Как диссоциируют вещества. Степень диссоциации. Сильные и слабые электролиты. Водородный показатель pH

26.10.2023
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Теория
электролитической
диссоциации

Цели. Сформировать у учащихся понятие «электролитическая диссоциация» на основе атомно-молекулярного учения, теории электролитической диссоциации С.Аррениуса и гидратной теории растворов Д.И.Менделеева. Вскрыть причину электропроводности растворов, обсудить значение и применение теории.
Оборудование и реактивы. Пробирки, два мерных цилиндра, пипетки, прибор для проверки электрической проводимости растворов, стаканы, стеклянные палочки;
вода, концентрированные серная и уксусная кислоты, твердые гидроксид натрия, хлорид натрия, сульфат меди(II), 100 мл раствора метилоранжа в ацетоне, растворы сульфата меди(II), хлорида натрия, гидроксида кальция, нитрата бария, хлорида бария, нитрата серебра, соляной кислоты, карбоната натрия, хлорида магния, хлорида алюминия, цинк гранулированный, железо – порошок, алюминий гранулированный.

План изложения темы

  • Свойства водных и неводных растворов различных классов неорганических соединений.
  • Растворение в воде с точки зрения электронной теории.
  • Диссоциация электролитов в растворе.
  • Степень электролитической диссоциации. Слабые и сильные электролиты.

ХОД УРОКА

Учитель. Известно ли вам, что вещества растворяются не только в воде, но и в других растворителях? Если да, то приведите примеры. (Учащиеся приводят примеры растворения веществ.)
Выясним, нужен ли растворитель для протекания реакции и важна ли в этом случае природа растворителя. Возьмем концентрированную серную кислоту и опустим в нее цинк. Произойдет ли реакция? (Проводит лабораторный опыт.)
Ученик. Цинк реагирует с концентрированной серной кислотой при нагревании. При этом выделяется газ SO 2 (пишут на доске уравнение реакции):

Учитель. Выделяется ли водород? А теперь перельем содержимое пробирки (из опыта) в пробирку с водой, очень осторожно. Реакция пошла, выделяется много тепла. Обратите внимание, без воды реакция почти не шла, хотя вода при обычных условиях не взаимодействует с цинком.
Проделаем еще один опыт. Смешаем сначала твердые вещества: гидроксид натрия и сульфат меди(II), а затем их растворы. Реакция между твердыми реагентами не происходит, а в растворе образуется голубой осадок. Запишите в тетрадях уравнение химической реакции:

2NaOH + CuSO 4 = Cu(OH) 2 + Na 2 SO 4 .

Из результатов опытов сделаем вывод, что вода в химических реакциях вовсе не пассивная среда. Под ее влиянием вещества испытывают изменения. Вода заставляет электролиты распадаться на ионы.
Рассмотрим процесс растворения электролитов в воде. Для этого придется вспомнить, что такое валентность и какие виды химической связи вам известны.

Ученики отвечают на поставленные вопросы. При рассмотрении ионной связи акцентируем внимание на модели кристаллической решетки хлорида натрия. Ковалентную полярную связь повторяем на примере строения молекул воды.
Учитель. В целом молекула воды не заряжена. Но внутри молекулы Н 2 О атомы водорода и кислорода располагаются так, что положительные и отрицательные заряды находятся в противоположных концах молекулы (рис. 1). Поэтому молекула воды представляет собой диполь.

Механизм электролитической диссоциации NaCl при растворении поваренной соли в воде состоит в последовательном отщеплении ионов натрия и хлора полярными молекулами воды. Вслед за переходом ионов Na + и Сl – из кристалла в раствор происходит образование гидратов этих ионов. (Далее веду объяснение по рисунку (рис. 2, см. с. 36) учебника: Фельдман Ф.Г., Рудзитис Г.Е . Химия-9. М.: Просвещение, 1999, с. 4.) А как реагируют с молекулами воды полярные молекулы электролита? Рассмотрим это на примере соляной кислоты (рис. 3 ,
см. с. 36) .

При растворении в воде соляной кислоты (в молекулах HCl cвязь между атомами ковалентная сильнополярная) происходит изменение характера химической связи. Под влиянием полярных молекул воды ковалентная полярная связь превращается в ионную. Образовавшиеся ионы остаются связанными с молекулами воды – гидратированными. Если растворитель неводный, то ионы называют сольватированными.

Наличие ионов в растворах кислот, щелочей и солей можно доказать реакциями обмена. Проведем следующие опыты:

взаимодействие сульфата меди(II) c:
а) нитратом бария;
б) хлоридом бария;
в) гидроксидом натрия;
г) гидроксидом кальция;

взаимодействие нитрата серебра с:
д) соляной кислотой;
е) хлоридом натрия.

