Хлор и его соединения. Смотреть что такое "хлор" в других словарях

22.09.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Основным промышленным методом получения является концентрированного NaCl (рис. 96). При этом на выделяется (2Сl’ – 2e– = Сl 2), а в катодном пространстве выделяется (2Н · + 2e – = H 2) и образует NaOH.

При лабораторном получении обычно пользуются действием МnО 2 или КМnО 4 на :

МnО 2 + 4НСl = МnСl 2 + Cl 2 + 2Н 2 О

2КМnО 4 + 16НСl = 2КСl + 2МnСl 2 + 5Сl 2 + 8Н 2 О

По своей характерной химической функции подобен - он также является ак­тивным одновалентным металлои­дом. Однако его меньше, чем у . Поэтому последний способен вытеснять из соединений.

Взаимодействие с по Н 2 + Cl 2 = 2HCl + 44 ккал

при обычных условиях протекает крайне медленно, но при нагревании смеси или ее сильном освещении (прямым солнечным светом, горящим и т. д.) сопровождается .

NaCl + H 2 SO 4 = NaHSO 4 + HCl

NaCl + NaHSO 4 = Na 2 SO 4 + HCl

Первая из них отчасти протекает уже при обычных условиях и практически нацело – при слабом нагревании; вторая осуществляется лишь при более высоких . Для проведения процесса служат механические большой производительности.

Сl 2 + Н 2 О = НСl + НОСl

Будучи соединением неустойчивым, НОСl медленно разлагается даже в таком разбавленном . называются хлорноватистокислыми, или . Сама НОСl и ее являются очень сильными .

Добиться этого проще всего добавлением к реакционной смеси . Так как по мере образования Н будут связываться ОН" в недиссоциированные , сместится вправо. Применяя, например, NaOH имеем:

Сl 2 + Н 2 О <–––> НОСl + НСl

HOCl + НСl + 2NaOH –––>NaOCl + NaCl + 2H 2 O

или в общем:

Сl 2 + 2NaOH –––>NaOCl + NaCl + Н 2 О

В результате взаимодействия с получается, следовательно, смесь хлорноватистой и . Образующийся (« ») обладает сильными окислительными свойствами и широко применяется для отбелки и .

1) НОСl = НСl + О

2) 2НОСl = Н 2 О + Сl 2 О

3) 3HOCl = 2НСl + НСlО 3

Все эти процессы способны протекать одновременно, но их относительные скорости сильно зависят от имеющихся условий. Изменяя последние, можно добиться того, что превращение пойдет практически нацело по какому–нибудь одному направлению.

Под действием прямого солнечного света разложение идет по первому из них. Так же протекает оно в присутствии , способных легко присоединять , и некоторых (например» ).

Распад НОСl по третьему типу особенно легко идет при нагревании. Поэтому действие на горячий выражается суммарным уравнением:

ЗСl 2 + 6КОН = KClO 3 + 5КСl + 3Н 2 О

2КСlO 3 + Н 2 С 2 O 4 = K 2 CO 3 + CO 2 + H 2 O + 2ClO 2

образуется зеленовато–желтая двуокись (г. пл. – 59 °С, т. кип. + 10 °С). Свободная ClO 2 малоустойчива и способна разлагаться со

Хлор, Cl, - это химический элемент VII группы , порядковый номер 17, атомный вес (масса) 35,453, валентность в соединениях от -1 до +7. В свободном состоянии желто-зеленый, с резким удушающим запахом, ядовитый газ; молекулы состоят из двух (Cl 2). Растворяется в воде и органических жидкостях.

В состав организма человека входит около 0,15% хлора, который поступает с пищей, в основном в виде хлористого натрия. Ионы Cl- играют большую роль в поддержании осмотического давления крови, регуляции водного обмена, кислотно-щелочного равновесия, в образовании желудочного сока и др. Из организма выводится с мочой, потом и .

Применяют для получения соляной кислоты (см.) и ряда органических соединений, хлорирования питьевых и , в производстве отбеливающих и дезинфицирующих средств (см. ), для уничтожения грызунов - вредителей (см. ).

Сильно раздражает слизистые оболочки глаз и дыхательных путей.

