Молярная масса сурьмы. Сурьма металл. Свойства сурьмы. Применение сурьмы

28.09.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

минерал Сурьма

Английское название: Antimony

Этот полуметалл является химическим элементом и находится в 15 группе пятого периода таблицы Менделеева. Узнать его можно по грубозернистому строению и серебристо-белому цвету.

Как и многие другие породы, сурьма имеет семь модификаций: четыре аллотропных и три аморфных. Первые образуются в результате воздействия разного давления. Аморфная же сурьма бывает черной, взрывчатой и желтой.

Свободное состояние данного полуметалла - это серебристо-белые кристаллы, которые обладают еще и металлическим блеском. Внешне данная порода очень похожа на металл, но более хрупкая, а показатели тепло- и электропроводимости у нее гораздо ниже. Одна из особенностей сурьмы - это расширение при застывании.

Когда и где нашли?

За 3000 лет до нашей эры сурьму активно использовали в странах Востока. Древние египтяне еще в IX веке до н.э. чернили брови специальным порошком сурмяного блеска. Работали с этиv полуметаллом и в Древней Греции.

Но только в начале XVII века алхимик Василий Валентин в Германии описал все свойства данной породы и способы того, как можно добыть ее.

В русском языке слово «сурьма» появилось благодаря туркам и крымским татарам, которые называли так порошок со свинцовым блеском. Но существует еще и версия о персидском происхождении слова: «сурме» в переводе означает «металл».

Больше всего залежей данного полуметалла есть в Китайской народной республике, России, Таджикистане. Находят сурьму и в Южноафриканской республике, Боливии, Алжире, Финляндии, Болгарии, Киргизии. Чаще ее можно обнаружить в осадочных сланцах, нежели в изверженных. В основном, речь идет о бокситах, фосфоритах и глинистых сланцах.

Тип месторождения сурьмы - это гидротермальные жилы, в которых есть руды кобальта и серебра, никеля. Этот полуметалл есть и в сульфидных рудах со сложным составом.

Где используют сурьму?

Используют данный материал чаще всего в полупроводниковой промышленности. Он необходим во время производства инфракрасных детекторов и диодов. Устройства с эффектом Холла не изготавливают без сурьмы.

Сурьма активно применяется в производстве стрелкового оружия и оболочки для кабелей, спичек и типографских сплавов, батарей, в линотипных печатных машинах. Еще она применяется при изготовлении лекарств.

Если соединить сурьму с медью и оловом, то получится сплав баббит, который широко применяется в производстве подшипников скольжения.

Хим . Иногда содержит Ag, Fe или As
Характер, выдел.
Сплошные зернистые выделения, реже натечные агрегаты (почковидные, гроздевидные), иногда лучистого строения; кристаллы редки.
Структ. и морф, крист. Триг. с. D 5 3d -R3m; a rh = 4,507 А; a= 57°06"; Z = 2; a h = 4,310; c h = 11,318 A; a h: c h = 1: 2,627; Z = 6. Структура типа мышьяка. Расстояния Sb-Sb 2,87 и 3,37А. Дитригон.-скаленоэдр. кл.; а : с = 1: 1,3236 Кристаллы ромбоэдрические, толстотаблитчатые по (0001) или пластинчатые. Дв. по (1012); образуют сложные группы - четверники (фиг. 75), шестерники, часто полисинтетические.

Физ. Сп. по (0001) совершенная, по (2021) иногда ясная, по (1120) и по (1012) несовершенная. Диамагнитна.

Микр. В полир, шл. в отраж. св. белая. Отраж. спос. (в %): для зеленых лучей 67,5, для оранжевых - 58, для красных - 55; по Фолинсби, измеренная с помощью фотоэлемента,- 74,6. Двуотражение слабое. Анизотропна.
Цвет оловянно-белый с желтой побежалостью. Блеск металлический. Прозрачность непрозрачна. Черта Твердость 3-3,5. Плотность 6,61-6,72 Излом неровный. Очень хрупка. Сингония Триг. Форма кристаллов. Кристаллы ромбоэдрические, толстотаблитчатые по (0001) или пластинчатые. Дв. по (1012); образуют сложные группы - четверники (фиг. 75), шестерники, часто полисинтетические. Спайность по (0001) совершенная, по (2021) иногда ясная, по (1120) и по (1012) несовершенная. Агрегаты Сплошные зернистые выделения, реже натечные агрегаты (почковидные, гроздевидные), иногда лучистого строения; кристаллы редки П. тр. на угле в восст. пл. легко плавится (плавк. 1), в окисл. пл, сгорает, давая белый налет и дым Sb2О3. В откр. тр. полностью улетучивается, образуя кристаллический возгон Sb2О3. На гипсовой пластинке со смесью KJ -+- S дает оранжево-красный налет SbJ3. Поведение в кислотах В конц. HNO3 окисляется в НSbО3, растворяется в царской водке; в НСl не растворима. В полир, шл. от HNO3 чернеет, иризирует, от паров НСl тускнеет, от KCN слабо буреет, от FeCl3 буреет и чернеет, от HgCl слабо буреет и иризирует. Реактивы для структурного травления: FeCl3 (20%-ный раствор) в течение нескольких секунд; K2S (конц. раствор); H2Sb2O7 (конц. раствор). Том 1, 85.