Запишем уравнения химических реакций:

а) СuSO 4 + Ba(NO 3) 2 = Cu(NO 3) 2 + BaSO 4 ;

б) СuSO 4 + BaСl 2 = CuCl 2 + BaSO 4 ;

в) СuSO 4 + 2NaOH = Na 2 SO 4 + Cu(OH) 2 ;

г) СuSO 4 + Сa(OH) 2 = CaSO 4 + Cu(OH) 2 ;

д) AgNO 3 + HCl = HNO 3 + AgCl;

е) AgNO 3 + NaCl = NaNO 3 + AgCl.

На основании этих реакций можно сделать следующие выводы:
1) ионы металлов, гидроксильные группы и кислотные остатки реагируют в водных растворах как самостоятельно существующие частицы;
2) гидроксильные группы, кислотные остатки, атомы водорода кислот и атомы металлов солей являются теми электрически заряженными частицами, которые находятся в растворах кислот, щелочей и солей.
Запишем определение понятия: «Электролитическая диссоциация – это процесс распада электролита на ионы при растворении его в воде или расплавлении».
Поскольку число молекул воды, которое присоединяют ионы, неизвестно, то процесс диссоциации кислоты, щелочей и солей упрощенно изображают так:

HCl = H + + Cl – ,

NaOH = Na + + OH – ,

NaCl = Na + + Cl – .

Многоосновные кислоты и кислые соли диссоциируют ступенчато. Чтобы показать неполную диссоциацию молекул и ионов, не относящихся к сильным электролитам, используют знак обратимости «». Например, для H 2 SO 4 и ее кислой соли NaHSO 4:

H 2 SO 4 = H + + ,

NaHSO 4 = Na + + ,

Cледует не допускать ошибок при написании уравнений диссоциации нерастворимых и малорастворимых веществ, которые практически не диссоциируют на ионы или диссоциируют в малой степени:

CaCO 3 нет диссоциации,

СaSO 4 Ca 2+ + .

Основные термины, рассматриваемые в теории электролитической диссоциации, – это «электролиты» и «ионы».
Электролиты – это вещества, которые при растворении в воде или в расплавленном состоянии распадаются на ионы.
Ионы – это атомы или группы атомов, обладающие положительным (катионы ) или отрицательным (анионы ) зарядом. Ионы отличаются от атомов как по строению, так и по свойствам. Для примера сравним свойства атомарного и молекулярного хлора со свойствами иона. Рассмотрим их отношение к металлам, водороду, ионам серебра. Свойства металлического натрия сравним со свойствами ионов натрия.
(Ученики приводят примеры и рассказывают о свойствах атомов Cl, молекулы Cl 2 и ионов Сl – , а также о свойствах металлического Na и ионов Na + в составе солей.)

Общий и характерный признак ионов – наличие электрических зарядов. Ток проводят только те растворы, в которых содержатся ионы. Сравним электропроводность растворов кислот, щелочей, солей, сахара, спирта при помощи прибора для изучения электропроводности растворов (рис. 4). Мы видим, что диссоциация происходит не во всяком растворе. На основании ионной теории сформулируем новые определения кислот, оснований и солей как сложных веществ, образующих при диссоциации в воде особые ионы. При диссоциации кислот в качестве катионов отщепляются только ионы H + . При диссоциации оснований в качестве анионов отщепляется только ионы ОН – . Средние соли диссоциируют на катионы металлов и анионы кислотных остатков.
Попробуем ответить на такой вопрос: все ли электролиты в одинаковой степени распадаются на ионы? Сравним электропроводность концентрированных растворов хлорида натрия и уксусной кислоты. В растворе соли лампочка загорается ярко, а в уксусной кислоте – очень слабо. Разбавим растворы, добавив к ним воды. Электропроводность раствора хлорида натрия не изменяется, а в растворе уксусной кислоты лампочка горит ярче. Хлорид натрия даже в концентрированных растворах диссоциируют полностью. Молекулы же уксусной кислоты в концентрированных растворах почти не диссоциируют. При разбавлении уксусной кислоты число диссоциированных молекул увеличивается, равновесие диссоциации смещается вправо:

СН 3 СООН СН 3 СОО – + Н + .

Вещества с ионной кристаллической решеткой полностью диссоциируют на ионы в водных растворах. Отношение числа диссоциированных молекул (n) к общему числу молекул (N), находящихся в растворе, называют степенью диссоциации (). Величина может принимать значения от 0 (диссоциации нет) до 1 (диссоциация полная).
Общие свойства кислот обусловливаются наличием ионов
Н + в растворе. Активность кислоты (сильный или слабый электролит) зависит от концентрации ионов Н + в растворе.

Демонстрационный опыт. В два стакана нальем по 50 мл раствора метилоранжа в ацетоне. В первый стакан добавим 1–2 капли концентрированной серной кислоты, появляется малиновое окрашивание. Чтобы во втором стакане появилась такая же окраска, придется добавить в 10 раз больше (10–20 капель) уксусной кислоты, т.к. степень диссоциации кислоты CH 3 COOH незначительная и концентрация ионов водорода в ней невелика.
Вывод. Сила кислот и оснований определяется их степенью диссоциации.