Хранят и транспортируют хлор под давлением 6 атм. в стальных баллонах защитного цвета, имеющих в верхней части зеленую полосу.

Острые отравления. При вдыхании высоких концентраций хлора развивается так называемая молниеносная форма поражения. Пострадавший задыхается, лицо его синеет, движения некоординированны, частый и затем нитевидный. Смерть наступает быстро в результате рефлекторной остановки дыхания. При несколько меньших концентрациях хлора развивается тяжелая форма поражения, рефлекторная остановка дыхания короче, дыхание возобновляется, но становится частым, поверхностным, судорожным; дыхание останавливается через 5-25 минут после вдыхания хлора. Смерть наступает от ожога легких.

При отравлении средними и низкими концентрациями хлора пострадавший испытывает резкие боли за грудиной, резь в глазах, слезотечение. Возникает мучительный сухой кашель. Через 2-3 часа после вдыхания хлора увеличивается одышка, развивается отек легких, характеризующийся появлением пенистой желтой или красноватой мокроты со значительным количеством слизи.

В легких случаях отравление хлором ограничивается покраснением конъюнктивы, мягкого и глотки, астмоидным бронхитом, небольшой одышкой и часто рвотой. Иногда развивается отек и воспаление легких.

Хроническое отравление хлором проявляется в виде воспаления десен, слизистой оболочки носа, хронических бронхитов; длительный контакт с Cl 2 приводит к кариесу зубов. Хлор при высокой концентрации может вызвать острый дерматит, иногда переходящий в .

Первая помощь при отравлении - чистый воздух, покой, тепло, как можно раньше ингаляция кислорода. Госпитализация. При явлениях раздражения верхних дыхательных путей вдыхание распыленного 2% раствора тиосульфата (гипосульфит) натрия, 0,5% раствора гидрокарбоната натрия (), теплое молоко с боржомом или содой, кофе.

Меры предупреждения: герметизация аппаратуры, систематический контроль содержания хлора в воздухе производственных помещений, индивидуальные .

Цель урока: Сформировать представление о хлоре как химическом элементе и простом веществе.

Задачи урока:

Образовательные:

1. Рассмотреть положение галогенов в Периодической системе химических элементов Д.И. Менделеева.
2. Ознакомить учащихся с нахождением хлора в природе и способами его получения.
3. Сформировать знания о физических и химических свойствах хлора.
4. Охарактеризовать области применения хлора и отметить его токсичность.

Воспитательные:

1. Воспитание чувства сопереживания, взаимопомощи через работу в группах.
2. Формирование экологической грамотности через учебный материал о применении хлора.

Развивающие:

1. Развитие коммуникативных, эмоциональных качеств личности через работу в группе.
2. Развивать способность делать выводы через выполнение заданий групп.

Тип урока: изучение нового материала.

Форма обучения: групповая, индивидуальная, фронтальная.

Методы урока: словесные, наглядные, самостоятельные.

План урока.

  1. Организационный момент – 1 мин.
  2. Актуализация знаний – 4 мин.
  3. Изучение нового материала – 25 мин.
  4. Закрепление изученного – 12 мин.
  5. Подведение итогов урока и домашнее задание – 3 мин.

Ход урока:

Организационный момент

  • Приветствие.

Вводное слово учителя:

– Ребята, чем пахнет водопроводная вода?

– А чем пахнет на кухне, когда раковину чистят “белизной”?

– Чем мы солим суп?

– Что находится в желудке для переваривания пищи?

Таким образом, с каким элементом мы сегодня познакомимся на уроке? (Хлором).

Хлор является представителем галогенов (от греч halos – соль и genes – рождающий).

Актуализация знаний

  1. Определите местоположение галогенов в ПС Д.И. Менделеева, назовите их.
  2. Охарактеризуйте особенности строения атомов галогенов и электронную конфигурацию внешнего слоя.
  3. Какие свойства проявляют галогены в химических реакциях?
  4. Как изменяется окислительная способность галогенов с увеличением порядкового номера?
  5. Назвать самый активный галоген-неметалл? Почему?

Изучение нового материала

Постановка цели урока учащимися (с чем на уроке мы сегодня познакомимся?).

