Ближний космос расстояние. Аэрокосмическая лаборатория. Мир галактик и звезд

23.11.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

4 октября 2017 года исполнилось ровно 60 лет со дня запуска первого искусственного спутника Земли. Сегодня на орбите находятся тысячи аппаратов: спутники связи, дистанционного зондирования Земли, метеорологические, разведывательного назначения, космические обсерватории и многие другие. Казалось бы, космическая отрасль развивается успешно. Однако не все так просто, считает журналист Игорь Тирский.

Сияющие перспективы?

С недавнего времени космос заинтересовал бизнесменов, открылась возможность частного освоения космического пространства, обработки астероидов, колонизации Луны и Марса. Предприниматели в ближайшем будущем смогут предложить всем желающим суборбитальные полеты на высоты около 100 км над землей - почти в космос!

Интерес к космосу стали проявлять и люди, далекие от этой сферы, доселе занимавшиеся другими вещами: Ричард Брэнсон, Владислав Филев (авиакомпания S7), Пол Аллен, Джефф Безос, Илон Маск. Пока это в основном западные предприниматели.

В будущем стоит ожидать бума космического туризма, выведения на околоземные орбиты тысяч спутников для раздачи интернета, а также баз на Луне и Марсе от частных компаний и переезда туда миллионов туристов.

И это не шутка, а реальные планы предпринимателей в сфере частного космоса. Например, Илон Маск, глава компании SpaceX, обещает отправить на Марс миллион человек!

Кажется, в обозримом будущем человечество постепенно займет все околоземное пространство и обоснуется там основательно. Резко увеличится и число работающих космических аппаратов на орбите Земли.

Возможен и другой сценарий

Космос - это сложно, дорого, долго, и потому бизнес-перспективы его покорения прельщают не многих. Пока весь спектр услуг в этой области доступен лишь государствам и крупным частным компаниям (которые опять же пользуются государственной поддержкой). Но даже для них вложение в космос - это риск. Аппарат на орбите может отказать, ракета-носитель - взорваться. Естественно, космическая техника застрахована, и страховка покроет все расходы, но на производство другого спутника может попросту не хватить времени.

Даже если все пойдет хорошо и выведенные на орбиту устройства станут функционировать, то инвестиции могут «не отбиться», а технология - банально устареть. Есть хороший пример - спутники «Иридиум», обеспечивающие космическую связь через спутниковый телефон в любой точке планеты Земля. Первый звонок в системе «Иридиум» состоялся в 1997 году, а сама она была задумана на 10 лет раньше - в 1987-м, когда о сотовой связи знал далеко не каждый.

Но как мы сейчас видим, интернет для тех же целей проще и дешевле. Кроме того, сотовые вышки на территории многих стран растут как грибы. LTE уже не является чем-то диковинным - скорее, вы больше удивитесь, если увидите человека со спутниковым телефоном. «Иридиум» оказался не нужен в массовом сегменте - есть сотовая связь, в крайнем случае - более дешевые спутниковые услуги других провайдеров. Одной из причин банкротства компании в 1993 году стала неверная оценка распространения новой технологии - сотовой связи. «Иридиум» продолжает существовать и по сей день, но им уже труднее конкурировать с другими провайдерами, которые предлагают намного более дешевую телефонную спутниковую связь.

Что-то подобное происходит и в наши дни, но уже с мировой паутиной: такие компании, как OneWeb или SpaceX, грозятся запустить тысячи искусственных спутников Земли, снабдив их антеннами для раздачи интернета по всему миру.

То есть теоретически каждый житель планеты сможет иметь доступ к высокоскоростному спутниковому интернету за относительно небольшие деньги или вообще бесплатно.

Последнее зависит от того, какая модель монетизации будет выбрана. В наши дни это актуально, поскольку примерно половина населения Земли не имеет постоянного доступа в интернет.

Когда Motorola запускала свою сеть спутников «Иридиум», на рынке складывалась похожая ситуация: о теперешних масштабах мобильной связи в конце 80-х не приходилось и мечтать, а компания намеревалась покрыть собственной сетью земной шар. Теперь же сотовая связь стремительно проникает даже в отдаленные уголки нашей планеты, но качество интернета оставляет желать лучшего - вот это и хотят исправить OneWeb и SpaceX.

Спутниковый интернет - хорошая альтернатива кабельному и сотовому. Он не такой дорогой, как кажется на первый взгляд, если речь идет о симплексном, или одностороннем, доступе: требуется простая антенна и сравнительно дешевое приемное оборудование, а в качестве исходящего канала используется GPRS, 3G, ADSL и т. д. - словом, любой наземный интернет. На территориях, где отсутствует другая связь, возможна только дуплексная спутниковая сеть, когда терминал работает в режиме приемного и передающего устройства одновременно, но она значительно дороже симплексной.

На данный момент спутниковые компании и сотовые операторы еще могут конкурировать с кабельным оптоволоконным интернетом в силу того, что последний проник далеко не повсюду. Но все идет к тому, что Землю обложат кабелем, и всемирная сеть из космоса нам станет не нужна.

Не получится ли так, что в будущем системы связи OneWeb и SpaceX станут нерентабельными?