Хорошо известно, что растворы могут приобретать некоторые качества, которые не наблюдаются ни у одного из компонентов, взятых в индивидуальном виде. Так, водный раствор NaCl хорошо проводит электрический ток, тогда как ни чистая вода, ни сухая соль электропроводностью не обладают. В этой связи все растворенные вещества принято делить на два типа:

1) вещества, растворы которых обладают электропроводностью, называют электролитами ;

2) вещества, растворы которых не обладают электропро-водностью, называют неэлектролитами .

К неэлектролитам относятся оксиды, газы, большинство органи-ческих соединений (углеводороды, спирты, альдегиды, кетоны и др.).

К электролитам относится большинство неорганических и некоторые органические кислоты, основания и соли.

Появление электропроводности у растворов электролитов объяснил С. Аррениус, который в 1887 г. предложил теорию электролитической диссоциации:

Электролитической диссоциацией называется процесс распада электролита на ионы под действием молекул растворителя.

Главной причиной электролитической диссоциации является процесс сольватации (гидратации) ионов. Вследствие сольватации затрудняется обратный процесс рекомбинации ионов, называемый также ассоциацией или моляризацией .

В этой связи можно сформулировать некоторые положения:

1) диссоциации подвергаются вещества с ионным или близким к ионному типом химической связи;

2) процесс диссоциации сильнее протекает в полярном раство-рителе и слабее (если вообще возможен) в неполярном растворителе;

3) процесс диссоциации идет тем сильнее, чем выше диэлектри-ческая проницаемость растворителя.

В общем виде процесс электролитической диссоциации в воде можно представить следующим образом:

Kt n An m  (x y )H 2 O ⇄ n m+  m n  ,

где Kt m + – положительно заряженный ион (катион );

An n  – отрицательно заряженный ион (анион ).

Величины x и y , отражающие количество молекул воды в гидрат-ных оболочках, варьируются в широких пределах в зависимости от природы и концентрации ионов, температуры, давления и т.д. В этой связи удобнее пользоваться упрощенными уравнениями электроли-тической диссоциации, т.е. без учета гидратации:

NaCl Na +  Cl  ;

CuSO 4 Cu 2+  SO 4 2  ;

K 3 PO 4 3K +  PO 4 3  .

Тем не менее, следует иметь в виду, что при диссоциации кислот в водных растворах образуются не свободные ионы H + , а достаточно устойчивые ионы гидроксония H 3 O + , поэтому уравнение диссоциации кислоты (например, HCl) должно выглядеть так:

HCl  H 2 O H 3 O +  Cl  .

Однако в химической литературе чаще встречается форма записи, отражающая только процесс распада электролита без учета эффекта гидратации. В дальнейшем мы также будем пользоваться упро-щенной терминологией.

Сильные и слабые электролиты

Количественной характеристикой процесса электролитической диссоциации является степень диссоциации.

Степенью диссоциации называется отношение количества электролита, распавшегося на ионы (n ), к общему количеству электролита (n 0 ):

Величина  выражается в долях единицы или в % и зависит от природы электролита, растворителя, температуры, концентрации и состава раствора.

Особую роль играет растворитель: в ряде случаев при переходе от водных растворов к органическим растворителям степень диссоциации электролитов может резко возрасти или уменьшиться. В дальнейшем, при отсутствии специальных указаний, будем считать, что растворителем является вода.

По степени диссоциации электролиты условно разделяют на сильные ( > 30%), средние (3% <  < 30%) и слабые ( < 3%).

К сильным электролитам относят:

1) некоторые неорганические кислоты (HCl, HBr, HI, HNO 3 , H 2 SO 4 , HClO 4 и ряд других);

2) гидроксиды щелочных (Li, Na, K, Rb, Cs) и щелочноземельных (Ca, Sr, Ba) металлов;

3) почти все растворимые соли.

К электролитам средней силы относят Mg(OH) 2 , H 3 PO 4 , HCOOH, H 2 SO 3 , HF и некоторые другие.

Слабыми электролитами считают все карбоновые кислоты (кроме HCOOH) и гидратированные формы алифатических и ароматических аминов. Слабыми электролитами являются также многие неоргани-ческие кислоты (HCN, H 2 S, H 2 CO 3 и др.) и основания (NH 3 ∙H 2 O).

Несмотря на некоторые совпадения, в целом не следует отождествлять растворимость вещества с его степенью диссоциации. Так, уксусная кислота и этиловый спирт неограниченно растворимы в воде, но в то же время первое вещество является слабым электро-литом, а второе  неэлектролит.

Темы кодификатора ЕГЭ: Электролитическая диссоциация электролитов вводных растворах. Сильные и слабые электролиты.

это вещества, растворы и расплавы которых проводят электрический ток.

