Что такое альфа бета и гамма. Виды радиоактивных излучений. Приборы для измерения радиации и радиоактивности

13.02.2024
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Альфа-частица
Alpha particle

Альфа-частица (или α-частица) – ядро атома гелия, состоящее из связанных вместе двух протонов и двух нейтронов. Обычно обозначается α или , где верхний индекс - полное число протонов и нейтронов в ядре гелия, а нижний – число протонов. Альфа-частица имеет заряд +2е, где е – величина элементарного заряда, и обладает повышенной устойчивостью и плотностью. Она представляет собой сферически симметричный объект радиусом около 2·10 -13 см. Плотность материи и электрического заряда максимальна в центре альфа-частицы и спадает к её периферии.
По распространённости в природе (около 9% всех ядер) ядра гелия уступают только ядрам водорода (около 90%). Масса альфа-частицы 4.0015 атомных единиц массы или 6.645·10 -27 кг. Энергия, необходимая для расщепления альфа-частицы на составляющие её протоны и нейтроны, около 28.3 МэВ (или 4.53·10 -13 Дж). Альфа-частицы самопроизвольно испускаются при распаде многих тяжёлых ядер. Возникающий при этом вид распада (радиоактивности) атомных ядер носит название альфа-распада или альфа-радиоактивности.
Вылетевшая из ядра, α-частица пролетает в воздухе расстояние несколько сантиметров и в результате торможения останавливается. Для защиты от альфа-частиц достаточно слоя воздуха в несколько сантиметров или листа папиросной бумаги.

>> Альфа-, бета- и гамма-излучения

§ 99 АЛЬФА-, БЕТА- И ГАММА-ИЗЛУЧЕНИЯ

После открытия радиоактивных элементов началось исследование физической природы их излучения. Кроме Беккереля и супругов Кюри, этим занялся Резерфорд.

Классический опыт, позволивший обнаружить сложный состав радиоактивного излучения, состоял в следующем. Препарат радия помещали на дно узкого канала в куске свинца. Против канала находилась фотопластинка. На выходившее из канала излучение действовало сильное магнитное поле , линии индукции которого перпендикулярны лучу (рис. 13.6). Вся установка размещалась в вакууме.

В отсутствие магнитного поля на фотопластинке после проявления обнаруживалось одно темное пятно точно напротив канала. В магнитном поле пучок распадался на три пучка. Две составляющие первичного потока отклонялись в противоположные стороны. Это указывало на наличие у этих излучений электрических зарядов противоположных знаков. При этом отрицательный компонент излучения отклонялся магнитным полем гораздо сильнее, чем положительный. Третья составляющая совсем не отклонялась магнитным полем. Положительно заряженный компонент получил название альфа-лучей, отрицательно заряженный - бета-лучей и нейтральный - гамма-лучей (-лучи, -лучи, -лучи).

Эти три вида излучения очень сильно различаются по проникающей способности, т. е. по тому, насколько интенсивно они поглощаются различными веществами. Наименьшей проникающей способностью обладают -лучи. Слой бумаги толщиной около 0,1 мм для них уже непрозрачен. Если прикрыть отверстие в свинцовой пластинке листочком бумаги, то на фотопластинке не обнаружится пятна, соответствующего -излучению.

Гораздо меньше поглощаются при прохождении через вещество -лучи . Алюминиевая пластинка полностью их задерживает только при толщине в несколько миллиметров. Наибольшей проникающей способностью обладают .-лучи.

Интенсивность поглощения -лучей усиливается с увеличением атомного номера вещества-поглотителя. Но и слой свинца толщиной в 1 см не является для них непреодолимой преградой. При прохождении -лучей через такой слой свинца их интенсивность ослабевает лишь вдвое. Физическая природа -, - и -лучей, очевидно, различна.

Гамма-лучи. По своим свойствам -лучи очень сильно напоминают рентгеновские , но только их проникающая способность гораздо больше, чем у рентгеновских лучей. Это наводило на мысль, что -лучи представляют собой электромагнитные волны. Все сомнения в этом отпали после того, как была обнаружена дифракция -лучей на кристаллах и измерена их длина волны. Она оказалась очень малой - от 10 -8 до 10 -11 см.

На шкале электромагнитных волн -лучи непосредственно следуют за рентгеновскими. Скорость распространения у -лучей такая же, как у всех электромагнитных волн, - около 300 000 км/с.

Бета-лучи. С самого начала - и -лучи рассматривались как потоки заряженных частиц. Проще всего было экспериментировать c -лучами, так как они сильнее отклоняются как в магнитном, так и в электрическом поле.