Вероятно, потребность в спутниковом интернете останется в таких странах, как Индия, на Африканском континенте и в труднодоступных местах, где просто невозможно провести кабель или поставить много вышек LTE. Но будет ли в этом случае приемлемой стоимость и удастся ли получить разрешение регулирующих органов? Кажется, что спутниковый интернет останется безальтернативным еще долго, по крайней мере для половины населения Земли. Но все может быстро измениться.

Дроны и стратостаты вместо ракет и спутников

Спутники используются не только для доставки интернета, но и для дистанционного зондирования Земли (ДЗЗ), или, проще говоря, для фотографирования поверхности и отправки данных. Но мы уже замечаем развитие дронов, беспилотных летающих аппаратов (БЛА), для ДЗЗ. Они удобнее: дешевле, мобильнее, могут обслуживаться на земле и управляться в ручном режиме.

Поэтому встает вопрос о необходимости спутников на орбите, когда есть атмосферные беспилотники. Ведь им нестрашны облака (опустились под них - и нет проблемы), разрешение снимка всегда можно увеличить также за счет снижения, дроны могут, в отличие от спутников, нарезать круги над одной местностью довольно долго и, таким образом, собирать информацию в режиме реального времени. Кроме того, все перечисленные мероприятия обойдутся дешевле эксплуатации спутниковой системы, ведь в последнем случае необходима не одна сотня аппаратов для уверенного обзора местности, а это - миллиарды долларов.

Космические обсерватории - вот уж что точно нельзя будет заменить, скажете вы. Но такие проекты, как VLT, E-ELT (39-метровый телескоп от Европейской южной обсерватории) и SOFIA (обсерватория на самолете), могут быть достойной альтернативой. Правда, не во всех диапазонах длин волн, и вот тут-то к нам на помощь приходят стратостаты (стратосферные аэростаты).

Они способны свободно подниматься на высоты около 40–50 км над землей и нести большую нагрузку в виде обсерватории. Еще одно их преимущество состоит в том, что они не имеют проблем с микрогравитацией. При их движении не возникает высокой нагрузки, которая, в свою очередь, учитывается в конструкции ракет-носителей, что увеличивает их массу и, как следствие, существенно ограничивает возможность разного рода улучшений. Могут обслуживаться в любое время, в том числе в режиме работы: можно подлететь к аэростату на другом аэростате или спустить его на землю для ремонта. Еще в 1961 году (в год полета Гагарина) был инициирован проект стратосферной солнечной станции с зеркальным телескопом «Сатурн» , диаметр главного зеркала - 50 см. В 1973-м уже модернизированный прибор с метровым зеркалом получил снимки Солнца с разрешением близким к теоретическому (0,12«) с высоты 20 км над землей.

Высоты от 20 до 100 км иногда называют «ближним космосом» из-за их небольшого сходства с космосом настоящим: человек уже не может существовать там без защитного костюма, а вид из иллюминатора почти как на орбите, только спутники не летают, небо темно-фиолетовое и черно-лиловое, хотя и выглядит просто черным по контрасту с яркими Солнцем и земной поверхностью.

А вот настоящий космос, или околоземное космическое пространство, начинается с 100 км. На этих высотах летательному аппарату для создания достаточной подъемной силы необходимо двигаться уже со скоростью выше первой космической. В любом случае это уже будет не самолет, а спутник. С практической точки зрения ключевое различие здесь состоит в способе доставки: в обычный космос мы летаем на ракетах, а в ближний можно и на стратостатах добраться.

Стратостаты - всеми забытая технология 30-х годов XX века. Это не дирижабли, наполненные водородом и взрывающиеся от каждой искры, а похожие на воздушные шары баллоны с гелием, способные подниматься в ближний космос, на стратосферные рубежи, то есть до 50 км. Существуют проекты стратостатов (хотя их трудно так назвать, скорее это суборбитальные спутники), которые могут работать на высоте до 80 км. Но это всё - для военных, гражданские же модели пока не поднимаются выше 40–50 км, однако и этого достаточно для большинства задач, которые сейчас решаются только с использованием спутников, находящихся в космосе выше 100 км над землей.

Стратостаты были забыты с началом космической эры в 1957 году, но прошло ровно 60 лет - и о них снова вспомнили! Почему так произошло? Как уже говорилось выше, космические полеты - это дорогое удовольствие, доступное далеко не всем; даже не каждая страна может позволить себе полноценную космическую программу. А вот стратосферу освоить - это пожалуйста, тут цифры намного скромнее, а результаты - не хуже. И дело не только в дешевом способе достижения большой высоты, но и в технологиях, которые используются для создания стратостатов и теперь позволяют им находиться в небе сотни дней!

Это намного больше, чем раньше: солнечные панели питают стратостаты днем, мощные аккумуляторные батареи (которые при этом имеют малый вес!) запасают энергию на ночь, легкие и прочные материалы сохраняют конструкцию аппарата, GPS позволяет им с легкостью определять положение, бортовые компьютеры самостоятельно принимают решения.

Именно комплекс современных технологий и позволяет сейчас говорить о формирующемся рынке стратосферных услуг.

Например, стратостатная компания WorldView планирует запускать туристов на высоты до 45 км! Для этого они придумали новую гондолу, снабдив ее огромными иллюминаторами, через которые туристы смогут увидеть черноту дневного неба и поверхность нашей планеты практически такой, какой она предстает взорам космонавтов, - Земля станет круглой!