Свойства минерала

  • Удельный вес: 6,61 - 6,72 (вычисл. 6,73)
  • Форма выделения: Кристаллы ромбоэдрические, толстотаблитчатые по (0001) или пластинчатые. Дв. по (1012); образуют сложные группы - четверники (фиг. 75), шестерники, часто полисинтетические
  • Классы по систематике СССР: Оксиды
  • Химическая формула: Sb
  • Сингония: тригональная
  • Цвет: оловянно-белый с желтой побежалостью
  • Цвет черты: буровато-серая
  • Блеск: металлический
  • Прозрачность: непрозрачный
  • Излом: неровный
  • Твердость: 3 3,5
  • Хрупкость: Да
  • Дополнительно: на угле в восст. пл. легко плавится (плавк. 1), в окисл. пл, сгорает, давая белый налет и дым Sb 2 Оз. В откр. тр. полностью улетучивается, образуя кристаллический возгон Sb 2 О 3 . На гипсовой пластинке со смесью KJ -+- S дает оранжево-красный налет SbJ 3 .

    В конц. HNCb окисляется в НЭЬОз, растворяется в царской водке; в НС1 не растворима. В полир, шл. от HNO 3 чернеет, иризирует, от паров НС1 тускнеет, от KCN слабо буреет, от FeCl буреет и чернеет, от HgCl слабо буреет и иризирует. Реактивы для структурного травления: FeCl (20%-ный раствор) в течение нескольких секунд; K 2 S (конц. раствор); H 2 Sb 2 0 7 (конц. раствор).

Манит ли вас красота восточных женщин? Окружающее буйство красок, четкие стрелки, окантовывающие глаза, и манящая загадка во взгляде - все это зачаровывает многих. Восток - кладезь противоречий и идейных ограничений. Как красавице привлечь внимание, если тело спрятано под паранджой, а для посторонних взглядов открыты только глаза? На помощь придет сурьма. "Это что такое?" - спросит неискушенный европеец. Ответ прост - отличное натуральное косметическое средство для декорирования глаз, способное сохранить молодость, красоту и здоровье. Недаром в восточных станах пользуются сурьмой не только женщины. С подведенными глазами легко можно встретить как мужчин, так и детей.

Знакомьтесь: сурьма!

Обращали ли вы внимание на индусов, арабов, бедуинов пустыни с подведенными глазами? Сурьма это! Что такое в ней усмотрели восточные мужи, применяя средство на себе не только для украшения, но и с терапевтической целью? В жарких пустынях Африки, равно как и в Индии, сурьма использовалась в качестве защиты глаз от песка, пыли, палящего солнца. Антисептические свойства средства помогали предотвращать развитие различных инфекций зрительного органа. В Иране, например, измельченный черный камень (основа приготовления сурьмы) применялся с целью лечения ожогов. Благодаря этому люди избавлялись от волдырей. Он также закладывался по краям раны для ее обеззараживания и скорейшего заживления.

Итак, универсальное средство, совмещающее в себе как косметический, так и лечебный эффект, - это сурьма. Как пользоваться средством для глаз, зависит от его формы выпуска. Она бывает в виде порошка, карандаша, пасты в тюбике. Сурьма может отличаться по цвету: палитра начинается от иссиня-черного и заканчивается практически бесцветным, светлым оттенком. Часто она содержит дополнительные вещества, усиливающие ее свойства. Например, камфору, косметические масла и травяные эссенции.

Заглянем вглубь этимологии

В разных языках одно и то же средство имеет вариации в названиях. Когда говорят "кохль", "каджал" (или "куджал"), "кайал", имеется в виду все та же сурьма. Слово это в переводе с турецкого означает "чернение". Это применительно к ресницам и бровям. Иные вариации несколько меняют свое значение. Так, "кайал" с древнейшего ассиро-вавилонского языка переводится иначе - "косметика". Слово "каджал" чаще всего применяется в отношении именно сурьмяного мягкого карандаша. А при изготовлении сурьмы из каменного угля, называемого черным камнем или кохлем, аналогичное наименование переходит и на само средство для глаз.

В родстве ли сурьма для глаз с химическим элементом?

С одноименным химическим элементом косметическая сурьма имеет мало общего. Однако скептики продолжают вопрошать: сурьма - это что? Такое химическое соединение не может быть полезным. В определенных количествах этот металл ядовит для организма человека, хотя в малых дозах неизменно в нем присутствует. К тому же до сих пор неясна роль этого микроэлемента в развитии живых организмов.

В полупроводниковой промышленности используется сама сурьма. Соединения ее со свинцом применяются для усиления прочности последнего. Вообще, добавление сурьмы в сплавы и соединения с другими элементами придает новому полученному материалу дополнительные свойства, расширяя область его применения.

Тайны изготовления сурьмы для глаз

Сульфид сурьмы природного происхождения ранее использовался в качестве лекарства и косметического средства. Но сейчас от него осталось одно название. Одновременно в наши дни в ирано-иракских странах сурьма для глаз изготавливается из толченого черного угля или исмида на вазелиновой или масляной основе. При этом качество минерала определяется его способностью крошиться. По структуре он неоднороден:

  • Оболочка камня имеет темный цвет с неким отливом. Она идет на изготовление иссиня-черной сурьмы.
  • Сердцевина у минерала светлая. Применяется для получения серой и светло-серой сурьмы.
  • Промежуточная зона окрашена в темные тона, но без отлива. Она наиболее предпочтительная для измельчения, поэтому дает самую мелкую крошку.

Исмид может содержать сульфид свинца. Он является токсичным для человека, поэтому следует выбирать сурьму только высокого качества с хорошей степенью очистки. Как правило, более дешевая иранская, египетская и китайская содержат свинец в предельно допустимых дозах.

Домашняя сурьма в традициях Индии изготавливается из муслиновой ткани. Ее вымачивают в дерева и сжигают в специальной лампе, заполненной касторовым маслом. Остающаяся на ее стенках сажа и будет использоваться в качестве сурьмы для глаз.

Лечебное средство

С лечебной целью используется бесцветная Отзывы врачей о ее нетрадиционном применении найти сложно, так как медики обычно сдержанны в комментариях, относящихся к народным методам лечения. Однако явных противопоказаний и отговорок тоже нет.