Электрический ток – это упорядоченное движение заряженных частиц под действием электрического поля. Таким образом, в растворах или расплавах электролитов есть заряженные частицы. В растворах электролитов, как правило, электрическая проводимость обусловлена наличием ионов.

Ионы – это заряженные частицы (атомы или группы атомов). Разделяют положительно заряженные ионы (катионы ) и отрицательно заряженные ионы (анионы ).

Электролитическая диссоциация — это процесс распада электролита на ионы при его растворении или плавлении.

Разделяют вещества — электролиты и неэлектролиты . К неэлектролитам относятся вещества с прочной ковалентной неполярной связью (простые вещества), все оксиды (которые химически не взаимодействуют с водой), большинство органических веществ (кроме полярных соединений — карбоновых кислот, их солей, фенолов) — альдегиды, кетоны, углеводороды, углеводы.

К электролитам относят некоторые вещества с ковалентной полярной связью и вещества с ионной кристаллической решеткой.

В чем же суть процесса электролитической диссоциации?

Поместим в пробирку несколько кристаллов хлорида натрия и добавим воду. Через некоторое время кристаллы растворятся. Что произошло?
Хлорид натрия – вещество с ионной кристаллической решеткой. Кристалл NaCl состоит из ионов Na + и Cl — . В воде этот кристалл распадается на структурные единицы-ионы. При этом распадаются ионные химические связи и некоторые водородные связи между молекулами воды. Попавшие в воду ионы Na + и Cl — вступают во взаимодействие с молекулами воды. В случае хлорид-ионов можно говорить про электростатическое притяжение дипольных (полярных) молекул воды к аниону хлора, а в случае катионов натрия оно приближается по своей природе к донорно-акцепторному (когда электронная пара атома кислорода помещается на вакантные орбитали иона натрия). Окруженные молекулами воды ионы покрываются гидратной оболочкой . Диссоциация хлорида натрия описывается уравнением:

NaCl = Na + + Cl –

При растворении в воде соединений с ковалентной полярной связью, молекулы воды, окружив полярную молекулу, сначала растягивают связь в ней, увеличивая её полярность, затем разрывают её на ионы, которые гидратируются и равномерно распределяются в растворе. Например, соляная ксилота диссоциирует на ионы так: HCl = H + + Cl — .

При расплавлении, когда происходит нагревание кристалла, ионы начинают совершать интенсивные колебания в узлах кристаллической решётки, в результате чего она разрушается, образуется расплав, который состоит из ионов.

Процесс электролитической диссоциации характеризуется величиной степени диссоциации молекул вещества:

Степень диссоциации — это отношение числа продиссоциировавших (распавшихся) молекул к общему числу молекул электролита. Т.е., какая доля молекул исходного вещества распадается в растворе или расплаве на ионы.

α=N продисс /N исх, где:

N продисс — это число продиссоциировавших молекул,

N исх — это исходное число молекул.

По степени диссоциации электролиты делят на делят на сильные и слабые .

Сильные электролиты (α≈1):

1. Все растворимые соли (в том числе соли органических кислот — ацетат калия CH 3 COOK, формиат натрия HCOONa и др.)

2. Сильные кислоты: HCl, HI, HBr, HNO 3 , H 2 SO 4 (по первой ступени), HClO 4 и др.;

3. Щелочи: NaOH, KOH, LiOH, RbOH, CsOH; Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 .

Сильные электролиты распадаются на ионы практически полностью в водных растворах, но только в . В растворах даже сильные электролиты могут распадаться только частично. Т.е. степень диссоциации сильных электролитов α приблизительно равна 1 только для ненасыщенных растворов веществ. В насыщенных или концентрированны растворах степень диссоциации сильных электролитов может быть меньше или равна 1: α≤1.

Слабые электролиты (α<1):

1. Слабые кислоты, в т.ч. органические;

2. Нерастворимые основания и гидроксид аммония NH 4 OH;

3. Нерастворимые и некоторые малорастворимые соли (в зависимости от растворимости).

Неэлектролиты:

1. Оксиды, не взаимодействующие с водой (взаимодействующие с водой оксиды при растворении в воде вступают в химическую реакцию с образованием гидроксидов);

2. Простые вещества;

3. Большинство органических веществ со слабополярными или неполярными связями (альдегиды, кетоны, углеводороды и т.д.).

Как диссоциируют вещества? По степени диссоциации различают сильные и слабые электролиты.