«Ближний» космос выгоднее дальнего

Единственное, что останется в настоящем космосе (выше 100 км), - это навигация: GPS, ГЛОНАСС, Beidou, Galileo. Но и эту проблему можно будет решить без применения дорогостоящих спутниковых систем - с помощью стратостатов, беспилотников и других средств наземного и воздушного базирования. Тем более LTE и Wi-Fi предлагают хорошую альтернативу GPS, технология LBS (Location-Based Service) неплохо справляется с задачей навигации, определяя местоположение по наземным вышкам сотовой связи и Wi-Fi. Пока, правда, по точности она уступает любой, даже самой плохой системе навигации, и погрешность в лучшем случае составляет десятки метров, тогда как у GPS - менее метра.

«Ближний космос», как часто совершенно обоснованно называют стратосферу (высоты от 20 до 50 км), в ближайшем будущем может занять центральное место и в научной сфере, обойдя по привлекательности околоземное космическое пространство.

Отправка стратостатов, оснащенных специальным оборудованием и целой лабораторией, с людьми на борту на высоты до 50 км станет привычным занятием. Нет необходимости защищать стратонавтов от губительной радиации, солнечных бурь и, самое главное, космического мусора, который является основной преградой на пути освоения околоземного пространства. Скорее всего, в ближайшем будущем мы вынужденно откажемся от космоса и займемся атмосферой - прежде всего потому, что делать стратостаты и беспилотники намного дешевле и нет необходимости в обеспечении того уровня защиты и систем жизнеобеспечения, который нужен на орбите Земли.

Для решения же народно-хозяйственных задач (связь, ДЗЗ, астрономия, научные эксперименты) стратостаты могут составить достойную конкуренцию космическим спутникам. Ведь появятся куда более дешевые их аналоги: управляемые нейросетью модели (они будут сами решать, куда лучше двигаться и как группироваться, - и уже это делают, к примеру, в рамках проекта Google Loon развивающиеся и труднодоступные регионы получают таким образом интернет) и автономные беспилотники, которые смогут существовать в атмосфере днями.

Стратостаты могут непрерывно наблюдать за одним и тем же местом планеты (аппараты с такой функцией называются «геостационарными»). В стратосфере нет сильных ветров и низкая турбулентность, поэтому стратостат может зависнуть над одной точкой так же, как это делает спутник. Только для того, чтобы доставить спутник на геостационарную орбиту (36 000 км над землей), нужна мощная ракета-носитель, а для стратостата - баллоны с гелием, небольшое финансирование и желание создать конкуренцию традиционным технологиям связи и ДЗЗ.

Развитие стратонавтики приведет не только к отказу от дорогостоящих спутников ДЗЗ или связи, но и к тому, что эти спутники будут доставлять на орбиту Земли другими способами, если такое все же потребуется. Например, компания Zero 2 Infinity разрабатывает проект достижения орбиты Земли с помощью запусков из стратосферы - это перспективное направление, когда стратостат служит космодромом или платформой для спутника, который должен отправиться на ракете в настоящий космос. Даже если конкретно эти проекты не найдут поддержки у инвесторов, сам вектор на освоение стратосферы уже четко обозначился.

Наличие большого количества стратостатов в атмосфере Земли создаст глобальную распределенную систему связи (сродни той, что образуют компьютеры у нас дома).

Мы будем лучше понимать погоду, получать данные ДЗЗ прямо на свои персональные устройства, иметь доступ в интернет с минимальной задержкой сигнала в труднодоступных местах, сможем децентрализованно общаться через эти аппараты.

Иными словами, любые данные, полученные стратостатами, будут точнее и быстрее обрабатываться, чем «орбитальные». Философия децентрализованного интернета должна распространиться и на другие сферы, а стратостаты и беспилотники идеально подходят под эту модель мира.

Совокупность всего, что существует физически

  • Космическое пространство - относительно пустые участки Вселенной, которые лежат вне границ атмосфер небесных тел
  • Космос (философия) - мир в целом, миропорядок, упорядоченная Вселенная в противоположность хаосу
  • Космос, или Космея (Cosmos ) - род американских красивоцветущих травянистых растений семейства Астровые
  • В технике

    • Космос (КА) - серия искусственных спутников Земли, запускавшихся в СССР с 16 марта 1962 для изучения космического пространства, решения технических проблем, отработки систем космических аппаратов
    • Космос (ракета-носитель) - разработанные в СССР двухступенчатые ракеты-носители для запуска искусственных спутников Земли «Космос»

    В искусстве

    Организации, имеющие в своём наименовании слово «Космос»

    • Космос (гостиница) - гостиницы с таким названием в России и других странах
    • Космос-Золото - сеть ювелирных магазинов
    • Космос-ТВ - оператор спутникового телевидения
    • Космос (финансовая группа) - финансовая группа на Украине
    • Космос (кинотеатр, Москва)
    • Космос (банк) - коммерческий банк в Москве
    • Космос (музей) - музей в Ярославской области, посвящённый Валентине Терешковой
    • Космос (киноконцертный театр, Екатеринбург) - кинотеатр в Екатеринбурге
    • ТМ Космос - производитель ламп, аккумуляторов, фонарей и пр. под брендом «Космос»
    • Кинотеатр Космос - Кинотеатр в городе Канск
    • California State Summer School for Mathematics and Science (COSMOS) - калифорнийская государственная летняя школа математики и науки
    • Consortium of Organizations for Strong Motion Observation Systems (COSMOS) - консорциум организаций наблюдения сильных движений

    Спорт

    • «Нью-Йорк Космос» - бывшая футбольная команда, базировавшаяся в Нью-Йорке
    • «Йомо Космос» - футбольная команда, базирующаяся в Йоханнесбурге

    Прочее

    • Космос - железнодорожная станция на ветке Домодедово-Аэропорт Павелецкого направления МЖД .
    • Косм (греч. κόσμος , космос ) - титул верховных правителей древнего Крита
    • Космос - один из международных искусственных языков

    Wikimedia Foundation . 2010 .