Для усиления терапевтического действия в сурьму добавляют камфору, масла или травы. Так, первое вещество обладает охлаждающим и освежающим эффектом, вызывая во время первого применения слезотечение и некоторое неудобство в глазах. Но когда жертва красоты поморгает и сможет открыть глаза, ее взгляд приобретает ясный и здоровый вид без капли усталости. Добавление масел оказывает положительное влияние на рост ресниц и увлажнение кожи вокруг глаз. Басма и травяные экстракты питают эпидермис. Они также отлично воздействуют на ресницы и брови.

Сурьма лечебная помогает в следующих случаях:

  • Лечит глазные инфекции: конъюнктивит, ячмень.
  • Применяется против сезонного аллергического раздражения глаз.
  • Снимает усталость зрительного органа.
  • Улучшает кровообращение глазного яблока, укрепляя сосудистую сетку.
  • Делает зрение острее и четче.
  • Ускоряет рост ресниц и бровей.

Если модница носит контактные линзы и страдает от аллергии на косметические средства, то сурьма может быть прекрасной альтернативой декоративной косметике.

Средство для красоты

Знаменитые восточные рисуются именно сурьмой! Однако, преследуя косметические цели, следует тщательно подходить к выбору средства. Например, Al-Sherifain - порошковая индийская сурьма. Отзывы тех, кто ее опробовал, пестрят заявлениями, что она хороша только для лечебных целей, так как выполненные с ее помощью стрелки быстро осыпаются. Иное средство индийского производства - Hind ka Noor - позиционируется как прекрасная основа для макияжа: стрелки получаются не тонкие, внутреннее веко декорируется замечательно. При помощи сурьмы очень легко сделать знаменитые Макияж получается благодаря порошковой структуре средства. При этом четкие стрелки рисуются масляной или карандашной сурьмой.

Сурьма в порошке

Сурьма-порошок наносится специальной палочкой, которая обычно идет в комплекте со средством. Она может быть деревянной или стеклянной. Первый вариант считается экологичным, к тому же он приятный на ощупь. Но есть риск получить занозу или занести инфекцию, потому что это благодатный материал для размножения бактерий. Стекло более долговечно и стерильно. Имеет значение качество помола: чем мельче порошковая структура материала, тем легче и равномернее наносится сурьма.

Чтобы избежать осыпания порошка, можно предварительно нанести на кожу вокруг глаз жирный крем. Он будет выполнять функцию основы. Восточные красавицы перед тем, как подчеркивать глаза сурьмой, осветляют кожу под глазами пудрой. Потом наносят средство и ватными дисками убирают излишки пудры. В результате макияж получается более контрастным и очень аккуратным.

Сурьма-карандаш

Карандаш - это спрессованный с целью удобного нанесения сурьмяный порошок. Мягкость ему придает масляная основа. Поэтому он более приятен для глаз, нежели европейская аналогичная косметика. Карандаш хорош для поправления порошкового макияжа и быстрого нанесения стрелок. Такая сурьма не вызывает вопросов в применении. Кто хоть раз пользовался карандашной подводкой, легко справится с макияжем.

Сурьма в виде масла или пасты

Такая форма выпуска сурьмы подойдет для зимнего периода. Она не растекается, не сыпется, прекрасно декорирует и освежает глаза. Хорошо питаются ресницы, в результате чего быстро растут. В смотрится слишком массивно и ярко. Девушкам с жирной кожей маслянистая сурьма не подходит. Блеск кожи вокруг глаз (отнюдь не бриллиантовый) им обеспечен.

Как правильно наносить сурьму?

В качестве косметического средства сурьма наносится утром за полчаса до выхода. Если красавица преследует лечебные цели, то препарат можно оставить на ночь, специально накрасив им глаза перед сном. Сурьму необязательно смывать. Но если есть такая необходимость, достаточно протереть подведенные глаза маслом или умыть лицо с помощью пенки или мыла. Носительницам контактных линз лучше сначала нанести сурьму, а уже после надевать оптические элементы. Это связано с возможной реакцией глаз на средство. Может появиться слезотечение, временное покраснение окологлазного пространства.

Сурьма - это что такое? Теперь на этот вопрос вы сможете легко ответить, даже прочитать небольшую лекцию. Может быть, вы захотите опробовать это чудо-средство на себе. Согласитесь, что загадочный Восток стал немного ближе и доступнее, слегка приоткрыв завесу своего чарующего колорита.

Сурьма

СУРЬМА́ -ы; ж. [перс. surma - металл]

1. Химический элемент (Sb), синевато-белый металл (употребляется в различных сплавах в технике, в типографском деле). Выплавка сурьмы. Соединение сурьмы с серой.

2. В старину: краска для чернения волос, бровей, ресниц. Навести, подвести брови сурьмой. Следы сурьмы на лице.

Сурьмя́ный, -ая, -ое (1 зн.). С-ые руды. С-ые сплавы. С. блеск (минерал свинцово-серого цвета, содержащий сурьму и серу).

сурьма́

(лат. Stibium), химический элемент V группы периодической системы. Образует несколько модификаций. Обычная сурьма (так называемая серая) - синевато-белые кристаллы; плотность 6,69 г/см 3 , t пл 630,5°C. На воздухе не изменяется. Важнейший минерал - антимонит (сурьмяный блеск). Компонент сплавов на основе свинца и олова (аккумуляторные, типографские, подшипниковые и др.), полупроводниковых материалов.