Основная задача экспериментаторов состояла в определении заряда и массы частиц. При исследовании отклонения -частиц в электрических и магнитных полях было установлено, что они представляют собой не что иное, как электроны, движущиеся со скоростями, очень близкими к скорости света. Существенно, что скорости -частиц, испущенных каким-либо радиоактивным элементом, неодинаковы. Встречаются частицы с самыми различными скоростями. Это и приводит к расширению пучка -частиц в магнитном поле (см. рис. 13.6).

Альфа-частицы. Труднее было выяснить природу -частиц, так как они слабее отклоняются магнитным и электрическим полями. Окончательно эту задачу удалось решить Резерфорду . Он измерил отношение заряда q частицы к ее массе m по отклонению в магнитном поле. Оно оказалось примерно в 2 раза меньше, чем у протона - ядра атома водорода. Заряд протона равен элементарному, а его масса очень близка к атомной единице массы 1 . Следовательно, у -частицы на один элементарный заряд приходится масса, равная двум атомным единицам массы.

Но заряд -частицы и ее масса оставались, тем не менее, неизвестными. Следовало измерить либо заряд, либо массу -частицы. С появлением счетчика Гейгера стало возможным проще и точнее измерить заряд. Сквозь очень тонкое окошко - частицы могут проникать внутрь счетчика и регистрироваться им.

Резерфорд поместил на пути -частиц счетчик Гейгера, который измерял число чacтиц, испускавшихся радиоактивным препаратом за определенное время. Затем он поставил на место счетчика металлический цилиндp, соединенный с чувствительным электрометром (рис. 13.7). Электрометром Резерфорд измерял заряд - частиц испущенных источником внутрь цилиндра за такое же время (радиоактивность многих веществ почти не меняется со временем). Зная суммарный заряд -частиц и их число, Гезерфод определил отношение этих величин, т. е. заряд одной -частицы. Этот заряд оказался равным двум элементарным.

Таким образом, он устаиовил, что у -частицы на каждый из двух элементарных зарядов приходится две атомные единицы массы. Следовательно, на два элементарных заряда приходится четыре атомные единицы массы. Такой же заряд и такую же относительную атомную массу имеет ядро гелия. Из этого следует, что - часчица - это ядро атома гелия.

Не довольствуясь достигнутым результатом, Резерфорд затем еще прямыми опытами доказал, что при радиоактивном -распаде образуется именно гелий. Собирая -частицы внутри специального резервуара на протяжении нескольких дней, он с помощью спектрального анализа убедился в том, что в сосуде накапливастся гелий (каждая -частица захватывала два электрона и превращалась в атом гелия).

1 Атомная единица массы (а. с. м.) рапиа 1/12 массы атома углерода ; 1 а. е. м. 1,66057 10 -27 кг.

При радиоактивном распаде возникают -лучи (ядра атома гелия), -лучи (электроны) и -лучи (коротковолновое электромагнитное излучение).

Почему выяснить природу -лучей оказалось гораздо сложнее, чем в случае -лучей?

Мякишев Г. Я., Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 17-е изд., перераб. и доп. - М. : Просвещение, 2008. - 399 с: ил.

Планирование уроков по физике онлайн , задачи и ответы по классам, домашнее задание по физике 11 класса скачать

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Альфа-излучение (альфа-лучи) - это один из видов ионизирующих излучений; представляет собой поток быстро движущихся, обладающих значительной энергией, положительно заряженных частиц (альфа-частиц).

Основным источником альфа-излучения служат альфа-излучатели - , испускающие альфа-частицы в процессе распада. Особенностью альфа-излучений является его малая проникающая способность. Пробег альфа-частиц в веществе (то есть путь, на котором они производят ионизацию) оказывается очень коротким (сотые доли миллиметра в биологических средах, 2,5-8 см в воздухе).

Однако вдоль короткого пути альфа-частицы создают большое число ионов, то есть обусловливают большую линейную плотность ионизации. Это обеспечивает выраженную относительную биологическую эффективность, в 10 раз большую, чем при воздействии рентгеновского и . При внешнем облучении тела альфачастицы могут (при достаточно большой поглощенной дозе излучения) вызывать сильные, хотя и поверхностные (короткий пробег) ожоги; при попадании через долгоживущие альфа-излучатели разносятся по телу током крови и депонируются в органах и др., вызывая внутреннее облучение организма. Альфа-излучение применяют для лечения некоторых заболеваний. См. также , Излучения ионизирующие.