    Смотреть что такое "Ближний космос" в других словарях:

      ближний космос - artimasis kosmosas statusas T sritis radioelektronika atitikmenys: angl. near space; near Earth space vok. Nahkosmos, m; Nahweltraum, m rus. ближний космос, m; околоземный космос, m pranc. cosmos proche, m; espace proche de la Terre, m … Radioelektronikos terminų žodynas

      Современная энциклопедия

      - (греч. kosmos) синоним астрономического определения Вселенной; часто выделяют т. н. ближний космос, исследуемый при помощи искусственных спутников Земли, космических аппаратов и межпланетных станций, и дальний космос мир звезд и галактик … Большой Энциклопедический словарь

      КОСМОС (греч. kosmos), синоним астрономического определения Вселенной; часто выделяют т. н. ближний космос, исследуемый при помощи искусственных спутников Земли, космических аппаратов и межпланетных станций, и дальний космос мир звезд и галактик … Энциклопедический словарь

      - (греч. kosmos), в древнегреческой философии термин употреблялся для обозначения мира как структурного организованного и упорядоченного целого. В настоящее время используется как синоним астрономического определения Вселенной. Различают ближний… … Экологический словарь

      Космос - (греческое kosmos строй, порядок, мир, Вселенная), первоначально у древних греков Вселенная как стройная, организованная система, в противоположность хаосу, беспорядочному нагромождению материи. В современном понимании термин космос имеет… … Иллюстрированный энциклопедический словарь

      космос - ▲ пространство Вселенная космос пространство Вселенной; мировая среда небесных тел (ближний #. дальний #. освоение космоса). макрокосм. , космический (# лучи). ближний космос. ↓ небо, мировая катастрофа … Идеографический словарь русского языка

      КОСМОС - (от греч. kosmos украшение, порядок, мир) синоним астрономического определения Вселенной; часто выделяют т. н. ближний космос, исследуемый при помощи искусственных спутников Земли, и дальний космос мир звезд и галактик. Всего лишь 100 лет назад,… … Большая актуальная политическая энциклопедия

      космос - а, только ед., м. Астрономическое определение Вселенной. Полет в космос. Исследование космоса. Синонимы: макроко/смос (спец.), мирозда/ние (книжн.) Родственные слова: космодро/м, космона/вт … Популярный словарь русского языка

      А; м. [греч. kosmos вселенная]. Освоение космоса. Полёты в к. Выйти в открытый к. (за пределы космического летательного аппарата). ◁ Космический (см.). * * * космос (греч. kósmos), синоним астрономическому определения Вселенной; часто выделяют… … Энциклопедический словарь

    Книги

    • Курсант , Архипов Андрей Михайлович. Ближний космос как сосредоточение интересов земных империй - и обыкновенный парень в переплетении событий. А еще биороботы, нейросети, добыча ресурсов, войны... Трудно среди этого выжить и…

    Что представляет собой планета Венера, закрытая от наблюдателей на Земле плотной атмосферой? Как выглядит поверхность Марса и каков состав марсианской атмосферы? На эти вопросы не могли дать ответ телескопы. Но всё изменилось с появлением радиолокации.

    Оказалось, что радиоволны , посылаемые радиолокаторами с Земли, отражаются от космических тел так же, как и от земных объектов. Направляя радиосигналы на определённое астрономическое тело, и анализируя отражённые от него сигналы, можно получить информацию о космическом объекте.

    Так появилась радиолокационная радиоастрономия, исследующая планеты и их спутники, кометы, астероиды и даже солнечную корону с помощью радиосигналов.

    Ближний и дальний космос

    Часто выделяют ближний и дальний космос. Граница между ними весьма условна.

    Ближним называют космос, исследуемый космическими летательными аппаратами и межпланетными станциями, а дальним считают космос за пределами Солнечной системы. Хотя чёткая граница между ними не установлена.

    Считается, что ближний космос находится над атмосферным слоем Земли, вращающимся вместе с ней и называемым околоземным пространством. В ближнем космосе уже нет атмосферы, но на все объекты, находящиеся в нём, всё ещё действует гравитационное поле нашей планеты. И чем дальше от Земли, тем меньшим становится это влияние.

    Объекты дальнего космоса – звёзды, галактики, туманности, чёрные дыры, располагающиеся за пределами Солнечной системы.

    Ближний космос населяют планеты Солнечной системы, спутники, астероиды, кометы, Солнце. По космическим понятиям расстояние между ними и Землёй считается небольшим. Поэтому их возможно исследовать с помощью радиолокаторов, расположенных на Земле. Это специальные мощные РЛС, называемые планетными радиолокаторами .