СУРЬМА

СУРЬМА́ (лат. Stibium), Sb, (читается «стибиум»), химический элемент c атомным номером 51, атомная масса 121,75. Природная сурьма состоит из двух стабильных изотопов: 121 Sb (содержание по массе 57,25%) и 123 Sb (42,75%). Рaсположена в VА группе в 5 периоде периодической системы. Электронная конфигурация внешнего слоя 5s 2 p 3 . Степени окисления +3, +5, редко –3 (валентности III, V). Радиус атома 0,161 нм. Радиус иона Sb 3+ 0,090 нм (координационные числа 4 и 6), Sb 5+ 0,062 нм (6), Sb 3– 0,208 нм (6). Энергии последовательной ионизации 8,64, 16,6, 28,0, 37,42 и 58,8 эВ. Ээлектроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,9.
Историческая справка
Сурьму применяли в странах Востока за три тысячи лет до нашей эры. Латинское название элемента связано с минералом «стиби», из которого в Древней Греции получали сурьму. Русское «сурьма» происходит от турецкого «surme» - чернить брови (порошок для чернения бровей готовили из минерала сурьмяный блеск). В 15 веке монах Василий Валентин описал процесс получения сурьмы, из сплава со свинцом для отливки типографского шрифта. Природную сернистую сурьму он назвал сурьмяным стеклом. В средние века использовали препараты сурьмы в медицинских целях: пилюли из сурьмы, вино, выдержанное в чашах из сурьмы (при этом образовывался «рвотный камень» K·1/2H 2 O).
Нахождение в природе
Содержание в земной коре 5·10 _–5 % по массе. Встречается в природе в самородном состоянии. Известно около 120 минералов, содержащих Sb, главным образом, a виде сульфида Sb 2 S 3 (сурьмяный блеск, антимонит, стибнит). Продукт окисления сульфида кислородом воздуха Sb 2 O 3 - белая сурьмяная руда (валентинит и сенармонтит). Сурьма часто содержится в свинцовых, медных и серебряных рудах (тетраэдрит Cu 12 Sb 4 S 13 , джемсонит Pb 4 FeSb 6 S 14).
Получение
Сурьму получают сплавлением сульфида Sb 2 S 3 с железом:
Sb 2 S 3 +3Fe=2Sb+3FeS,
обжигом сульфида Sb 2 S 3 и восстановлением полученного оксида углем:
Sb 2 S 3 +5O 2 =Sb 2 O 4 +3SO 2 ,
Sb 2 O 4 +4C=2Sb+4CO. Чистую сурьму (99,9%) получают электролитическим рафинированием. Сурьму извлекают также из свинцовых концентратов, полученных при переработке полиметаллических руд.
Физические и химические свойства
Сурьма серебристо-серый с синеватым оттенком хрупкий неметалл. Серая сурьма, Sb I, с ромбоэдрической решеткой (a =0,45064 нм, a=57,1°), устойчива при обычных условиях. Температура плавления 630,5°C, кипения 1634°C. Плотность 6,69 г/см 3 . При 5,5 ГПа Sb I переходит в кубическую модификацию Sb II, при давлении 8,5 ГПа - в гексагональную Sb III, выше 28 ГПа - Sb IV.
Серая сурьма имеет слоистую структуру, где каждый атом Sb пирамидально связан с тремя соседями по слою (межатомное расстояние 0,288 нм) и имеет трех ближайших соседей в другом слое (межатомное расстояние 0,338 нм). Известны три аморфные модификации сурьмы. Желтая сурьма образуется при действии кислорода на жидкий стибин SbH 3 и содержит незначительные количества химически связанного водорода (см. ВОДОРОД) . При нагревании или освещении желтая сурьма переходит в черную сурьму (плотность 5,3 г/см 3), обладающую полупроводниковыми свойствами.
При электролизе SbCl 3 при малых плотностях тока образуется взрывчатая сурьма, содержащая небольшие количества химически связанного хлора (взрывается при трении). Черная сурьма при нагревании без доступа воздуха до 400°C и взрывчатая сурьма при растирании превращаются в металлическую серую сурьму. Металлическая сурьма (Sb I) - полупроводник. Ширина запрещенной зоны 0,12 эВ. Диамагнитна. При комнатной температуре металлическая сурьма очень хрупка и легко растирается в порошок в ступке, выше 310°C - пластична, также пластичны монокристаллы сурьмы высокой чистоты.
С некоторыми металлами сурьма образует антимониды: антимонид олова SnSb, никеля Ni 2 Sb 3 , NiSb, Ni 5 Sb 2 и Ni 4 Sb. Сурьма не взаимодействует с соляной, плавиковой и серной кислотами. С концентрированной азотной кислотой образуется плохо растворимая бета-сурьмяная кислота HSbO 3:
3Sb + 5HNO 3 = 3HSbO 3 + 5NO + H 2 O.
Общая формула сурьмяных кислот Sb 2 O 5 ·n H 2 O. С концентрированной H 2 SO 4 сурьма реагирует с образованием сульфата сурьмы(III) Sb 2 (SO 4) 3:
2Sb + 6H 2 SO 4 = Sb 2 (SO 4) 3 + 3SO 2 ­ + 6H 2 O.
Сурьма устойчива на воздухе до 600°C. При дальнейшем нагревании окисляется до Sb 2 O 3:
4Sb + 3O 2 = 2Sb 2 O 3 .
Оксид сурьмы(III) обладает амфотерными свойствами и реагирует с щелочами:
Sb 2 O 3 + 6NaOH + 3H 2 O = 2Na 3 .
и кислотами:
Sb 2 O 3 + 6HCl = 2SbCl 3 + 3H 2 O
При нагревании Sb 2 O 3 выше 700°C в кислороде образуется оксид состава Sb 2 O 4:
2Sb 2 O 3 + O 2 = 2Sb 2 O 4.
Этот оксид одновременно содержит Sb(III) и Sb(V). В его структуре соединены друг с другом октаэдрические группировки и . При осторожном обезвоживании сурьмяных кислот образуется пентаоксид сурьмы Sb 2 O 5:
2HSbO 3 = Sb 2 O 5 + H 2 O,
проявляющий кислотные свойства:
Sb 2 O 5 + 6NaOH = 2Na 3 SbO 4 + 3H 2 O,
и являющийся окислителем:
Sb 2 O 5 + 10HCl = 2SbCl 3 + 2Cl 2 ­ + 5H 2 O
Соли сурьмы легко гидролизуются. Выпадение гидроксосолей начинается при pH 0,5–0,8 для Sb(III) и pH 0,1 для Sb(V). Состав продукта гидролиза зависит от соотношения соль / вода и последовательности внесения реагентов:
SbCl 3 + H 2 O = SbOCl + 2HCl,
4SbCl 3 + 5H 2 O = Sb 4 O 5 Cl 2 + 10HCl.
С фтором (см. ФТОР) сурьма образует пентафторид SbF 5 . При его взаимодействии с плавиковой кислотой HF возникает сильная кислота H. Сурьма горит при внесении ее порошка в Cl 2 с образованием смеси пентахлорида SbCl 5 и трихлорида SbCl 3:
2Sb + 5Cl 2 = 2SbCl 5 , 2Sb + 3Cl 2 = 2SbCl 3 .
С бромом (см. БРОМ) и иодом (см. ИОД) Sb образует oригалогениды:
2Sb + 3I 2 = 2SbI 3 .
При действии сероводорода (см. СЕРОВОДОРОД) H 2 S на водные растворы Sb(III) и Sb(V), образуются оранжево-красный трисульфид Sb 2 S 3 или оранжевый пентасульфид Sb 2 S 5 , которые взаимодействуют с сульфидом аммония (NH 4) 2 S:
Sb 2 S 3 + 3(NH 4) 2 S = 2(NH 4) 3 SbS 3 ,
Sb 2 S 5 + 3(NH 4) 2 S = 2(NH 4) 3 SbS 4 .
Под действием водорода (см. ВОДОРОД) на соли Sb выделяется газ стибин SbH 3:
SbCl 3 + 4Zn + 5HCl = 4ZnCl 2 + SbH 3 ­ + H 2 ­
Стибин при нагревании разлагается на Sb и H 2 . Получены органические соединения сурьмы, производные стибина, например, oриметилстибин Sb(CH 3) 3:
2SbCl 3 + 3Zn(CH 3) 2 = 3ZnCl 2 + 2Sb(CH 3) 3
Применение
Сурьма - компонент сплавов на основе свинца и олова (для аккумуляторных пластин, типографских шрифтов, подшипников, защитных экранов для работы с источниками ионизирующих излучений, посуды), на основе меди и цинка (для художественного литья). Чистую сурьму используют для получения антимонидов с полупроводниковыми свойствами. Входит в состав сложных лекарственных синтетических препаратов. При изготовлении резины используют пентасульфид сурьмы Sb 2 S 5 .
Физиологическое действие
Сурьма относится к микроэлементам, содержание в организме человека 10 –6 % по массе. Постоянно присутствует в живых организмах, физиологическая и биохимическая роль не выяснена. Нaкапливается в щитовидной железе, угнетает ее функцию и вызывает эндемический зоб. Однако, попадая в пищеварительный тракт, соединения сурьмы не вызывают отравления, так как соли Sb(III) там гидролизуются с образованием малорастворимых продуктов. Пыль и пары Sb вызывают носовые кровотечения, сурьмяную «литейную лихорадку», пневмосклероз, поражают кожу, нарушают половые функции. Для аэрозолей сурьмы ПДК в воздухе рабочей зоны 0,5 мг/м 3 , в атмосферном воздухе 0,01 мг/м 3 . ПДК в почве 4,5 мг/кг, в воде 0,05 мг/л.