Альфа-излучение - поток положительно заряженных α-частиц (ядер атомов гелия).

Основным источником альфа-излучения являются естественные радиоактивные изотопы, многие из которых испускают при распаде альфа-частицы с энергией от 3,98 до 8,78 Мэв. Благодаря большой энергии, двукратному (по сравнению с электроном) заряду и относительно небольшой (по сравнению с другими видами ионизирующих излучений) скорости движения (от 1,4·10 9 до 2,0·10 9 см/сек) альфа-частицы создают очень большое число ионов, густо расположенных по их пути (до 254 тыс. пар ионов). При этом они быстро расходуют свою энергию, превращаясь в обычные атомы гелия. Пробеги альфа-частиц в воздухе при нормальных условиях - от 2,50 до 8,17 см; в биологических средах - сотые доли миллиметра.

Линейная плотность ионизации, создаваемой альфа-частицами, достигает нескольких тысяч пар ионов на 1 микрон пути в тканях.

Ионизация, производимая альфа-излучением, обусловливает ряд особенностей в тех химических реакциях, которые протекают в веществе, в частности в живой ткани (образование сильных окислителей, свободного водорода и кислорода и др.). Эти радиохимические реакции, протекающие в биологических тканях под воздействием альфа-излучения, в свою очередь вызывают особую, большую, чем у других видов ионизирующих излучений, биологическую эффективность альфа-излучения. По сравнению с рентгеновским, бета- и гамма-излучением относительная биологическая эффективность альфа-излучения (ОБЭ) принимается равной 10, хотя в различных случаях она может меняться в широких пределах. Как и другие виды ионизирующих излучений, альфа-излучение применяется для лечения больных с различными заболеваниями. Этот раздел лучевой терапии называется альфа-терапией (см.).

См. также Излучения ионизирующие, Радиоактивность.

Мы уже упоминали о многочисленных попытках повлиять на способность радия излучать радиоактивные лучи. Эти попытки не привели ни к какому результату. Однако, пытаясь воздействовать на радий магнитным полем, Пьер и Мария Кюри обнаружили, что хотя лучеиспускающая способность радия при помещении его в магнитное поле не меняется (интенсивность излучения остаётся неизменной), сами радиоактивные лучи претерпевают сильное изменение при прохождении через магнитное поле. Однородный до вступления в магнитное поле луч разделяется полем на два луча. Один из этих лучей рас-пространяется так, как если бы магнитное поле на него совершенно не действовало; другой луч под влиянием поля резко изменяет направление своего движения.

Ко времени опытов Беккереля физикам уже были известны лучи, способные отклоняться в магнитном поле. Это были лучи, образованные потоком электрически заряженных частиц, движущихся в одном направлении. Из направления отклонения можно определить знак заряда, т. е. установить, является ли заряд частицы положительным или отрицательным. Более подробные сведения могли быть получены при наблюдении движения этих частиц в магнитном и электрическом полях. Как мы увидим далее, в этом случае возможно определить не только заряд, но и его отношение к массе движущейся частицы. Из опытов Кюри вытекало, что движущиеся заряды отрицательны, а измеренное отношение заряда к массе оказа-лось равным 5,3-10 17 электростатических единиц на грамм. Таким же отношением заряда к массе обладают электроны, имеющие отрицательный электрический заряд. Из этого сопо-ставления можно было заключить, что по крайней мере часть лучей, испускаемых радием, представляет собой поток движу-щихся электронов.

Была измерена величина скорости электронов, испускаемых радием. Она оказалась весьма большой. Некоторые из элек-тронов имели скорость, близкую к скорости света, т. е. около 3.00 000 км в секунду.

Эти исследования немного приоткрыли таинственное покры-вало, окутывающее радиоактивные лучи, - оказалось, что часть их представляет собой поток движущихся электронов. Но что же представляет собой другая часть лучей, которая не отклоняется магнитным полем?

За её исследование взялся Резерфорд. Он заметил, что неотклоняемая в магнитном поле часть радиоактивных лучей обладает такими же странными особенностями в поглощении, как и весь пучок. Хорошо было известно и раньше, что при прохождении радиоактивных лучей через вещество различной толщины они поглощаются сначала очень сильно, а затем медленно, так что, в общем, они могут проходить через зна-чительные толщи вещества. Поэтому можно было думать, что радиоактивные лучи неоднородны и представляют собой «смесь» различных лучей, одни из которых поглощаются сильно, а другие слабо. Такая мысль до опытов Пьера и Марии Кюри никем не высказывалась. Однако, когда опыты Кюри подтвер-дили сложность состава радиоактивного излучения, естественно было предположить, что сильно поглощаемая часть излучения является потоком электронов, а другая часть этих лучей, которая, подобно лучам Рентгена, не отклоняется магнитом, так же как и лучи Рентгена, сравнительно слабо поглощается веществом. Опыт, однако, показал, что эта часть радиоактив-ных лучей ведёт себя в отношении поглощения так же, как и весь пучок. Уже очень тонкие слои вещества резко ослаб-ляют её интенсивность, а затем даже сравнительно толстые слои вещества поглощают остающиеся лучи незначительно.