Новый материал изучается при работе в группах по инструктивным карточкам (12 минут). Приложение 1

Отчёт о работах в группах..

Заполнение таблицы в тетради (13 мин).

Закрепление изученного материала

  • Чему равна степень окисления хлора в соединениях с металлами и водородом?
  • Чему равна степень окисления атомов хлора в следующих соединениях: HCL, Сl 2 О 7 , НClO 4 , KClO 3 , НClO?
  • Какой вид химической связи и тип кристаллической решетки характерны для Сl 2, NaCL HCL?
  • Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:
  • CL 2 ->HCL->NaCL->AgCL

    Тест “Хлор”

    Тест выдан каждому ученику.

    Вариант 1

    1. Какая электронная конфигурация внешнего энергетического уровня соответствует атому хлора?
    а) 2s 22p 6; б) 2s 22p 3; в) 3s 23p 5; г) 2s 22p 5.

    2. Хлор впервые получил
    а) А. Авогадро; б) А.Беккерель; в) К. Шееле; г) Г. Кавендиш.

    3. Галоген, обладающий наибольшим значением электроотрицательности - это
    а) I; б) Br; в) CL; г) F.

    4. Положительную степень окисления хлор проявляет в соединении
    а) HCLO; б) KCLO 3 ; в) HCL; г) Cl 2 O 7 .

    5. Объём хлороводорода (н.у.) полученного при сжигании 10л водорода в хлоре, равен
    а) 22,4 л; б) 10 л; в) 20 л; г) 44,8 л.

    Вариант 2

    1. Степень окисления –1 хлор проявляет в соединении:
    а) HCL; б) CL 2 ; в) Cl 2 O 7 ; г) KCLO 3 .

    2. Хлор при обычных условиях:
    а) бесцветный газ с резким удушливым запахом;
    б) газ жёлто-зелёного цвета с резким удушливым запахом;
    в) жидкость красно-бурого цвета;
    г) кристаллы темно-фиолетового цвета.

    3. На наружном энергетическом уровне атомов галогенов находится:
    а) два s-электрона и пять р-электронов;
    б) один s-электрон;
    в) пять р-электронов;
    г) два s-электрона и шесть р-электронов.

    4. Объём хлора (н.у) затраченного на получение 2л хлороводорода, равен
    а) 2 л; б) 22.4 л; в) 1 л; г) 44,8 л.

    5. Галоген, обладающий наименьшим значением электроотрицательности-это
    а) I; б) Br; в) CL; г) F.

    6. Установите соответствие между химической формулой соединения и степенью окисления хлора в нем.

    Тесты сдают на проверку учителю.

    Домашнее задание.

    П. 46, 47, стр. 164 задача №2 (учебник Г.Е Рудзитис и Ф.Г.Фельдман химия 8).

    Подведение итогов урока. Рефлексия.

    На партах лежат сигнальные карточки трех цветов: красная – “всё понятно”, зеленая – “есть затруднения”, синяя – “нужна помощь”. Выберите карточки по мере вашего усвоения материала, подпишите их и сдайте.

    Хлор, вероятно, получали еще алхимики, но его открытие и первое исследование неразрывно связано с именем знаменитого шведского химика Карла Вильгельма Шееле . Шееле открыл пять химических элементов – барий и марганец (совместно с Юханом Ганом), молибден, вольфрам, хлор, а независимо от других химиков (хотя и позже) – еще три: кислород, водород и азот. Это достижение впоследствии не смог повторить ни один химик. При этом Шееле, уже избранный членом Шведской королевской академии наук, был простым аптекарем в Чёпинге, хотя мог занять более почетную и престижную должность. Сам Фридрих II Великий , прусский король, предлагал ему занять пост профессора химии Берлинского университета. Отказываясь от подобных заманчивых предложений, Шееле говорил: «Я не могу есть больше, чем мне нужно, а того, что я зарабатываю здесь в Чёпинге, мне хватает на пропитание».

    Многочисленные соединения хлора были известны, конечно, задолго до Шееле. Этот элемент входит в состав многих солей, в том числе и самой известной – поваренной соли. В 1774 Шееле выделил хлор в свободном виде, нагревая черный минерал пиролюзит с концентрированной соляной кислотой: MnO 2 + 4HCl ® Cl 2 + MnCl 2 + 2H 2 O.