Сурьма (лат. stibium), sb, химический элемент v группы периодической системы Менделеева; атомный номер 51, атомная масса 121,75; металл серебристо-белого цвета с синеватым оттенком. В природе известны два стабильных изотопа 121 sb (57,25%) и 123 sb (42,75%). Из искусственно полученных радиоактивных изотопов важнейшие 122 sb (Т 1/2 = 2,8 cym ) , 124 sb (t 1/2 = 60,2 cym ) и 125 sb (t 1/2 = 2 года).

Историческая справка. С. известна с глубокой древности. В странах Востока она употреблялась примерно за 3000 лет до н. э. для изготовления сосудов. В Древнем Египте уже в 19 в. до н. э. порошок сурьмяного блеска (природный sb 2 s 3) под названием mesten или stem применялся для чернения бровей. В Древней Греции он был известен как st i mi и st i bi, отсюда латинский stibium. Около 12-14 вв. н. э. появилось название antimonium. В 1789 А. Лавуазье включил С. в список химических элементов под названием antimoine (современный английский antimony, испанский и итальянский antimonio, немецкий antimon). Русская «сурьма» произошло от турецкого s u rme; им обозначался порошок свинцового блеска pbs, также служивший для чернения бровей (по другим данным, «сурьма» - от персидского сурме - металл). Подробное описание свойств и способов получения С. и её соединений впервые дано алхимиком Василием Валентином (Германия) в 1604.

Распространение в природе. Среднее содержание С. в земной коре (кларк) 5 ? 10 –5 % по массе. В магме и биосфере С. рассеяна. Из горячих подземных вод она концентрируется в гидротермальных месторождениях. Известны собственно сурьмяные месторождения, а также сурьмяно-ртутные, сурьмяно-свинцовые, золото-сурьмяные, сурьмяно-вольфрамовые. Из 27 минералов С. главное промышленное значение имеет антимонит (sb 2 s 3). Благодаря сродству с серой С. в виде примеси часто встречается в сульфидах мышьяка, висмута, никеля, свинца, ртути, серебра и других элементов.