Это различие и побудило Резерфорда к дальнейшим ис-следованиям.

А что, если и та часть лучей радия, которую Пьер и Ма-рия Кюри не смогли отклонить магнитным полем, тоже не-однородна? Что, если они пользовались слабым магнитным полем? Может быть, сильное магнитное поле окажет иное действие? И Резерфорд повторяет их опыты, но при этом он создаёт магнитное поле, гораздо более сильное, чем в их опытах.

Результат опытов Резерфорда оказался поразительным. Пучок лучей, который в опытах Кюри не отклонялся магнит-ным полем, в магнитном поле Резерфорда в свою очередь расщепился на две части. Одна из них по-прежнему не откло-нялась магнитным полем, а другая часть под действием силь-ного магнитного поля слегка отклонялась от своего первона-чального направления. Весьма интересным оказалось то, что эти лучи отклоня-лись в сторону, противоположную отклонению электронов. Следовательно, и эта часть радиоактивных лучей представ-ляет собой поток заряженных частиц (ибо на движение не-заряженных частиц магнитное поле не действует) и притом заряженных положительно. Опыт показал, что новые состав-ляющие радиоактивных лучей в отношении поглощения вели себя вполне определённым образом.

Рис. 1.

1 --радиоактивное вещество; 2 -- свинцовая коробочка с тонким каналом, в котором помещается радиоактивное вещество; 3 -- лучи, не отклонённые магнитным полем (гамма-лучи); 4 -- лучи, слабо отклоняемые магнитным полем (альфа-лучи); 5 -- лучи, сильно отклоняемые магнитным полем (бе-та-лучи); 6 --область, в которой создано магнитное поле.

Та часть радиоактивного излучения, которая совершенно не отклонялась магнитным полем, поглощалась очень незна-чительно. Та же часть радиоактивного излучения, которую

Резерфорду впервые удалось отклонить, поглощалась чрез-вычайно сильно.

Создавалось впечатление, что лучи, наблюдавшиеся вначале Беккерелем, пред-ставляют собой смесь трёх типов лучей.

На рис. 1 приведено схе-матическое изображение раз-деления радиоактивных лу-чей магнитным полем.

Радиоактивные лучи со-стоят из лучей трёх различ-ных типов. Каждый из них получил своё особое название и обозначение. Их обозначили и назвали тремя первыми бук-вами греческого алфавита: альфа (), бета () и гамма (). Альфа-лучами назвали те лу-чи, которые магнитным полем отклоняются слабо и представляют собой поток положительно заряженных ча-стиц. Бета-лучами стали назы-вать те лучи, которые сравни-тельно сильно отклоняются магнитным полем и представ-ляют собой поток электронов. Гамма-лучами стали называть лучи, которые совсем не отклоняются магнитным полем. Следует отметить, что альфа-лучи отклоняются в маг-нитном поле в виде узкого пучка, в то время как бета-лучи отклоняются магнитным полем в виде широкого размы-того пучка. Это обстоятельство говорит о том, что альфа-лучи, вылетающие из радия, имеют одинаковую энергию, а бета-лучи представляют собой поток электронов различной энергии.

Разделение радиоактивных лучей на альфа-, бета- и гамма--лучи позволило исследовать их свойства отдельно. Вот неко-торые результаты этих исследований.

Альфа-лучи поглощаются наиболее сильно. Тонкий листо-чек слюды или алюминия толщиной всего лишь в 0,05 мм поглощает альфа-лучи почти полностью. Достаточно завер-нуть радий в обыкновенную писчую бумагу, чтобы поглотить все альфа-лучи. Альфа-лучи сильно поглощаются воздухом. Слой воздуха толщиной всего лишь в 7 см поглощает альфа-лучи радия почти нацело.

Бета-лучи поглощаются веществом значительно слабее. Они в состоянии ещё в заметном количестве пройти через пластинку алюминия толщиной в несколько миллиметров.