    Радиолокационное исследование ближнего космоса

    Центр дальней космической связи в Евпатории

    Космические радиолокаторы работают по такому же физическому принципу, что и обычные наземные радиолокаторы, обслуживающие морские суда и самолёты. Радиопередающее устройство планетного радиолокатора генерирует радиоволны, которые направляют на исследуемый космический объект. Отражённые от него эхо-сигналы улавливаются приёмным устройством.

    Но из-за огромного расстояния отражённый от космического объекта радиосигнал становится значительно слабее. Поэтому передатчики на планетных радиолокаторах имеют очень большую мощность, антенны - большие размеры, а приёмники - очень высокую чувствительность. Так, например, диаметр зеркала радиоантенны в Центре дальней космической связи под Евпаторией равен 70 м.

    Первой планетой, которую исследовали с помощью радиолокации, стала Луна. Кстати, идея послать радиосигнал на Луну, а затем принять его отражение, возникла ещё в 1928 г. и была выдвинута русскими учёными Леони́дом Исаа́ковичем Мандельшта́моми Никола́ем Дми́триевичем Папале́кси. Но технически реализовать её в то время было невозможно.

    Леонид Исаакович Мандельштам

    Николай Дмитриевич Папалекси

    Это удалось сделать в 1946 г. американским и венгерским учёным независимо друг от друга. Радиосигнал, посланный с мощного радиолокатора в сторону Луны, отразился от её поверхности и вернулся на Землю через 2,5 секунды. Этот эксперимент позволил вычислить точное расстояние до Луны. Но вместе с этим по картинке отражённых волн удалось определить и рельеф её поверхности.

    В 1959 г. были получены первые сигналы, отражённые от солнечной короны. В 1961 г. сигнал радиолокатора отправился в сторону Венеры. Радиоволны, обладающие высокой проницательностью, проникли сквозь её плотную атмосферу и позволили «увидеть» её поверхность.

    Затем было начато исследование Меркурия, Марса, Юпитера и Сатурна. Радиолокация помогла определить размеры планет, параметры их орбит, диаметры и скорость их вращения вокруг Солнца, а также исследовать их поверхности. С помощью РЛС были установлены точные размеры Солнечной системы.

    Радиосигналы отражаются не только от поверхностей небесных тел, но и от ионизированных следов метеорных частиц в атмосфере Земли. Чаще всего эти следы появляются на высоте около 100 км. И хотя существуют они от 1 до нескольких секунд, этого достаточно, чтобы с помощью отражённых импульсов определить размер самих частиц, их скорость и направление.

    Бортовые радиолокаторы на управляемых космических объектах

    Малый космический аппарат (МКА) «Кондор-Э» с радиолокатором

    После запуска первого спутника, как известно прошло шесть десятков лет. На данный момент учёные приходят к тому мнению, что более дёшево и безопасно заниматься освоением стратосферы, а не космоса.

    На сегодняшний день по орбите летают тысячи аппаратов, таких как спутники связи, космические обсерватории, зонды разного назначения и прочие. На первый взгляд космическая сфера добивается больших успехов, но тут всё не так просто, как заявляет журналист Игорь Тирский.

    Есть ли перспективы в освоении космоса?

    Космической темой с недавних пор заинтересованы бизнесмены, ведь открыли возможность частного освоения космоса, колонизации Марса и Луны и обработки астероидов. В ближайшее время предприниматели уже сумеют предоставить предложения всем добровольцам совершать суборбитальные полёты высотой примерно в 100 км. над планетой, а это ведь почти космос.

    Таким образом, космосом заинтересовались и персоны, весьма далёкие от этого, такие как Илон Маск, Ричард Брэнсон, Пол Аллен, Владислав Филев и Джефф Безос, являющиеся предпринимателями с Запада.

    В будущем ожидается некий бум космического туризма, вывода на орбиты тысяч спутников в целях раздачи интернет-соединения, а ещё возведения баз на Марсе и Луне во главе с частными компаниями и переезда в новые места миллионов туристов.

    Это не является шуткой, ведь такие мысли входят в действительные планы предпринимателей в сфере частного космоса. К примеру, Илон Маск, являющийся главой компании «SpaceX», даёт обещания по отправке на Марс миллиона человек.

    Вполне вероятно, что в уже обозримом будущем постепенным образом околоземное пространство будет занято человечеством. Мы приживёмся там основательно. В то же время будет наблюдаться резкое увеличение числа функционирующих аппаратов космического назначения на земной орбите.

    Иной сценарий

    Космос является весьма сложным и дорогостоящим, к тому же на его изучение уходит много времени, поэтому бизнес-перспективы его освоения мало кого интересуют. На данный момент все услуги в этой сфере доступны только государства и крупным частным организациям, пользующимся к тому же поддержкой государства. Даже для этих организаций инвестиции в космическую сферу весьма рискованны. Ведь на орбите вполне возможны отказы аппаратов, взрывы ракет-носителей и т.п. Конечно же, техника космического назначения застрахована, и страховка эта способна покрыть всевозможные расходы, однако, для создания другого аппарата потребуется колоссальное количество время.

    Даже в случае успешного вывода на орбиту устройств вклады могут, так сказать, «не отбиться», а технологии же имеют свойство устаревания. Например, существуют такие спутники, как «Иридиум», которые обеспечивают космическую связь посредством спутникового телефона в любом месте Земли. Первый звонок в этой системе удалось совершить в 1997 году, а задумывалась же технология десяток лет назад, в 1987 году, а тогда о сотовой связи мало кто знал.