Физические и химические свойства. С. известна в кристаллической и трёх аморфных формах (взрывчатая, чёрная и жёлтая). Взрывчатая С. (плотность 5,64-5,97 г/см 3) взрывается при любом соприкосновении: образуется при электролизе раствора sbcl 3 ; чёрная (плотность 5,3 г/см 3) - при быстром охлаждении паров С.; жёлтая - при пропускании кислорода в сжиженный sbh 3 . Жёлтая и чёрная С. неустойчивы, при пониженных температурах переходят в обыкновенную С. Наиболее устойчивая кристаллическая С., кристаллизуется в тригональной системе, а = 4,5064 å ; плотность 6,61-6,73 г/см 3 (жидкой - 6,55 г/см 3) ; t пл 630,5 °С; t кип 1635-1645 °С; удельная теплоёмкость при 20-100 °С 0,210 кдж/(кг? К ) ; теплопроводность при 20 °С 17,6 вт/м ? К . Температурный коэффициент линейного расширения для поликристаллической С. 11,5 ? 10 –6 при 0-100 °С; для монокристалла a 1 = 8,1 ? 10 –6 a 2 = 19,5 ? 10 –6 при 0-400 °С, удельное электросопротивление (20 °С) (43,045 ? 10 –6 ом ? см ) . С. диамагнитна, удельная магнитная восприимчивость -0,66 ? 10 –6 . В отличие от большинства металлов, С. хрупка, легко раскалывается по плоскостям спайности, истирается в порошок и не поддаётся ковке (иногда её относят к полуметаллам ) . Механические свойства зависят от чистоты металла. Твёрдость по Бринеллю для литого металла 325-340 Мн/м 2 (32,5-34,0 кгс/мм 2) ; модуль упругости 285-300; предел прочности 86,0 Мн/м 2 (8,6 кгс/мм 2) . Конфигурация внешних электронов атома sb5s 2 5 r 3 . В соединениях проявляет степени окисления главным образом +5, +3 и –3.

В химическом отношении С. малоактивна. На воздухе не окисляется вплоть до температуры плавления. С азотом и водородом не реагирует. Углерод незначительно растворяется в расплавленной С. Металл активно взаимодействует с хлором и др. галогенами, образуя сурьмы галогениды. С кислородом взаимодействует при температуре выше 630 °С с образованием sb 2 o 3. При сплавлении с серой получаются сурьмы сульфиды, так же взаимодействует с фосфором и мышьяком. С. устойчива по отношению к воде и разбавленным кислотам. Концентрированные соляная и серная кислоты медленно растворяют С. с образованием хлорида sbcl 3 и сульфата sb 2 (so 4) 3 ; концентрированная азотная кислота окисляет С. до высшего окисла, образующегося в виде гидратированного соединения xsb 2 o 5 ? уН 2 О. Практический интерес представляют труднорастворимые соли сурьмяной кислоты - антимонаты(Меsbo 3 ? 3h 2 o, где me - na, К) и соли не выделенной метасурьмянистой кислоты - метаантимониты (mesbo 2 ? ЗН 2 О), обладающие восстановительными свойствами. С. соединяется с металлами, образуя антимониды.

Получение. С. получают пирометаллургической и гидрометаллургической переработкой концентратов или руды, содержащей 20-60% sb. К пирометаллургическим методам относятся осадительная и восстановительная плавки. Сырьём для осадительной плавки служат сульфидные концентраты; процесс основан на вытеснении С. из её сульфида железом: sb 2 s 3 + 3fe u 2sb + 3fes. Железо вводится в шихту в виде скрапа. Плавку ведут в отражательных или в коротких вращающихся барабанных печах при 1300-1400 °С. Извлечение С. в черновой металл составляет более 90%. Восстановительная плавка С. основана на восстановлении её окислов до металла древесным углем или каменноугольной пылью и ошлаковании пустой породы. Восстановительной плавке предшествует окислительный обжиг при 550 °С с избытком воздуха. Огарок содержит нелетучую четырёхокись С. Как для осадительной, так и для восстановительной плавок возможно применение электропечей. Гидрометаллургический способ получения С. состоит из двух стадий: обработки сырья щелочным сульфидным раствором с переводом С. в раствор в виде солей сурьмяных кислот и сульфосолей и выделения С. электролизом. Черновая С. в зависимости от состава сырья и способа её получения содержит от 1,5 до 15% примесей: fe, as, s и др. Для получения чистой С. применяют пирометаллургическое или электролитическое рафинирование. При пирометаллургическом рафинировании примеси железа и меди удаляют в виде сернистых соединений, вводя в расплав С. антимонит (крудум) - sb 2 s 3 , после чего удаляют мышьяк (в виде арсената натрия) и серу при продувке воздуха под содовым шлаком. При электролитическом рафинировании с растворимым анодом черновую С. очищают от железа, меди и др. металлов, остающихся в электролите (Си, ag, Аи остаются в шламе). Электролитом служит раствор, состоящий из sbf 3 , h 2 so 4 и hf. Содержание примесей в рафинированной С. не превышает 0,5-0,8%. Для получения С. высокой чистоты применяют зонную плавку в атмосфере инертного газа или получают С. из предварительно очищенных соединений - трёхокиси или трихлорида.