Гамма-лучи поглощаются во много раз слабее бета-лучей. Они проходят через пластинку алюминия толщиной в несколько десятков сантиметров. Пластинка свинца толщиной в 1,3 см ослабляет интенсивность гамма-лучей всего лишь в два раза.

Помимо различия в степени поглощения, между альфа-, бета- и гамма-лучами существует большое различие в характере поглощения. Наиболее отчётливо оно проявляется в изменении интенсивности этих лучей при постепенном возрастании тол-щины поглощающего вещества.

Бета- и гамма-лучи поглощаются постепенно. Уже самые небольшие слои вещества в некоторой мере поглощают эти лучи. Число электронов и интенсивность гамма-лучей постепенно падают с увеличением толщины фильтрующего слоя.

Альфа-лучи ведут себя совершенно иначе. При прохожде-нии через малые слои вещества число альфа-частиц не изме-няется. Уменьшается только энергия этих частиц. С возра-станием толщины поглощающего слоя энергия частиц про-должает уменьшаться, но число их сохраняется. Так будет происходить до тех пор, пока толщина поглощающего слоя не достигнет некоторой определённой величины. Фильтр та-кой толщины задержит сразу все альфа-частицы.

Таким образом, каждая альфа-частица проходит в дан-ном веществе вполне определённый путь. Этот путь принято называть пробегом альфа-частицы. Пробег альфа-частицы за-висит от её энергии и от природы вещества, в котором она движется. Установив связь между пробегом и энергией альфа-частиц, можно в дальнейшем по величине пробега определять энергию альфа-частиц. Таким методом измерения энергии альфа-частиц широко пользуются на практике.

Сильное поглощение альфа-частиц может быть использовано для изучения их свойств.

Если взять радиоактивное вещество в виде шарика, то альфа-лучи, выходящие из всего объёма этого шарика, по-глощаются в самом шарике. Лишь очень тонкий поверхностный слой этого вещества испускает альфа-лучи, способные выйти наружу. Поэтому вне такого шарика должны наблюдаться главным образом бета- и гамма-лучи. Если же радиоактив-ное вещество распределить очень тонким слоем, то будут дей-ствовать почти- в одинаковом количестве все три рода лучей.

Сравнением действия радиоактивных лучей от толстого ра-диоактивного источника с действием радиоактивного препарата, распределённого в виде очень тонкого слоя, было установлено, что именно альфа-лучи ответственны за то, что радиоактивные лучи вызывают флюоресценцию и делают воздух проводником электричества.

Хорошо известно, что воздух делается проводником элек-тричества в том случае, если в нём образуются заряженные атомы - ионы. Альфа-лучи ионизуют воздух примерно в сто раз сильнее, чем бета- и гамма-лучи от того же радиоактив-ного источника. Но на образование ионов - на ионизацию воздуха требуется энергия. Было установлено, что на обра-зование одной пары ионов в воздухе требуется вполне опреде-лённая энергия, равная 33 электрон-вольтам В ядерной физике очень употребительна единица энергии, которую принято называть электрон-вольтом. Один электрон-вольт - это энергия, которую приобретает электрон, проходящий в электри-ческом поле разность потенциалов в 1 вольт. Один электрон-вольт - очень малая единица энергии, равная всего лишь 1,6-10- 1Э джоуля. Так как альфа-частицы образуют много ионов, то при своём движении в воздухе они тратят большое количество энергии. Этим и объясняется описанное ранее свойство альфа-лучей сильно поглощаться различными веществами. Впоследствии мы расска-жем, как было измерено число пар ионов, создаваемых одной альфа-частицей. Сейчас мы ограничимся только указанием этой цифры. Оказалось, что одна альфа-частица создаёт в воз духе около 200000 пар ионов. Это позволяет нам оценить энергию одной альфа-частицы. Энергия альфа-частицы оказа-лась приблизительно равной 6000000 электрон-вольт.

Слово радиация, в переводе с английского "radiation" означает излучение и применяется не только в отношении радиоактивности, но целого ряда других физических явлений, например: солнечная радиация, тепловая радиация и др. Поэтому в отношении радиоактивности следует применять принятое МКРЗ (Международной комиссией по радиационной защите) и Нормами радиационной безопасности понятие "ионизирующее излучение".

ионизирующее излучение ( ИОНИЗИРУЮЩАЯ РАДИАЦИЯ )?

Ионизирующее излучение - излучение (электромагнитное, корпускулярное), которое при взаимодействии с веществом непосредственно или косвенно вызывает ионизацию и возбуждение его атомов и молекул. Энергия ионизирующего излучения достаточно велика, чтобы при взаимодействии с веществом, создать пару ионов разных знаков, т.е. ионизировать ту среду в которую попали эти частицы или гамма кванты.