Сильные электролиты диссоциируют полностью (в насыщенных растворах), в одну ступень, все молекулы распадаются на ионы, практически необратимо. Обратите внимание — при диссоциации в растворе образуются только устойчивые ионы. Самые распространенные ионы можно найти в таблице растворимости — это ваша официальная шпаргалка на любом экзамене. Степень диссоциации сильных электролитов примерно равна 1. Например, при диссоциации фосфата натрия образуются ионы Na + и PO 4 3– :

Na 3 PO 4 → 3Na + +PO 4 3-

NH 4 Cr(SO 4) 2 → NH 4 + + Cr 3+ + 2SO 4 2–

Диссоциация слабых электролитов : многоосновных кислот и многокислотных оснований происходит ступенчато и обратимо . Т.е. при диссоциации слабых электролитов распадается на ионы только очень небольшая часть исходных частиц. Например, угольная кислота:

H 2 CO 3 ↔ H + + HCO 3 –

HCO 3 – ↔ H + + CO 3 2–

Гидроксид магния диссоциирует также в 2 ступени:

Mg(OH) 2 ⇄ Mg(OH) + OH –

Mg(OH) + ⇄ Mg 2+ + OH –

Кислые соли диссоциируют также ступенчато , сначала разрываются ионные связи, затем — ковалентные полярные. Например, гидрокабонат калия и гидроксохлорид магния:

KHCO 3 ⇄ K + + HCO 3 – (α=1)

HCO 3 – ⇄ H + + CO 3 2– (α < 1)

Mg(OH)Cl ⇄ MgOH + + Cl – (α=1)

MgOH + ⇄ Mg 2+ + OH – (α<< 1)

Степень диссоциации слабых электролитов намного меньше 1: α<<1.

Основные положения теории электролитической диссоциации, таким образом:

1. При растворении в воде электролиты диссоциируют (распадаются) на ионы.

2. Причина диссоциации электролиты в воде – это его гидратация, т.е. взаимодействие с молекулами воды и разрыв химической связи в нем.

3. Под действием внешнего электрического поля положительно заряженные ионы двигаюися к положительно заряженному электроду — катоду, их называют катионами. Отрицательно заряженные электроны двигаются к отрицательному электроду – аноду. Их называют анионами.

4. Электролитическая диссоциация происходит обратимо для слабых электролитов, и практически необратимо для сильных электролитов.

5. Электролиты могут в разной степени диссоциировать на ионы — в зависимости от внешних условий, концентрации и природы электролита.

6. Химические свойства ионов отличаются от свойств простых веществ. Химические свойства растворов электролитов определяются свойствами тех ионов, которые из него образуются при диссоциации.

Примеры .

1. При неполной диссоциации 1 моль соли общее количество положительных и отрицательных ионов в растворе составило 3,4 моль. Формула соли – а) K 2 S б) Ba(ClO 3) 2 в) NH 4 NO 3 г) Fe(NO 3) 3

Решение : для начала определим силу электролитов. Это легко можно сделать по таблице растворимости. Все соли, приведенные в ответах — растворимые, т.е. сильные электролиты. Далее, запишем уравнения электролитической диссоциации и по уравнению определим максимально число ионов в каждом растворе:

а) K 2 S ⇄ 2K + + S 2– , при полном распаде 1 моль соли образуется 3 моль ионов, больше 3 моль ионов не получится никак;

б) Ba(ClO 3) 2 ⇄ Ba 2+ + 2ClO 3 – , опять при распаде 1 моль соли образуется 3 моль ионов, больше 3 моль ионов не образуется никак;

в) NH 4 NO 3 ⇄ NH 4 + + NO 3 – , при распаде 1 моль нитрата аммония образуется 2 моль ионов максимально, больше 2 моль ионов не образуется никак;

г) Fe(NO 3) 3 ⇄ Fe 3+ + 3NO 3 – , при полном распаде 1 моль нитрата железа (III) образуется 4 моль ионов. Следовательно, при неполном распаде 1 моль нитрата железа возможно образование меньшего числа ионов (неполный распад возможен в насыщенном растворе соли). Следовательно, вариант 4 нам подходит.

Электролитическая диссоциация кислот

При растворении в воде кислоты, соли и основания диссоциируют на положительно и отрицательно заряженные ионы (катионы и анионы). Определим характерные общие признаки диссоциации электролитов каждого класса соединений.

Кислоты, как вы помните, состоят из Гидрогена и кислотного остатка, соединенных ковалентной полярной связью. В предыдущем параграфе на примере растворения гидроген хлорида мы рассмотрели, как под действием молекул воды полярная связь превращается в ионную, и кислота распадается на катионы Гидрогена и хлорид-ионы.

Таким образом, с точки зрения теории электролитической диссоциации Аррениуса,

Кислоты — это электролиты, при диссоциации которых образуются катионы Гидрогена и анионы кислотного остатка.

Подобно хлоридной кислоте протекает диссоциация и других кислот, например нитратной:

При диссоциации молекулы сульфатной кислоты число катионов Гидрогена вдвое превышает число анионов кислотного остатка — сульфат-ионов. Заряд аниона равен -2 (в формулах ионов записывают «2-»):

Названия анионов, образующихся при диссоциации кислот, совпадают с названиями кислотных остатков. Они приведены в таблице растворимости на форзаце.