Применение. С. применяется в основном в виде сплавов на основе свинца и олова для аккумуляторных пластин, кабельных оболочек, подшипников (баббит ) , сплавов, применяемых в полиграфии (гарт ) , и т. д. Такие сплавы обладают повышенной твёрдостью, износоустойчивостью, коррозионной стойкостью. В люминесцентных лампах галофосфатом кальция активируют sb. С. входит в состав полупроводниковых материалов как легирующая добавка к германию и кремнию, а также в состав антимонидов (например, insb). Радиоактивный изотоп 12 sb применяется в источниках g -излучения и нейтронов.

О. Е. Крейн.

Сурьма в организме. Содержание С. (на 100 г сухого вещества) составляет в растениях 0,006 мг, в морских животных 0,02 мг, в наземных животных 0,0006 мг. В организм животных и человека С. поступает через органы дыхания или желудочно-кишечный тракт. Выделяется главным образом с фекалиями, в незначительном количестве - с мочой. Биологическая роль С. неизвестна. Она избирательно концентрируется в щитовидной железе, печени, селезёнке. В эритроцитах накапливается преимущественно С. в степени окисления + 3, в плазме крови - в степени окисления + 5. Предельно допустимая концентрация С. 10 –5 - 10 –7 г на 100 г сухой ткани. При более высокой концентрации этот элемент инактивирует ряд ферментов липидного, углеводного и белкового обмена (возможно в результате блокирования сульфгидрильных групп ) .

В медицинской практике препараты С. (солюсурьмин и др.) используют в основном для лечения лейшманиоза и некоторых гельминтозов (например, шистосоматоза).

С. и её соединения ядовиты. Отравления возможны при выплавке концентрата сурьмяных руд и в производстве сплавов С. При острых отравлениях - раздражение слизистых оболочек верхних дыхательных путей, глаз, а также кожи. Могут развиться дерматит, конъюнктивит и т. д. Лечение: антидоты (унитиол), мочегонные и потогонные средства и др. Профилактика: механизация производств. процессов, эффективная вентиляция и т. д.

Лит.: Шиянов А. Г., Производство сурьмы, М., 1961; Основы металлургии, т. 5, М., 1968; Исследование в области создания новой технологии производства сурьмы и ее соединений, в сборнике: Химия и технология сурьмы, Фр., 1965.

Сурьма (лат. Stibium), Sb, химический элемент V группы периодической системы Менделеева; атомный номер 51, атомная масса 121,75; металл серебристо-белого цвета с синеватым оттенком. В природе известны два стабильных изотопа 121 Sb (57,25%) и 123 Sb (42,75%). Из искусственно полученных радиоактивных изотопов важнейшие 122 Sb (Т ½ = 2,8 сут), 124 Sb (Т ½ = 60,2 сут) и 123 Sb (Т ½ = 2 года).

Историческая справка. Сурьма известна с глубокой древности. В странах Востока она употреблялась примерно за 3000 лет до н. э. для изготовления сосудов. В Древнем Египте уже в 19 века до н. э. порошок сурьмяного блеска (природный Sb 2 S 3) под названиями mesten или stem применялся для чернения бровей. В Древней Греции он был известен как stimi и stibi, отсюда лат. stibium. Около 12-14 веков н. э. появилось название antimonium. В 1789 году А. Лавуазье включил Сурьму в список химических элементов под названием antimoine (современное англ. antimony, исп. и итал. antimonio, нем. Antimon). Русское "сурьма" произошло от турецкого surme; им обозначался порошок свинцового блеска PbS, также служивший для чернения бровей (по других данным, "сурьма" - от персидского сурме - металл). Подробное описание свойств и способов получения Сурьмы и ее соединений впервые дано алхимиком Василием Валентином (Германия) в 1604 году.

Распространение Сурьмы в природе. Среднее содержание Сурьмы в земной коре (кларк) 5·10 -3 % по массе. В магме и биосфере Сурьма рассеяна. Из горячих подземных вод она концентрируется в гидротермальных месторождениях. Известны собственно сурьмяные месторождения, а также сурьмянортутные, сурьмяносвинцовые, золотосурьмяные, сурьмяновольфрамовые. Из 27 минералов Сурьмы главное промышленное значение имеет антимонит (Sb 2 S 3). Благодаря сродству с серой Сурьма в виде примеси часто встречается в сульфидах мышьяка, висмута, никеля, свинца, ртути, серебра и других элементов.

Физические свойства Сурьмы. Сурьма известна в кристаллической и трех аморфных формах (взрывчатая, черная и желтая). Взрывчатая Сурьма (плотность 5,64-5,97 г/см 3) взрывается при любом соприкосновении; образуется при электролизе раствора SbCl 3 ; черная (плотность 5,3 г/см 3) - при быстром охлаждении паров Сурьмы; желтая - при пропускании кислорода в сжиженный SbH 3 . Желтая и черная Сурьма неустойчивы, при пониженных температурах переходят в обыкновенную Сурьму. Наиболее устойчивая кристаллическая Сурьма, кристаллизуется в тригональной системе, а = 4,5064 Å; плотность 6,61-6,73 г/см 3 (жидкой - 6,55 г/см 3); t пл 630,5 °С; t кип 1635-1645 °С: удельная теплоемкость при 20-100 °С 0,210 кдж/(кг·К); теплопроводность при 20 °С 17,6 вт/(м·К) . Температурный коэффициент линейного расширения для поликристаллической Сурьмы 11,5·10 -6 при 0-100 °С; для монокристалла а 1 = 8,1·10 -6 , а 2 = 19,5·10 -6 при 0-400 °С, удельное электросопротивление (20 °С) (43,045·10 -6 см·см). Сурьма диамагнитна, удельная магнитная восприимчивость -0,66·10 -6 . В отличие от большинства металлов, Сурьма хрупка, легко раскалывается по плоскостям спайности, истирается в порошок и не поддается ковке (иногда ее относят к полуметаллам). Механические свойства зависят от чистоты металла. Твердость по Бринеллю для литого металла 325-340 Мн/м 2 (32,5-34,0 кгс/мм 2); модуль упругости 285-300; предел прочности 86,0 Мн/м 2 (8,6 кгс/мм 2).