Ионизирующее излучение состоит из заряженных и незаряженных частиц, к которым относятся также фотоны.

Что такое радиоактивность?

Радиоактивность - самопроизвольное превращение атомных ядер в ядра других элементов. Сопровождается ионизирующим излучением. Известно четыре типа радиоактивности:

  • альфа-распад - радиоактивное превращение атомного ядра при котором испускается альфа-частица;
  • бета-распад - радиоактивное превращение атомного ядра при котором испускается бета-частицы, т.е электроны или позитроны;
  • спонтанное деление атомных ядер - самопроизвольное деление тяжелых атомных ядер (тория, урана, нептуния, плутония и других изотопов трансурановых элементов). Периоды полураспада у спонтанно делящихся ядер составляют от нескольких секунд до 1020 для Тория-232;
  • протонная радиоактивность - радиоактивное превращение атомного ядра при котором испускаются нуклоны (протоны и нейтроны).

Что такое изотопы?

Изотопы - это разновидности атомов одного и того же химического элемента, обладающие разными массовыми числами, но имеющие одинаковый электрический заряд атомных ядер и потому занимающие в периодической системе элементов Д.И. Менделеева одинаковое место. Например: 55Cs131, 55Cs134m, 55Cs134, 55Cs135, 55Cs136, 55Cs137. Различают изотопы устойчивые (стабильные) и неустойчивые - самопроизвольно распадающиеся путем радиоактивного распада, так называемые радиоактивные изотопы. Известно около 250 стабильных, и около 50 естественных радиоактивных изотопов. Примером устойчивого изотопа может служить Pb206, Pb208 являющийся конечным продуктом распада радиоактивных элементов U235, U238 и Th232.

ПРИБОРЫ ДЛЯ измерения радиации и радиоактивности.

Для измерения уровней радиации и содержания радионуклидов на различных объектах используются специальные средства измерения:

  • для измерения мощности экспозиционной дозы гамма излучения, рентгеновского излучения, плотности потока альфа и бета-излучения, нейтронов, используются дозиметры различного назначения;
  • для определения вида радионуклида и его содержания в объектах окружающей среды используются спектрометрические тракты, состоящие из детектора излучения, анализатора и персонального компьютера с соответствующей программой для обработки спектра излучения.

В настоящее время в магазинах можно купить различные виды измерителей радиации различного типа, назначения, и обладающие широкими возможностями. Для примера приведём несколько моделей приборов, которые наиболее популярные в профессиональной и бытовой деятельности:

Профессиональный дозиметр-радиометр, был разработан для радиационного контроля денежных купюр операционистами банков, в целях исполнения "Инструкция Банка России от 04.12.2007 N 131-И "О порядке выявления, временного хранения, гашения и уничтожения денежных знаков с радиоактивным загрязнением"".

Лучший бытовой дозиметр от ведущего производителя, данный портативный измеритель радиации зарекомендовал себя временем. Благодаря простому использованию, небольшому размеру и низкой цене, пользователи назвали его народным, рекомендуют его друзьям и знакомым, не боясь за рекомендацию.

СРП-88Н (сцинтилляционный радиометр поиска) - профессиональный радиометр предназначен для поиска и обнаружения источников фотонного излучения. Имеет цифровой и стрелочный индикаторы, возможность установки порога срабатывания звукового сигнализатора, что значительно облегчает работу при обследовании территорий, проверки металлолома др. Блок детектирования выносной. В качестве детектора используется сцинтилляционный кристалл NaI. Автономный источник питания 4 элемента Ф-343.

ДБГ-06Т - предназначен для измерения мощности экспозиционной дозы (МЭД) фотонного излучения. Источник питания гальванический элемент типа «Корунд».

ДРГ-01Т1 - предназначен для измерения мощности экспозиционной дозы (МЭД) фотонного излучения.

ДБГ-01Н - предназначен для обнаружения радиоактивного загрязнения и оценки с помощью звукового сигнализатора уровня мощности эквивалентной дозы фотонного излучения. Источник питания гальванический элемент типа «Корунд». Диапазон измерения от 0.1 мЗв*ч-1 до 999.9 мЗв*ч-1

РКС-20.03 «Припять» - предназначен для контроля радиационной обстановки в местах проживания, пребывания и работы.