    Вначале химики рассматривали хлор не как элемент, а как химическое соединение неизвестного элемента мурия (от латинского muria – рассол) с кислородом. Считалось, что и соляная кислота (ее называли муриевой) содержит химически связанный кислород. Об этом «свидетельствовал», в частности, такой факт: при стоянии раствора хлора на свету из него выделялся кислород, а в растворе оставалась соляная кислота. Однако многочисленные попытки «оторвать» кислород от хлора ни к чему не привели. Так, никому не удалось получить углекислый газ, нагревая хлор с углем (который при высоких температурах «отнимает» кислород от многих содержащих его соединений). В результате подобных опытов, проведенных Гемфри Дэви, Жозеф Луи Гей-Люссаком и Луи Жаком Тенаром, стало ясно, что хлор не содержит кислорода и является простым веществом. К тому же выводу привели и опыты Гей-Люссака, который проанализировал количественное соотношение газов в реакции хлора с водородом.

    В 1811 Дэви предложил для нового элемента название «хлорин» – от греч. «хлорос» – желто-зеленый. Именно такой цвет имеет хлор. Этот же корень – в слове «хлорофилл» (от греч. «хлорос» и «филлон» – лист). Спустя год Гей-Люссак «сократил» название до «хлора». Но до сих пор англичане (и американцы) называют этот элемент «хлорином» (chlorine), тогда как французы – хлором (chlore). Приняли сокращенное название и немцы – «законодатели» химии на протяжении почти всего 19 в. (по-немецки хлор – Chlor). В 1811 немецкий физик Иоганн Швейгер предложил для хлора название «галоген» (от греческих «халс» – соль, и «геннао» – рождаю). Впоследствии этот термин закрепился не только за хлором, но и за всеми его аналогами по седьмой группе – фтором, бромом, иодом, астатом.

    Интересна демонстрация горения водорода в атмосфере хлора: иногда во время опыта возникает необычный побочный эффект: раздается гудение. Чаще всего пламя гудит, когда тонкую трубку, по которой подается водород, опускают в заполненный хлором сосуд конической формы; то же справедливо для сферических колб, а вот в цилиндрах пламя обычно не гудит. Это явление назвали «поющим пламенем».

    В водном растворе хлор частично и довольно медленно реагирует с водой; при 25° С равновесие: Cl 2 + H 2 O HClO + HCl устанавливается в течение двух суток. Хлорноватистая кислота на свету разлагается: HClO ® HCl + O. Именно атомарному кислороду приписывают отбеливающий эффект (абсолютно сухой хлор такой способностью не обладает).

    Хлор в своих соединениях может проявлять все степени окисления – от –1 до +7. С кислородом хлор образует ряд оксидов, все они в чистом виде нестабильны и взрывоопасны: Cl 2 O – желто-оранжевый газ, ClO 2 – желтый газ (ниже 9,7 о С – яркокрасная жидкость), перхлорат хлора Cl 2 O 4 (ClO–ClO 3 , светло-желтая жидкость), Cl 2 O 6 (O 2 Cl–O–ClO 3 , ярко-красная жидкость), Cl 2 O 7 – бесцветная очень взрывчатая жидкость. При низких температурах получены нестабильные оксиды Cl 2 O 3 и ClO 3 . Оксид ClO 2 производится в промышленном масштабе и используется вместо хлора для отбеливания целлюлозы и обеззараживания питьевой воды и сточных вод. С другими галогенами хлор образует ряд так называемых межгалогенных соединений, например, ClF, ClF 3 , ClF 5 , BrCl, ICl, ICl 3 .

    Хлор и его соединения с положительной степенью окисления – сильные окислители. В 1822 немецкий химик Леопольд Гмелин путем окисления хлором получил из желтой кровяной соли красную: 2K 4 + Cl 2 ® K 3 + 2KCl. Хлор легко окисляет бромиды и хлориды с выделением в свободном виде брома и иода.