Легко заметить, что при диссоциации различных кислот образуются различные анионы, но катионы только одного типа — катионы Гидрогена H+. Значит, именно катионы Гидрогена определяют характерные свойства кислот — кислый вкус, изменение окраски индикаторов, реакции с активными металлами, основными оксидами, основаниями и солями.

Многоосновные кислоты диссоциируют ступенчато, отщепляя ионы Гидрогена последовательно, друг за другом. Например, в растворе сульфатной кислоты протекают следующие процессы:

Как видно из приведенных уравнений диссоциации многоосновной кислоты, анионы, образующиеся при ступенчатой диссоциации на первой стадии, содержат ионы Гидрогена. Это отражено в названии анионов: HSO - — гидрогенсульфат-ион.

Электролитическая диссоциация ортофосфатной кислоты проходит в три стадии:

Суммарное уравнение диссоциации ортофосфатной кислоты имеет вид:

Таким образом, каждой многоосновной кислоте соответствует несколько анионов, и все они одновременно присутствуют в растворе.

Обратите внимание, что в некоторых уравнениях диссоциации стоят двунаправленные стрелки. Что они означают, вы узнаете в следующем параграфе.


Электролитическая диссоциация оснований

Основания состоят из катионов металлического элемента и гидроксид-анионов. При диссоциации оснований эти ионы переходят в раствор. Число гидроксид-ионов, образующихся при диссоциации, равно заряду иона металлического элемента. Таким образом, с точки зрения теории электролитической диссоциации

Основания — это электролиты, которые диссоциируют на катионы металлического элемента и гидроксид-анионы.

Рассмотрим уравнения диссоциации оснований на примере диссоциации натрий и барий гидроксидов:

При диссоциации оснований образуются анионы одного типа — гидроксид-ионы, определяющие все характерные свойства растворов щелочей: способность менять окраску индикаторов, реагировать с кислотами, кислотными оксидами и солями.

Электролитическая диссоциация солей

Соли образованы катионами металлического элемента и анионами кислотного остатка. При растворении солей в воде эти ионы переходят в раствор.

Соли — это электролиты, которые диссоциируют на катионы металлического элемента и анионы кислотного остатка.

Рассмотрим диссоциацию солей на примере диссоциации калий нитрата:

Аналогично диссоциируют и другие соли, например нитрат кальция и калий ортофосфат:

В уравнениях диссоциации солей заряд катиона по абсолютной величине равен степени окисления металлического элемента, а заряд аниона — сумме степеней окисления элементов в кислотном остатке. Например, купрум(П) сульфат распадается на ионы

а феррум(Ш) нитрат — на ионы

Заряд катионов металлических элементов в большинстве случаев можно определить по Периодической системе. Заряды катионов металлических элементов главных подгрупп обычно равны номеру группы, в которой расположен элемент:

Металлические элементы побочных подгрупп обычно образуют несколько ионов, например Fe 2 +, Fe 3 +.

Заряды кислотных остатков проще определять по числу ионов Гидрогена в составе молекулы кислоты, как вы это делали в 8 классе. Заряды некоторых кислотных остатков приведены в таблице растворимости на форзаце.

Обратите внимание, что в уравнениях диссоциации кислот, оснований и солей суммарный заряд катионов и анионов должен быть равен нулю, поскольку любое вещество является электронейтральным.

Ступенчатая диссоциация обусловливает возможность существования кислых и основных солей. Кислые соли содержат ионы Гидрогена, как кислоты. Именно поэтому такие соли называют кислыми. А в основных солях содержатся гидроксид-ионы, как в основаниях.

На первой стадии диссоциации сульфатной кислоты образуется гидрогенсульфат-ион HSO-, благодаря чему существуют кислые соли: NaHSO 4 (натрий гидрогенсульфат), Al(HSO 4) 3 (алюминий гидрогенсульфат) и др. Для ортофосфатной кислоты также характерны кислые соли K 2 HPO 4 (калий гидрогенортофосфат) или KH 2 PO 4 (калий дигидрогенортофосфат).

В растворах кислые соли диссоциируют в две стадии:

Кислые соли характерны только для многоосновных кислот, поскольку они диссоциируют ступенчато. Единственным исключением является одноосновная кислота — флуоридная. Благодаря водородным связям в растворе этой кислоты присутствуют частицы H 2 F 2 , и флуоридная кислота может образовывать кислую соль состава KHF 2 .

Некоторые нерастворимые гидроксиды образуют катионы, в которых имеется гидроксид-ион. Например, алюминий содержится в составе катиона AlOH 2+ , благодаря чему существует соль состава AlOHCl 2 (алюминий гидроксохлорид). Такую соль называют основной.


Ключевая идея

Контрольные вопросы

100. Дайте определение кислотам, основаниям и солям с точки зрения теории электролитической диссоциации.

101. В чем особенность диссоциации многоосновных кислот по сравнению с одноосновными? Объясните на примере сульфатной кислоты.

