у которых верхними (по энергии) занятыми орбиталями являются p-орбитали, образуют специфические классы ненасыщенных и сопряжённых соединений с характерными для них свойствами. Знание локальной симметрии отдельных фрагментов молекул и локализованных на этих фрагментах молекулярных орбиталей позволяет судить о том, какие фрагменты легче подвергаются возбуждению и сильнее меняются в ходе химических превращений, например при фотохимических реакциях.

Представления о симметрии имеют важное значение при теоретическом анализе строения комплексных соединений, их свойств и поведения в различных реакциях. Теория кристаллического поля и теория поля лигандов устанавливают взаимное расположение занятых и вакантных орбиталей комплексного соединения на основе данных о его симметрии, характер и степень расщепления энергетических уровней при изменении симметрии поля лигандов. Знание одной лишь симметрии комплекса очень часто позволяет качественно судить о его свойствах.В 1965 P. Вудворд и Р. Хоффман выдвинули принцип сохранения орбитальной симметрии при химических реакциях, подтвержденный впоследствии обширным экспериментальным материалом и оказавший большое влияние на развитие препаративной органической химии. Этот принцип (правило Вудворда - Хоффмана) утверждает, что отдельные элементарные акты химических реакций проходят с сохранением симметрии молекулярных орбиталей, или орбитальной симметрии. Чем больше нарушается симметрия орбиталей при элементарном акте, тем труднее проходит реакция.

Учёт симметрии молекул важен при поиске и отборе веществ, используемых при создании химических лазеров и молекулярных выпрямителей, при построении моделей органических сверхпроводников, при анализе канцерогенных и фармакологически активных веществ и т. д.

Последние материалы сайта