    Хлор в разных степенях окисления образует ряд кислот: HCl – хлороводородная (соляная, соли – хлориды), HClO – хлорноватистая (соли – гипохлориты), HClO 2 – хлористая (соли – хлориты), HClO 3 – хлорноватая (соли – хлораты), HClO 4 – хлорная (соли – перхлораты). В чистом виде из кислородных кислот устойчива только хлорная. Из солей кислородных кислот практическое применение имеют гипохлориты, хлорит натрия NaClO 2 – для отбеливания тканей, для изготовления компактных пиротехнических источников кислорода («кислородные свечи»), хлораты калия (бертолетова соль), кальция и магния (для борьбы с вредителями сельского хозяйства, как компоненты пиротехнических составов и взрывчатых веществ, в производстве спичек), перхлораты – компоненты взрывчатых веществ и пиротехнических составов; перхлорат аммония – компонент твердых ракетных топлив.

    Хлор реагирует со многими органическими соединениями. Он быстро присоединяется к непредельным соединениям с двойными и тройными углерод-углеродными связями (реакция с ацетиленом идет со взрывом), а на свету – и к бензолу. При определенных условиях хлор может замещать атомы водорода в органических соединениях: R–H + Cl 2 ® RCl + HCl. Эта реакция сыграла значительную роль в истории органической химии. В 1840-х французский химик Жан Батист Дюма обнаружил, что при действии хлора на уксусную кислоту с удивительной легкостью идет реакция

    СН 3 СООН + Cl 2 ® CH 2 ClCOOH + HCl. При избытке хлора образуется трихлоруксусная кислота ССl 3 СООН. Однако многие химики отнеслись к работе Дюма недоверчиво. Ведь согласно общепринятой тогда теории Берцелиуса положительно заряженные атомы водорода не могли заместиться отрицательно заряженными атомами хлора. Этого мнения придерживались в то время многие выдающиеся химики, среди которых были Фридрих Вёлер, Юстус Либих и, конечно, сам Берцелиус.

    Чтобы высмеять Дюма, Вёлер передал своему другу Либиху статью от имени некоего Ш.Виндлера (Schwindler – по-немецки мошенник) о новом удачном приложении якобы открытой Дюма реакции. В статье Вёлер с явной издёвкой написал о том, как в уксуснокислом марганце Mn(CH 3 COO) 2 удалось все элементы, в соответствии с их валентностью, заместить на хлор, в результате чего получилось желтое кристаллическое вещество, состоящее из одного только хлора. Далее говорилось, что в Англии, последовательно замещая в органических соединениях все атомы на атомы хлора, обычные ткани превращают в хлорные, и что при этом вещи сохраняют свой внешний вид. В сноске было указано, что лондонские лавки бойко торгуют материалом, состоящим из одного хлора, так как этот материал очень хорош для ночных колпаков и теплых подштанников.

    Реакция хлора с органическими соединениями приводит к образованию множества хлорорганических продуктов, среди которых – широко применяющиеся растворители метиленхлорид CH 2 Cl 2 , хлороформ CHCl 3 , четыреххлористый углерод CCl 4 , трихлорэтилен CHCl=CCl 2 , тетрахлорэтилен C 2 Cl 4 . В присутствии влаги хлор обесцвечивает зеленые листья растений, многие красители. Этим пользовались еще в XVIII в. для отбеливания тканей.

    Хлор как отравляющий газ.

    Получивший хлор Шееле отметил его очень неприятный резкий запах, затруднение дыхания и кашель. Как потом выяснили, человек чувствует запах хлора даже в том случае, если в одном литре воздуха содержится лишь 0,005 мг этого газа, и при этом он уже оказывает раздражающее действие на дыхательные пути, разрушая клетки слизистой оболочки дыхательных путей и легких. Концентрация 0,012 мг/л переносится с трудом; если же концентрация хлора превышает 0,1 мг/л, он становится опасным для жизни: дыхание учащается, становится судорожным, а затем – все более редким, и уже через 5–25 минут происходит остановка дыхания. Предельно допустимой в воздухе промышленных предприятий считается концентрация 0,001 мг/л, а в воздухе жилых районов – 0,00003 мг/л.