Химические свойства Сурьмы. Конфигурация внешних электронов атома Sb 5s 2 5p 3 . В соединениях проявляет степени окисления главным образом +5, +3 и -3. В химическом отношении Сурьма малоактивна. На воздухе не окисляется вплоть до температуры плавления. С азотом и водородом не реагирует. Углерод незначительно растворяется в расплавленной Сурьме. Металл активно взаимодействует с хлором и других галогенами, образуя галогениды сурьмы. С кислородом взаимодействует при температуре выше 630 °С с образованием Sb 2 О 3 . При сплавлении с серой получаются сульфиды сурьмы, так же взаимодействует с фосфором и мышьяком. Сурьма устойчива по отношению к воде и разбавленным кислотам. Концентрированные соляная и серная кислоты медленно растворяют Сурьму с образованием хлорида SbCl 3 и сульфата Sb 2 (SO 4) 3 ; концентрированная азотная кислота окисляет Сурьму до высшего оксида, образующегося в виде гидратированного соединения xSb 2 O 5 ·уН 2 О. Практический интерес представляют труднорастворимые соли сурьмяной кислоты - антимонаты (MeSbO 3 ·3H 2 O, где Me - Na, К) и соли не выделенной метасурьмянистой кислоты - метаантимониты (MeSbO 2 ·3H 2 O), обладающие восстановительными свойствами. Сурьма соединяется с металлами, образуя антимониды.

Получение Сурьмы. Сурьма получают пирометаллургической и гидрометаллургической переработкой концентратов или руды, содержащей 20-60% Sb. К пирометаллургическим методам относятся осадительная и восстановительная плавки. Сырьем для осадительной плавки служат сульфидные концентраты; процесс основан на вытеснении Сурьмы из ее сульфида железом: Sb 2 S 3 + 3Fe=> 2Sb + 3FeS. Железо вводится в шихту в виде скрапа. Плавку ведут в отражательных или в коротких вращающихся барабанных печах при 1300-1400 °C. Извлечение Сурьмы в черновой металл составляет более 90%. Восстановительная плавка Сурьмы основана на восстановлении ее оксидов до металла древесным углем или каменноугольной пылью и ошлаковании пустой породы. Восстановительной плавке предшествует окислительный обжиг при 550 °С с избытком воздуха. Огарок содержит нелетучий оксид Сурьмы. Как для осадительной, так и для восстановительной плавок возможно применение электропечей. Гидрометаллургический способ получения Сурьмы состоит из двух стадий: обработки сырья щелочным сульфидным раствором с переводом Сурьмы в раствор в виде солей сурьмяных кислот и сульфосолей и выделения Сурьмы электролизом. Черновая Сурьма в зависимости от состава сырья и способа ее получения содержит от 1,5 до 15% примесей: Fe, As, S и других. Для получения чистой Сурьмы применяют пирометаллургическое или электролитическое рафинирование. При пирометаллургическом рафинировании примеси железа и меди удаляют в виде сернистых соединений, вводя в расплав Сурьмы антимонит (крудум) - Sb 2 S 3 , после чего удаляют мышьяк (в виде арсената натрия) и серу при продувке воздуха под содовым шлаком. При электролитическом рафинировании с растворимым анодом черновую Сурьму очищают от железа, меди и других металлов, остающихся в электролите (Cu, Ag, Au остаются в шламе). Электролитом служит раствор, состоящий из SbF 3 , H 2 SO 4 и HF. Содержание примесей в рафинированной Сурьмt не превышает 0,5-0,8%. Для получения Сурьмs высокой чистоты применяют зонную плавку в атмосфере инертного газа или получают Сурьмe из предварительно очищенных соединений - оксида (III) или трихлорида.

Применение Сурьмы. Сурьма применяется в основном в виде сплавов на основе свинца и олова для аккумуляторных пластин, кабельных оболочек, подшипников (баббит), сплавов, применяемых в полиграфии (гарт), и т. д. Такие сплавы обладают повышенной твердостью, износоустойчивостью, коррозионной стойкостью. В люминесцентных лампах галофосфатом кальция активируют Sb. Сурьма входит в состав полупроводниковых материалов как легирующая добавка к германию и кремнию, а также в состав антимонидов (например, InSb). Радиоактивный изотоп 122 Sb применяется в источниках γ-излучения и нейтронов.

Сурьма в организме. Содержание Сурьмы (на 100 г сухого вещества) составляет в растениях 0,006 мг, в морских животных 0,02 мг, в наземных животных 0,0006 мг. В организме животных и человека Сурьма поступает через органы дыхания или желудочно-кишечный тракт. Выделяется главным образом с фекалиями, в незначительном количестве - с мочой. Сурьма избирательно концентрируется в щитовидной железе, печени, селезенке. В эритроцитах накапливается преимуществено Сурьма в степени окисления +3, в плазме крови - в степени окисления. +5. Предельно допустимая концентрация Сурьмы 10 -5 - 10 -7 г на 100 г сухой ткани. При более высокой концентрации этот элемент инактивирует ряд ферментов липидного, углеводного и белкового обмена (возможно в результате блокирования сулъфгидрилъных групп).

Сурьма и ее соединения ядовиты. Отравления возможны при выплавке концентрата сурьмяных руд и в производстве сплавов Сурьмы. При острых отравлениях - раздражение слизистых оболочек верхних дыхательных путей, глаз, а также кожи. Могут развиться дерматит, конъюнктивит и т. д.

Последние материалы сайта