    На сегодняшний день же мы видим, что интернет оказался более простым и дешёвым решением в этом плане. А сотовые вышки при этом во многих странах так и строятся. «LTE» теперь не такое диковинное как раньше. На сегодня можно больше удивиться человеку со спутниковым телефоном. Таким образом, «Иридиум» в массе оказался не востребованным, ведь есть сотовая связь, к тому же существуют и спутниковые услуги иных провайдеров, обходящиеся по стоимости намного меньше, чем вышеописанная технология. «Иридиум» есть и ныне, но они не выдерживают конкуренции, ведь иные провайдеры предлагают те же технологии за меньшую стоимость.

    Аналогичное сейчас творится и ныне, только уже касательно мировой паутины, ведь «OneWeb» и «SpaceX» намерены осуществить запуски тысяч искусственных земных спутников, снабжённых антеннами для раздачи интернет по всей Земле.

    Иными словами, любой из жителей планеты получит возможность пользоваться высокоскоростным спутниковым интернетом за вполне приемлемую стоимость или же вовсе безвозмездно, что зависит от модели монетизации. А ведь это актуально для современных людей, ведь несмотря на развитие технологий приблизительно пол населения планеты так и не могут пользоваться интернетом.

    Такая же ситуация складывалась с «Motorola», когда она запускала «Иридиум». Ведь о таких масштабах мобильной связи, как сейчас, в конце 80-х даже и не мечтали, а компания уже ставила намерения покрыть своей сетью весь мир. Ныне же сотовая связь доступна даже в отдалённых уголках планеты, но насчёт интернета качество ещё хромает, поэтому вышеупомянутые компании и хотят заняться этой проблемой.

    Спутниковый интернет представляется весьма хорошей альтернативой сотовому или кабельному. Он не столь дорог, как это на первый взгляд думается, если речь касается одностороннего доступа. Ведь тут необходимо лишь иметь простую антенну и относительно дешёвое оборудования для приёма сигнала. Для исходящего канала тут применяются такие технологии, как ADSL, GPRS, 3G и т.д. А вот на тех территориях, где нет наземной связи, ситуация посложнее, поэтому там приходится внедрять дуплексную, а не симплексную (одностороннюю) сеть. В таком случае терминал функционирует одновременно в режиме передающего и принимающего устройства, но этот вариант уже дороже обойдётся.

    В настоящее время спутниковые компании и сотовые компании пребывают в конкурентной борьбе с кабельным оптоволокном, ведь эта технология распространена ещё не везде. Однако, всё идёт к тому, что планета будет обложена кабелем, и в этом случае космические сети нам и не пригодятся.

    Поэтому возникают вопрос в рентабельности в будущем таких систем связи, какие собираются внедрять «SpaceX» и «OneWeb».

    Наверное, потребность в интернете через спутники будет лишь в Индии, в Африке и в других труднодоступных местах, где нет возможности провести кабель или же возвести много вышек «LTE». Тут возникает вопрос о том, будет ли приемлемой стоимость таких технологий и разрешат ли это внедрять органы власти. Поэтому создаётся впечатление, что спутниковый интернет останется ещё на долгое время безальтернативным, но ситуация может и сильно измениться.

    Дроны и стратостаты - альтернатива ракетам и спутникам

    Спутники применяют не только в целях доставки интернета, но и для так называемого дистанционного зондирования планеты, иными словами, для запечатления поверхности на фото и передачи данных. Однако, ныне можно заметить развитие дронов и беспилотных летающих аппаратов, предназначенных для зондирования. Ведь они обходятся дёшево, обладают свойством мобильности, способны обслуживаться на земле, и их можно ещё контролировать в ручном режиме.

    Так что возникает вопрос, зачем нужны спутник на орбите, если существуют беспилотники, которым и облака не страшны, ведь им можно просто опуститься под них и проблемы будут исключены. Ещё на них можно увеличивать разрешения снимка путём снижения положения. Также дроны способны нарезать круги над одной и той же местностью длительное время и заниматься там сбором данных прямо в реальном времени. Все вышеназванные способности обходятся весьма дёшево в сравнении со спутниковой системой, ведь в при эксплуатации спутниковой системы необходима сотня аппаратов, позволяющих осуществлять обзорное путешествие над местностью. Это всё обойдётся в миллиарды долларов. Значительно различие, не так ли?

    Многие думают, что нельзя заменить космические обсерватории. Ни тут то было, ведь существуют такие проекты, как «VLT», «E-ELT», являющийся громадным телескопом, и «SOFIA», представляющий собой обсерваторию на самолёте. Это вполне достойная альтернатива, только не касательно всех диапазонов длин волн. В этом случае помогут стратостаты, способные подниматься на высоты в приблизительно 40-50 км. над земной поверхностью и нести на себе большие нагрузки, например, обсерваторию. В качестве преимущества можно отметить отсутствие у них проблем с микрогравитацией. При движении таких аппаратов высокой нагрузки не возникает, учитываемой обычно в ракетах-носителях, увеличивающей массу и значительно ограничивающей возможность всевозможных улучшений. Такие аппараты способны обслуживаться в любой временной период, даже при работе, ведь можно просто подлететь к нему на другом аэростате или же спустить на землю для ремонтирования.