    Петербургский академик Товий Егорович Ловиц, повторяя в 1790 опыт Шееле, случайно выпустил значительное количество хлора в воздух. Вдохнув его, он потерял сознание и упал, потом в течение восьми дней страдал от мучительной боли в груди. К счастью, он выздоровел. Чуть не умер, отравившись хлором, и знаменитый английский химик Дэви. Опыты даже с небольшим количеством хлора опасны, так как могут вызвать сильное поражение легких. Рассказывают, что немецкий химик Эгон Виберг одну из своих лекций о хлоре начал словами: «Хлор – ядовитый газ. Если я отравлюсь во время очередной демонстрации, вынесите меня, пожалуйста, на свежий воздух. Но лекцию при этом придется, к сожалению, прервать». Если же выпустить в воздух много хлора, он становится настоящим бедствием. Это испытали на себе во время Первой мировой войны англо-французские войска. Утром 22 апреля 1915 германское командование решило провести первую в истории войн газовую атаку: когда ветер подул в сторону противника, на небольшом шестикилометровом участке фронта в районе бельгийского городка Ипр были одновременно открыты вентили 5730 баллонов, каждый из которых содержал 30 кг жидкого хлора. В течение 5 минут образовалось огромное желто-зеленое облако, которое медленно уходило от немецких окопов в сторону союзников. Английские и французские солдаты оказались полностью беззащитными. Газ проникал через щели во все укрытия, от него не было спасения: ведь противогаз еще не был изобретен. В результате было отравлено 15 тысяч человек, из них 5 тысяч – насмерть. Через месяц, 31 мая немцы повторили газовую атаку на восточном фронте – против русских войск. Это произошло в Польше у города Болимова. На фронте 12 км из 12 тысяч баллонов было выпущено 264 тонны смеси хлора со значительно более ядовитым фосгеном (хлорангидридом угольной кислоты COCl 2). Царское командование знало о том, что произошло при Ипре, и тем не менее русские солдаты не имели никаких средств защиты! В результате газовой атаки потери составили 9146 человек, из них только 108 – в результате ружейного и артиллерийского обстрела, остальные были отравлены. При этом почти сразу же погибло 1183 человека.

    Вскоре химики указали, как спасаться от хлора: надо дышать через марлевую повязку, пропитанную раствором тиосульфата натрия (это вещество применяется в фотографии, его часто называют гипосульфитом). Хлор очень быстро реагирует с раствором тиосульфата, окисляя его:

    Na 2 S 2 O 3 + 4Cl 2 + 5H 2 O ® 2H 2 SO 4 + 2NaCl + 6HCl. Конечно, серная кислота тоже не безвредное вещество, но ее разбавленный водный раствор намного менее опасен, чем ядовитый хлор. Поэтому у тиосульфата в те годы появилось еще одно название – «антихлор», но первые тиосульфатные противогазы были мало эффективны.

    В 1916 русский химик, будущий академик Николай Дмитриевич Зелинский изобрел действительно эффективный противогаз, в котором ядовитые вещества задерживали слоем активированного угля. Такой уголь с очень развитой поверхностью мог задержать значительно больше хлора, чем пропитанная гипосульфитом марля. К счастью, «хлорные атаки» остались лишь трагическим эпизодом в истории. После мировой войны у хлора остались только мирные профессии.

    Применение хлора.

    Ежегодно во всем мире получают огромные количества хлора – десятки миллионов тонн. Только в США к концу 20 в. ежегодно путем электролиза получали около 12 млн. тонн хлора (10-е место среди химических производств). Основная его масса (до 50%) расходуется на хлорирование органических соединений – для получения растворителей, синтетического каучука, поливинилхлорида и других пластмасс, хлоропренового каучука, пестицидов, лекарственных средств, многих других нужных и полезных продуктов. Остальное потребляется для синтеза неорганических хлоридов, в целлюлозно-бумажной промышленности для отбеливания древесной пульпы, для очистки воды. В сравнительно небольших количествах хлор используют в металлургической промышленности. С его помощью получают очень чистые металлы – титан, олово, тантал, ниобий. Сжиганием водорода в хлоре получают хлороводород, а из него – соляную кислоту. Хлор применяют также для производства отбеливающих веществ (гипохлоритов, хлорной извести) и обеззараживания воды хлорированием.