Дозиметры позволяют измерять:

  • величину внешнего гамма-фона;
  • уровни загрязнения радиоактивными веществами жилых и общественных помещений, территории, различных поверхностей
  • суммарное содержание радиоактивных веществ (без определения изотопного состава) в продуктах питания и других объектах внешней среды (жидких и сыпучих)
  • уровни загрязнения радиоактивными веществами жилых и общественных помещений, территории, различных поверхностей;
  • суммарное содержание радиоактивных веществ (без определения изотопного состава) в продуктах питания и других объектах внешней среды (жидких и сыпучих).

Как выбрать измеритель радиации и другие приборы для измерения радиации вы можете прочитать в статье "Бытовой дозиметр и индикатор радиоактивности. как выбрать? "

Какие виды ионизирующего излучения существуют?

Виды ионизирующего излучения. Основными видами ионизирующего излучения, с которыми нам чаще всего приходится сталкиваться являются:



Конечно существуют и другие виды излучения (нейтронное), но с ними мы сталкиваемся в повседневной жизни значительно реже. Различие этих видов излучения заключается в их физических характеристиках, в происхождении, в свойствах, в радиотоксичности и поражающем действии на биологические ткани.

Источники радиоактивности могут быть природными или искусственными. Природные источники ионизирующего излучения это естественные радиоактивные элементы находящиеся в земной коре и создающие природный радиационный фон, это ионизирующее излучение приходящее к нам из космоса. Чем больше активность источника (т.е. чем больше в нем распадается атомов за единицу времени), тем больше он испускает за единицу времени частиц или фотонов.

Искусственные источники радиоактивности могут содержать радиоактивные вещества полученные в ядерных реакторах специально или являющиеся побочными продуктами ядерных реакций. В качестве искусственных источников ионизирующего излучения могут быть и различные электровакуумные физические приборы, ускорители заряженных частиц и др. Например: кинескоп телевизора, рентгеновская трубка, кенотрон и др.

Основными поставщиками радия-226 в окружающую природную среду являются предприятия занимающиеся добычей и переработкой различных ископаемых материалов:

  • добыча и переработка урановых руд;
  • добыча нефти и газа; угольная промышленность;
  • промышленность строительных материалов;
  • предприятия энергетической промышленности и др.

Радий-226 хорошо поддается выщелачиванию из минералов содержащих уран, этим его свойством объясняется наличие значительных количеств радия в некоторых видах подземных вод (радоновых применяемых в медицинской практике), в шахтных водах. Диапазон содержания радия в подземных водах колеблется от единиц до десятков тысяч Бк/л. Содержание радия в поверхностных природных водах значительно ниже и может составлять от 0.001 до 1-2 Бк/л. Существенной составляющей природной радиоактивности является продукт распада радия-226- радий-222 (Радон). Радон - инертный, радиоактивный газ, наиболее долгоживущий (период полураспада 3.82 дня) изотоп эманации *, альфа-излучатель. Он в 7.5 раза тяжелее воздуха, поэтому преимущественно накапливается погребах, подвалах, цокольных этажах зданий, в шахтных горных выработках, и т.д. * - эманирование- свойство веществ содержащих изотопы радия (Ra226, Ra224, Ra223), выделять образующиеся при радиоактивном распаде эманацию(радиоактивные инертные газы).

Считается, что до 70% вредного воздействия на население связано с радоном в жилых зданиях (см. диаграмму). Основным источником поступления радона в жилые здания являются (по мере возрастания значимости):

  • водопроводная вода и бытовой газ;
  • строительные материалы (щебень, глина, шлаки, золошлаки и др.);
  • почва под зданиями.

Распространяется радон в недрах Земли крайне не равномерно. Характерно его накопление в тектонических нарушениях, куда он поступает по системам трещин из пор и микротрещин пород. В поры и трещины он поступает за счет процесса эманирования, образуясь в веществе горных пород при распаде радия-226.

Радоновыделение почвы определяется радиоактивностью горных пород, их эманированием и коллекторными свойствами. Так, сравнительно слаборадиоактивные породы, оснований зданий и сооружений могут, представлять большую опасность, чем более радиоактивные, если они характеризуются высоким эманированием, или рассечены тектоническими нарушениями, накапливающими радон. При своеобразном «дыхании» Земли, радон поступает из горных пород в атмосферу. Причем в наибольших количествах - из участков на которых имеются коллекторы радона (сдвиги, трещины, разломы и др.), т.е. геологические нарушения. Собственные наблюдения за радиационной обстановкой в угольных шахтах Донбасса показали, что в шахтах, характеризующихся сложными горно-геологическими условиями (наличие множественных разломов и трещин в угле вмещающих породах, высокая обводненность и др.) как правило, концентрация радона в воздухе горных выработок значительно превышает установленные нормативы.