    Ещё в далёком 1961 году инициировали проект стратосферной солнечной станции с телескопом зеркального типа под названием «Сатурн». Диаметр главного зеркала там равнялся 50 см. В 1973 же году уже были получены снимки Солнца при помощи модернизированного прибора с метровым зеркалом с высоты в 20 км. над земной поверхностью.

    Говорят, что высоты с 20 до 100 км. считаются «ближним космосом» ввиду их сходства с настоящим космосом. Там уже человеку нельзя находиться без защитного костюма, а вид же из иллюминатора примерно как на орбите, только не видать спутников, а небо тёмно-фиолетового и чёрно-липового цвета, хоть и на первый взгляд чёрное по контрасту с ярким светилом и поверхностью Земли.

    Настоящий же космос – это уже выше 100 км. Там уже для достаточной подъёмной силы необходимо иметь скорость движения выше первой космической. Тут уже не самолёт, а спутник. На практике различие здесь в способе доставки: в настоящий космос полёты совершаются на ракетах, а в ближний – на стратостатах.

    Стратостаты – это забытые всеми технологии ещё далёких 30-х годов 20-го века. Они не являются дирижаблями, наполненными водородом и взрывающимися от любой искринки. Они больше похожи на воздушные шары с гелием, которые способны к подъёму в ближний космос до 50 км. Есть проекты стартостатов, работающие на высоте в 80 км., но их уже правильнее назвать суборбитальными спутниками. Эти варианты предназначены для военных, для гражданских же модели не способны подниматься выше 50 км. Но и 50 км. достаточно для решения большего количества задач.

    Стратостаты перестали быть актуальными с начала космической эры 1957 года, то есть с запуска первого спутника. Однако, прошло 60 лет, и почему-то их вспомнили. Наверняка, о них ныне заговорили из-за их дешевизны в сравнении со спутниками, ведь не каждой стране доступны спутниковые технологии и полноценная космическая программа, а стратосферу есть возможность изучить многим. Суть не только в дешевизне, но и в особенностях самих технологий, позволяющих аппаратам находиться в небе сотни дней.

    Ведь днём стратостаты питаются от солнечных панелей, а их мощные аккумуляторы запасаются энергией на ночь, при этом у них весьма малый вес. Конструкция аппарата – достаточно лёгкая и прочная. GPS даёт им возможность с лёгкостью выявлять положение, а бортовые компьютеры способны к принятию самостоятельных решений.

    Как раз комплекс всевозможных технологий современности и даёт возможность говорить о востребовании стратосферных услуг на рынке.

    К примеру, компания «WorldView» ставит планы на запуск туристов на высоты до 45 км., для чего была придумана новая гондола, снабжённая иллюминаторами огромных размеров, откуда туристам станет возможным наблюдать за чернотой дневного неба и поверхностью Земли, можно сказать, такой, какой её видят космонавты.

    «Ближний» космос выгоднее дальнего

    В настоящем космосе оставят в таком случае лишь навигацию, такую как «GPS», «ГЛОНАСС», «Beidou» и «Galileo». Однако, такая проблема может быть решена и без использования дорогих спутниковых технологий – посредством стратостатов, беспилотников и прочих средств. К тому «LTE» и «Wi-Fi» в настоящее время выступает в качестве хорошей альтернативы «GPS». «LBS» хорошо осуществляет навигацию, определяет местоположение, ориентируясь на вышки сотовой связи и «Wi-Fi». Только она в точности проигрывает, ведь погрешность тут в десятки метров, а у «GPS» - меньше метра.

    Таким образом, «Ближний космос» или стратосфера в ближайшем будущем вполне способна занять главное место в научной сфере, выигрывая по привлекательным условиям околоземную орбиту.

    Отправлять стратостаты, оснащённых специальным оборудованием и даже целой лабораторией, вместе с людьми на борту на высоты до 50 км. станут всё чаще и чаще, что это войдёт в привычное русло. В этом случае не потребуется даже обеспечивать стратонавтов защитой от радиации, солнечных бурь, космического мусора и т.п. В будущем мы даже, возможно, перестанем заниматься космосом и обратим внимание на атмосферу, так как создавать беспилотники и стратостаты представляется намного дешёвым. В таком случае даже не потребуется обеспечивать такую систему защиты и жизнеобеспечения, которая необходима была бы на земной орбите.

    Что касается народно-хозяйственных задач, такие как связь, зондирование, научные эксперименты, астрономия, здесь стратостаты выступают весьма сильными конкурентами спутникам, ведь люди создадут намного дешёвые версии аппаратов. Такие аппараты будут способны к самостоятельным решениям в плане того, куда необходимо двигаться и каким образом группироваться. Такое уже разрабатывается в рамках проекта под названием «Google Loon», дающего возможность труднодоступным регионам применять интернет-технологии. Такие аппараты называют ещё моделями, управляемыми нейросетью. Также стоит говорить здесь об автономных беспилотниках, способных держаться в атмосфере по много дней.

    Стратостаты способны к непрерывному наблюдения за одной и той же местностью планеты. Такие аппараты имеют ещё геостационарными. Известно, что в стратосфере не наблюдается сильных ветров и низкой турбулентности, так что стратостат вполне способен зависать над одной точкой, как и спутник. А ведь для доставки спутника на геостационарную орбиту, а это 36 тыс. км. над земной поверхностью, применяется мощная ракета-носитель, а в случае же доставки стратостата достаточно баллонов с гелием, небольшого финансирования, и всё. Таким образом стратостаты вполне конкурентоспособны по отношению к обычным технологиям связи и зондирования.