Задания для усвоения материала

102. В результате диссоциации молекулы кислоты образовался ион с зарядом 3—. Сколько ионов Гидрогена при этом образовалось?

103. Составьте уравнения электролитической диссоциации кислот: карбонатной, бромидной, нитритной. Назовите образующиеся анионы.

104. Какие из приведенных кислот будут диссоциировать ступенчато: HCl, H 2 CO 3 , HNO 3 , H 2 S, H 2 SO 3 ? Ответ подтвердите уравнениями реакций.

105. Составьте уравнения диссоциации солей: магний нитрата, алюминий хлорида, барий бромида, натрий карбоната, натрий ортофосфата.

106. Приведите по одному примеру солей, при диссоциации которых количеством вещества 1 моль образуется: а) 2 моль ионов; б) 3 моль ионов; в) 4 моль ионов; г) 5 моль ионов. Запишите уравнения диссоциации.

107. Запишите заряды ионов в веществах: a) Na 2 S, Na 2 SO 4 , Na 3 PO 4 , AlPO 4 ;

б) NaHSO 4 , Mg(HSO 4) 2 , CaHPO 4 , Ba(OH) 2 . Назовите эти вещества.

108. Составьте уравнения электролитической диссоциации веществ: калий гидроксида, барий сульфида, феррум(Ш) нитрата, магний хлорида, алюминий сульфата.

109. Составьте формулу вещества, при диссоциации которого образуются ионы Кальция и гидроксид-ионы.

110. Из перечня веществ выпишите отдельно электролиты и неэлектролиты: HCl, Ca, Cr 2 (SO 4) 3 , Fe 2 O 3 , Mg(OH) 2 , CO 2 , Sr(OH) 2 , Sr(NO 3) 2 , P 2 O 5 , H 2 O. Составьте уравнения диссоциации электролитов.

111. При диссоциации некоего нитрата образовался 1 моль катионов с зарядом 2+. Какое количество вещества нитрат-ионов при этом образовалось?

112. Составьте формулы и запишите уравнения диссоциации феррум(П) сульфата и феррум(Ш) сульфата. Чем отличаются эти соли?

113. Приведите по одному примеру уравнений диссоциации солей в соответствии со схемами (буквой М обозначен металлический элемент, а Х — кислотный остаток): а) МХ ^ М 2+ + Х 2- ; б) МХ 3 ^ М 3+ + 3Х - ;

в) М 3 Х ^ 3М+ + Х 3- ; г) М 2 Х 3 ^ 2М 3 + + 3Х 2- .

114. В растворе присутствуют ионы K+, Mg 2 +, NO-, SO4 - . Какие вещества растворили? Приведите два варианта ответа.

115*. Составьте уравнения диссоциации тех электролитов, которые образуют хлорид-ионы: CrCl 3 , KClO 3 , BaCl 2 , Ca(ClO) 2 , HClO 4 , MgOHCl.

Это материал учебника

Существуют две основные причины прохождения электрического тока через проводники: либо за счет переноса элек-тронов , либо за счет переноса ионов. Электронная проводимость присуща, прежде всего, металлам. Ионная проводимость присуща многим химическим соединениям, обладающим ионным строением, например, солям в твердом или расплавленном состояниях, а также многим водным и неводным растворам.

Все вещества по их поведе-нию в растворах принято делить на две категории:

а) вещества, рас-творы которых обладают ионной проводимостью (электролиты);

б) вещества, растворы которых не обладают ионной проводимостью (неэлектролиты).

К электролитам относится большинство неорга-нических кислот, оснований и солей. К неэлектролитам относятся многие органические соединения, например, спирты и углеводы.

Оказалось, что растворы электролитов обладают более низкими значениями температуры плавления и более высокими температу-рами кипения по сравнению с соответствующими значениями для чистого растворителя или для раствора неэлектролита в этом же растворителе. Для объяснения этих фактов Аррениус предложил теорию электролитической дис-социации.

Под электролитической диссоциацией понимается распад моле-кул электролита в растворе с образованием положительно и отрица-тельно заряженных ионов - катионов и анионов. Например, моле-кула уксусной кислоты так диссоциирует в водном растворе:

СН 3 СООН СН 3 СОО - + Н +

Процесс диссоциации во всех случаях является обратимым, по-этому при написании уравнений реакции диссоциации применяется знак обратимости . Различные электролиты диссоциируют на ио-ны в различной степени. Полнота распада зависит от природы элек-тролита, его концентрации, природы растворителя, температуры.

Сильные и слабые электролиты. Степень диссоциации. Кон-станта диссоциации. Степенью диссоциации α называют - отношение числа молекул, распавшихся на ионы (n) к общему числу растворенных молекул (n 0).