    Илья Леенсон

    В данном разделе рассматриваются свойства, использование хлора, действие его на организм человека, поведение в атмосфере при выбросе, поражающие действия и классификация АХОВ, поведение хлора в зависимости от способа хранения, рассмотрены примеры аварий на станциях водоподготовки.

    1.3.1 Хлор как ахов, его свойства и применение

    Хлор к настоящему времени утратил значение как отравляющее вещество, однако весьма широко используется в различных отраслях производства. По токсическим свойствам хлор относится к аварийно-химическим опасным веществам (АХОВ). АХОВ - химические вещества или соединения, которые при проливе или выбросе из емкости в окружающую среду способны вызвать массовое поражение людей и животных, заражение воздуха, почвы, воды, растений и различных материальных ценностей выше допустимых значений. Таких АХОВ по мере расширения производства с каждым годом становится все больше. На сегодняшний день в системе РСЧС в перечень АХОВ включены более 34 веществ.

    Согласно клинической классификации хлор является АХОВ первой группы – веществом, обладающим преимущественно удушающим поражающим действием с выраженным прижигающим действием.

    Физико-химические свойства. Хлор – зеленовато желтый газ с резким удушающим запахом. Плохо растворяется в воде, хорошо – в некоторых органических растворителях. В практических условиях растворимость хлора в воде незначительна и составляет 3 кг на 1 т воды. При обычном давлении сжижается при температуре – 34°С, образуя маслянистую жидкость желтовато зелёного цвета, затвердевающую при минус 101°С. Твёрдый хлор это бледно жёлтые кристаллы. Под давлением хлор сжижается уже при обычных температурах. Температура кипения сжиженного хлора –34,1°С, следовательно, даже зимой хлор находится в газообразном состоянии. При испарении образует с водяными парами белый туман. Один килограмм жидкого хлора дает 0,315 м 3 газа. Хорошо адсорбируется активным углём. Химически очень активен.

    Пожаро- и взрывоопасность хлора. Негорюч, но пожароопасен, поддерживает горение многих органических веществ. В смеси с водородом взрывоопасен. При нагревании ёмкости взрывается.

    Действие хлора на организм. По физиологическому действию на организм хлор относится к группе веществ удушающего действия. В момент контакта он оказывает сильное раздражающее действие на слизистую оболочку дыхательных путей и глаза. Признаки поражения наступают сразу после воздействия, поэтому хлор является быстродействующим АХОВ. Проникая в глубокие дыхательные пути, хлор разрушает лёгочную ткань, вызывая отёк лёгких. В зависимости от концентрации (токсодозы) хлора степень тяжести отравления может быть различной. При воздействии хлора уже в незначительных концентрациях наблюдается покраснение коньюктивы глаз, мягкого нёба и глотки, а также бронхит, лёгкая одышка, охриплость, чувство сдавливания в груди. Пребывание в атмосфере, содержащей хлор в концентрациях 1,5–2 г/м 3 , сопровождается появлением болевых ощущений в верхних дыхательных путях, жжением и болью за грудиной (чувство сильного сдавливания в груди), жжением и резью в глазах, слезотечением, мучительным сухим кашлем. Через 2–4 ч появляются признаки отёка лёгких. Увеличивается одышка, учащается пульс, начинается отделение пенистой жёлтоватой или красноватой мокроты. Воздействие высоких концентраций хлора в течение 10–15 мин может привести к развитию химического ожога лёгких и смерти. При вдыхании хлора в очень высоких концентрациях смерть наступает в течение нескольких минут из за паралича дыхательного центра. Антидота против хлора не существует. Предельно допустимая концентрация хлора в воздухе рабочей зоны производственного помещения составляет 1 мг/м 3 , однако человек начинает ощущать хлор в атмосферном воздухе при превышении концентрации 3 мг/м 3 . Следовательно, если чувствуется резкий удушливый запах хлора, то работать без средств защиты уже опасно. Раздражающее действие возникает при концентрации около 10 мг/м 3 . Воздействие 100–200 мг/м 3 хлора в течение 30–60 минут опасно для жизни. Предельно допустимая концентрация хлора в атмосферном воздухе населённых пунктов равна: среднесуточная 0,03 мг/м 3 ; максимальная разовая 0,1 мг/м 3 .