    Таким образом, по мере развития стратонавтики откажутся от дорогих зондов и обычных технологий связи. Также стратостаты могут послужить прекрасным инструментом для запуска из стратосферы тех же самых спутников. Так что изменится просто-напросто технология доставки спутников на орбиту. Ведь компания «Zero 2 Infinity» как раз работает в этом перспективном направлении. Стратостат будет выполнять функцию космодрома или же платформы для запуска спутника в настоящий космос. Если даже инвесторы не поддержат этот проект должным образом, направление в плане освоения стратосферы всё равно уже чётко обозначен.

    Большое число стратостатов в нашей атмосфере способны создать некую глобальную систему связи, схожей той, что образуются посредством компьютеров у нас дома.

    Следовательно, от зондов мы сможем получать данные прямо на свои устройства персонального назначения, лучше узнавать погоду, подключаться к интернет-соединению с минимальной задержкой сигнала даже в труднодоступных точках Земли, осуществлять общение посредством таких аппаратов децентрализованно и т.п.

    То есть любая информация, полученная от стратостата, будет намного точнее и стремительнее обрабатываться, нежели данные с орбиты. Таким образом, философия так называемого децентрализованного интернета должна распространиться и на прочие сферы, а вышеописанные технологии, такие как стратостаты и беспилотники, идеальны для построения такой модели мира.

    Заключение

    Следовательно, мы можем говорить о новой эпохе развития технологий, где будут применяться наиболее дешёвые варианты как для организаций, занимающихся космической сферой, так и для обывателей, пользующихся интернетом и другими средствами связи. Освоение ближнего космоса – это весьма интересная перспектива, ведь каждому в таком случае откроется доступ к изучению стратосферы, люди смогут познавать Землю, находясь на высоте в 50 км. от её поверхности. Это, безусловно, откроет для всего человечества дешёвые и доступные возможности в освоении космоса, хоть и ближнего. Это расширение просторов для путешествия вокруг Земли на огромных высотах. Поэтому и ныне рассматривается возможность перехода со спутниковых технологий к стратостатам и тому подобным аппаратам. К тому же это ещё и расширить возможности интернета и сделает его более дешёвым и доступным даже для жителей самых удалённых уголков планеты. Так что остаётся только ждать осуществления таких проектов от ведущих космических компаний.

    Наверное, многие из нас в детстве рассматривали звездное небо, особенно в теплые августовские ночи. Загадочное черное пространство всегда вызывало у людей интерес. Мы, как и наши предки, пытаемся понять, что же этот неизвестный мир таит в себе? На этот и многие другие вопросы, которые очень часто задают дети своим родителям, порой трудно дать ответ. А что такое космос для нас, взрослых? Что мы знаем о нем?

    Порядок и гармония

    Из толковых словарей можно узнать, что в переводе с греческого слово "космос" означает "стройность", "порядок". под этим словом подразумевали все Мироздание, рассматривая его как упорядоченную систему, которая отличалась, в противоположность беспорядку и хаосу, гармонией. Было время, когда в это понятие ученые включали всю природу Земли, все, что на ней происходит. Также сюда входили небесные светила, планеты, звезды, галактики. Известен титанический труд под названием "Космос". Автор Александр Гумбольдт заключил в свои пять томов всю известную на тот момент информацию о природе. То есть здесь было все о космосе.

    Вселенная

    Что такое космос в наше время? Понятие это наделено, пожалуй, истинным своим смыслом и означает "Вселенная". Ведь космос включает в себя звезды, кометы, самые разные космические светила, а также все И эти составляющие связаны между собой. Они существуют, подчиняясь известным только им законам, и эти законы человек всегда пытался разгадать. Попытки понять, что такое космос, наверное, не прекратятся никогда. Эта загадка будоражит умы людей.

    Ближний и дальний космос

    Условно все пространство Вселенной разделено на дальний и ближний космос (околоземное пространство). Территория, которая находится непосредственно вблизи нашей планеты, активно изучается с помощью спутников. Это специальные транспортные средства, позволяющие человеку принять активное участие в исследовании космоса. Большое количество спутников исследуют околоземное пространство самостоятельно.

    Дальний космос для человека недоступен. Но, будем надеяться, что только временно. Эта территория когда-нибудь также будет занята человеком.

    Млечный путь

    Ученые считают, что космос состоит из большого числа галактик. Слово "галактика" происходит от греческого "galaktikos" и означает "молочный". Именно поэтому название нашей, в которой находятся Земля, Солнечная система и все видимые звезды - "Млечный Путь".

    У каждой из галактик - свое специфическое строение, и они, в свою очередь, состоят из разных систем звезд. Наша Солнечная система - это главная звезда Солнце и планеты, вращающиеся вокруг нее. Здесь присутствует и разных а также космическая пыль. Магнитное поле позволяет всему этому держаться вместе и вращаться вокруг Солнца. У каждой планеты есть свой путь или орбита. Многие из них имеют свои природные спутники, вращающиеся вокруг них.

    Думая о том, что такое космос, мы всегда приходим к выводу: он настолько загадочен и таинственен, что говорить о нем можно до бесконечности. Каждое из уникально и, в свою очередь, может стать темой для дискуссии. И человек будет исследовать все это безграничное пространство, пока сам существует и является его маленькой частицей.

    Последние материалы сайта