α = (n/n 0) ?100

Степень диссоциации может изменяться от 0 до 1, от отсутствия диссоциации до полной диссоциации. В зависимости от величины степени диссоциации различают слабые и сильные электролиты. К слабым электролитам относят ве-щества, у которых степень диссоциации в 0,1 М растворах меньше 3%; если степень диссоциации в 0,1 М растворе превышает 30%, то такой электролит называют сильным. Электролиты, степень диссо-циации которых лежит в пределах от 3% до 30%, называются элек-тролитами средней силы.

К сильным электролитам относятся большинство солей, некоторые кислоты - НСl, НВr, НI, НNО 3 , НСlO 4 , Н 2 SO 4 и ос-нования щелочных и щелочноземельных металлов - щелочи LiОН, NаОН, КОН, RbОН, СsОН, Са(ОН) 2 , Sr(ОН) 2 , Ва(ОН) 2 .


Уравнение реакции диссоциации электролита АК на катионы К + и анионы А - можно в общем виде представить сле-дующим образом:

КА К + + А -

и степень диссоциации α в данном случае можно выразить отноше-нием молярной концентрации образовавшихся ионов [К + ] или [А - ] к первоначальной молярной концентрации электролита [АК] о, т.е.

С увеличением концентрации раствора степень диссо-циации электролита уменьшается.

Многоосновные кислоты и основания диссоциируют ступенчато - вначале от молекулы отщепляется один из ионов, затем другой и т.д. Каждая ступень диссоциации характеризуется своим значением константы диссоциации.

I ступень: Н 2 SO 4 → Н + + НSO 4 -

II ступень: НSO 4 - Н + + SO 4 2-

Общее уравнение: Н 2 SO 4 2Н + + SO 4 2-

Процесс электролитической диссоциации характеризуют константой диссоциации (К) . Так, для реакции КА К + + А - константа диссоциации:

К = [К + ]? [ А - ]/[КА]

Между константой и степенью электролитической диссоциации существует количественная связь. В приведенном примере общую концентрацию растворенного вещества обозначим с , а степень диссоциации α . Тогда [К + ] = [А - ] = α?с и соответственно концентрация недиссоциированных частиц [КА] = (1 - α )с .

Подставив значения в выражение для константы диссоциации, получим соотношение

Поскольку молярная концентрация равна C = 1/V, то

Данные уравнения является математическим выражением закона разведения Оствальда : константа диссоциации электролита не зависит от разведения раствора .

Ионное произведение воды. рН раствора. Значение константы диссоциации воды К Н2О = 1·10 -14 . Данную константу для воды называ-ют ионным произведением воды, которое зависит только от темпера-туры.

Согласно реакции Н 2 О Н + + ОН - , при диссоциации воды на каждый ион Н + образуется один ион ОН - , следовательно, в чистой воде концен-трации этих ионов одинаковы: [Н + ] = [ОН - ] = 10 -7 .

рН = -lg[Н + ]

Водные растворы имеют значение рН в интервале от 1 до 14. По соотношению концентраций этих ионов различают три типа сред: нейтральную, кислую и щелочную.

Нейтральная среда - среда, в которой концентрации ионов [Н + ] = [ОН - ] = 10 -7 моль/л (рН = 7).

Кислая среда - среда, в которой концентрация ионов [Н + ] больше концентрации ионов [ОН - ], т.е. [Н + ] > 10 -7 моль/л (рН < 7).

Щелочная среда - среда, в которой концентрация ионов [Н + ] меньше концентрации ионов [ОН - ], т.е. [Н + ] < 10 -7 моль/л (рН > 7).

Качественно реакцию среды и рН водных растворов электролитов определяют при помощи индикаторов и рН-метра.

Например, если концентрация ионов = 10 -4 моль/л, то рН = - lg10 -4 = 4 и среда раствора кислая, а если концентрация ионов [ОН - ] = 10 -4 моль/л, то [Н + ] = К (Н 2 O) - [ОН - ] = 10 -14 - 10 -4 = 10 -10 , а рН = - lg10 -10 = 10 и среда раствора щелочная.

Произведение растворимости. Растворение твердого вещест-ва в воде прекращается тогда, когда образуется насыщенный рас-твор, т.е. устанавливается равновесие между твердым веществом и частицами того же вещества, находящимися в растворе. Так, на-пример, в насыщенном растворе хлорида серебра устанавливается равновесие:

AgCl тв Ag + водн + Сl - водн

В насыщенном растворе электролита произве-дение концентраций его ионов есть величина постоянная при дан-ной температуре и эта величина количественно характеризует спо-собность электролита растворяться, называется она произведением растворимости (ПР).

ПР(АgCl) = [Аg + ]

Произведение растворимости - это постоянная величина, равная произведению концентраций ионов малорастворимого электролита в его насыщенном растворе . В общем случае для малорастворимого электролита состава A m B n можно записать: A m B n mA + nB

ПР AmBn = [A] m ? [B] n

Зная величины произведений растворимости, можно решать во-просы, связанные с образованием или растворением осадков при химических реакциях, что особенно важно для аналитической хи-мии.

Последние материалы сайта