    Признаки поражения хлором. Сильное жжение, резь в глазах; слезотечение; учащённое дыхание; мучительный сухой кашель; сильное возбуждение; страх; в тяжёлых случаях остановка дыхания. При утечке или розливе хлора нельзя прикасаться к пролитому веществу, так как оставшийся в проливе хлор захолаживается до температуры -34°С.

    Использование. Находит широкое применение для отбеливания тканей и бумажной массы, в производстве пластмасс, каучука, пестицидов, дихлорэтана, в цветной металлургии, а также в коммунально-бытовом хозяйстве для обеззараживания воды. Хлор хранят и перевозят к местам потребления только в сжиженном состоянии. Наиболее распространённым способом хранения и транспортировки жидкого хлора является хранение под давлением, соответствующим давлению насыщенных паров хлора при температуре окружающей среды. Обычно он хранится в цилиндрических (10–250 м 3) и шаровых (600–2000 м 3) резервуарах в сжиженном состоянии под давлением собственных паров, величина которого зависит от температуры жидкого хлора. При температуре 25°С оно составляет 8 кгс/см 2 , а при температуре 60°С – 18 кгс/см 2 . Сжиженный хлор перевозят в железнодорожных цистернах, контейнерах и баллонах, которые одновременно могут являться временными хранилищами.

    Поведение в атмосфере. При разрушении емкости происходит бурное (в зависимости от давления) испарение хлора. Доля мгновенно испарившегося хлора зависит от температуры хранящегося жидкого хлора. Чем выше его температура, тем большая доля хлора практически мгновенно испаряется при аварийном выбросе (20% при 20° С и 30% при 40°С). При этом образуется так называемое первичное облако с концентрациями, значительно превышающими смертельные концентрации. Продолжительность поражающего действия первичного облака хлора на небольших удалениях от места аварии будет составлять от нескольких десятков секунд до нескольких минут. Вторичное облако, образующееся при испарении хлора с площади розлива, характеризуется концентрацией этого вещества в нем на 2–3 порядка ниже, чем в первичном облаке. Однако продолжительность действия в этом облаке хлора значительно больше и определяется временем испарения разливающейся жидкости. Испарение идет за счет тепла поддона или подстилающей поверхности, а также окружающего воздуха. Время испарения зависит от количества вещества, характера разлива: в поддон или свободно (в обваловку) и от метеорологических условий. Испарение может длиться несколько часов и даже суток. Газообразный хлор в 2,5 раза тяжелее воздуха, поэтому облако хлора перемещается по направлению ветра близко к земле. Обладает хорошей проникающей способностью в негерметичные сооружения. Может скапливаться в низких участках местности, подвалах домов, колодцах, тоннелях и защитных сооружениях, не оборудованных в противохимическом отношении. За внешнюю границу зоны заражения принимается линия средней пороговой токсодозы, вызывающей начальные симптомы поражения (составляет 0,6 ).

    В промышленных масштабах хлор получают вместе с гидроксидом натрияиводородомпутёмэлектролизараствораповаренной соли:

    2NaCl + 2H 2 О → H 2 + Cl 2 + 2NaOH

    Анод: 2Cl - - 2е - → Cl 2 0

    Катод: 2H 2 O + 2e - → H 2 + 2OH -

    На станциях водоподготовки хлор хранится в специальных «танках», или закачивается в стальные баллоны высокого давления. Баллоны с жидким хлором под давлением имеют специальную окраску - болотный цвет. Следует отметить, что при длительной эксплуатации баллонов с хлором, в них накапливается чрезвычайно взрывчатый треххлористый азот, и поэтому время от времени баллоны с хлором должны проходить плановую промывку и очистку от хлорида азота.

    ПДК хлора в атмосферном воздухе следующие: среднесуточная - 0,03 мг/м³; максимально разовая - 0,1 мг/м³; в рабочих помещениях промышленного предприятия - 1 мг/м³.

    Последние материалы сайта