Возведение жилых и общественно-хозяйственных сооружений непосредственно над разломами и трещинами горных пород, без предварительного определения радоновыделения из почвы, приводит к тому, что в них из недр Земли поступает грунтовый воздух, содержащий высокие концентрации радона, который накапливается в воздухе помещений и создает радиационную опасность.

Техногенная радиоактивность возникает в результате деятельности человека в процессе которой происходит перераспределение и концентрирование радионуклидов. К техногенной радиоактивности относится добыча и переработка полезных ископаемых, сжигание каменного угля и углеводородов, накопление промышленных отходов и многое другое. Уровни воздействия на человека различных техногенных факторов иллюстрирует представленная диаграмма 2 (А.Г. Зеленков "Сравнительное воздействие на человека различных источников радиации", 1990 г.)

Что такое "черные пески" и какую опасность они представляют?

Черные пески представляют собой минерал монацит - безводный фосфат элементов ториевой группы, главным образом церия и лантана (Ce, La)PO4, которые замещаются торием. Монацит содержит до 50-60% окисей редкоземельных элементов: окиси иттрия Y2O3 до 5%, окиси тория ThO2 до 5-10%, иногда до 28%. Удельный вес монацита составляет 4.9-5.5. С повышением содержания тория уд. вес возрастает. Встречается в пегматитах, иногда в гранитах и гнейсах. При разрушении горных пород включающих монацит, он накапливается в россыпях, которые представляют собой крупные месторождения.

Такие месторождения наблюдаются и на юге Донецкой области.

Россыпи монацитовых песков находящиеся на суше, как правило не вносят существенного изменения в сложившуюся радиационную обстановку. А вот месторождения монацита находящиеся у прибрежной полосы Азовского моря (в пределах Донецкой области) создают ряд проблем особенно с наступлением купального сезона.

Дело в том, что в результате морского прибоя за осенне-весенний период на побережье, в результате естественной флотации, скапливается значительное количество "черного песка", характеризующегося высоким содержанием тория-232 (до 15-20 тыс. Бк*кг-1 и более), который создает на локальных участках уровни гамма-излучения порядка 300 и более мкР*час-1. Естественно, отдыхать на таких участках рискованно, поэтому, ежегодно проводится сбор этого песка, выставляются предупреждающие знаки, закрываются отдельные участки побережья. Но все это не позволяет предотвратить нового накопления "черного песка".

Позволю высказать по этому поводу личную точку зрения. Причиной, способствующей выносу "черного песка" на побережье, возможно является тот факт, что на фарватере Мариупольского морского порта постоянно работают земснаряды по расчистке судоходного канала. Грунт, поднятый со дна канала, сваливается западнее судоходного канала, в 1-3 км от побережья (см. карту размещения мест свалки грунта), и при сильном волнении моря, с накатом на прибрежную полосу, грунт содержащий монацитовый песок выносится на побережье, где обогащается и накапливается. Однако все это требует тщательной проверки и изучения. И если это как, то снизить накопление "черного песка" на побережье, возможно, удалось бы просто переносом места свалки грунта в другое место.

Основные правила выполнения дозиметрических измерений.

При проведении дозиметрических измерений, прежде всего, необходимо строго придерживаться рекомендаций изложенных в технической документации на прибор.

При измерении мощности экспозиционной дозы гамма-излучения или эквивалентной дозы гамма-излучения необходимо соблюдать следующие правила:

  • при проведении любых дозиметрических измерений, если предполагается их постоянное проведения с целью наблюдения за радиационной обстановкой, необходимо строго соблюдать геометрию измерения;
  • для повышения достоверности результатов дозиметрического контроля проводится несколько измерений (но не менее 3-х), и вычисляется среднее арифметическое;
  • при выполнении измерений на территории выбирают участки вдали от зданий и сооружений (2-3 высоты); -измерения на территории проводят на двух уровнях, на высоте 0.1 и 1.0 м от поверхности грунта;
  • при измерении в жилых и общественных помещениях, измерения проводятся в центре помещения на высоте 1.0 м от пола.

При измерении уровней загрязнения радионуклидами различных поверхностей необходимо выносной датчик или прибор в целом, если выносного датчика нет, поместить в полиэтиленовый пакет (для предотвращения возможного загрязнения), и проводить измерение на максимально возможно близком расстоянии от измеряемой поверхности.

Последние материалы сайта